Skip to main content
Log in

Enhanced Dai–Liao conjugate gradient methods for systems of monotone nonlinear equations

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, we propose two conjugate gradient methods for solving large-scale monotone nonlinear equations. The methods are developed by combining the hyperplane projection method by Solodov and Svaiter (Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods. Springer, pp 355–369, 1998) and two modified search directions of the famous Dai and Liao (Appl Math Optim 43(1): 87–101, 2001) method. It is shown that the proposed schemes satisfy the sufficient descent condition. The global convergence of the methods are established under mild conditions, and computational experiments on some benchmark test problems show that the methods are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andrei, N.: Open problems in conjugate gradient algorithms for unconstrained optimization. Bull. Malays. Math. Sci. Soc. 34(2), 319–330 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Andrei, N.: Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling BFGS update. J. Comput. Appl. Math. 325, 149–164 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Arazm, M.R., Babaie-Kafaki, S., Ghanbari, R.: An extended Dai-Liao conjugate gradient method with global convergence for nonconvex functions. Glasnik matematic 52(72), 361–375 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Babaie-Kafaki, S., Ghanbari, R., Mahdavi-Amiri, N.: Two new conjugate gradient methods based on modified secant equations. J. Comput. Appl. Math. 234(5), 1374–1386 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Babaie-Kafaki, S., Ghanbari, R.: A descent family of Dai-Liao conjugate gradient methods. Optim. Methods Softw. 29(3), 583–591 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices. Eur. J. Oper. Res. 234, 625–630 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Babaie-Kafaki, S., Ghanbari, R.: Two optimal Dai-Liao conjugate gradient methods. Optimization 64, 2277–2287 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Bouaricha, A., Schnabel, R.B.: Tensor methods for large sparse systems of nonlinear equations. Math. Program. 82, 377–400 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577–593 (1965)

    MathSciNet  MATH  Google Scholar 

  10. Cheng, W.: A PRP type method for systems of monotone equations. Math. Comput. Model. 50, 15–20 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Dai, Y.H., Liao, L.Z.: New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43(1), 87–101 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Dai, Y.H., Yuan, Y.X.: Nonlinear Conjugate Gradient Methods. Shanghai Scientific and Technical Publishers, Shanghai (2000)

    Google Scholar 

  13. Dai, Z., Chen, X., Wen, F.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equation. Appl. Math. Comput. 270, 378–386 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Dauda, M.K., Mamat, M., Mohamed, M.A., Waziri, M.Y.: Improved quasi-Newton method via SR1 update for solving symmetric systems of nonlinear equations. Malay. J. Fundam. Appl. Sci. 15(1), 117–120 (2019)

    Google Scholar 

  15. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2, Ser. A), 201–2013 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Fasano, G., Lampariello, F., Sciandrone, M.: A truncated nonmonotone Gauss–Newton method for large-scale nonlinear least-squares problems. Comput. Optim. Appl. 34, 343–358 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Fatemi, M.: An optimal parameter for Dai-Liao family of conjugate gradient methods. J. Optim. Theory Appl. 169(2), 587–605 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Ford, J.A., Moghrabi, I.A.: Multi-step quasi-Newton methods for optimization. J. Comput. Appl. Math. 50(1–3), 305–323 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Ford, J.A., Narushima, Y., Yabe, H.: Multi-step nonlinear conjugate gradient methods for unconstrained minimization. Comput. Optim. Appl. 40(2), 191–216 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone linesearch technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    MathSciNet  MATH  Google Scholar 

  23. Hively, G.A.: On a class of nonlinear integral equations arising in transport theory. SIAM J. Math. Anal. 9(5), 787–792 (1978)

    MathSciNet  MATH  Google Scholar 

  24. James, M.O., Werner, C.R.: On discretization and differentiation of operators with application to Newton’s method. SIAM J. Numer. Anal. 3(1), 143–156 (1966)

    MathSciNet  Google Scholar 

  25. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties. J. Comput. Appl. Math. 172, 375–397 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Khoshgam, Z., Ashrafi, A.: A new modidified scaled conjugate gradient method for large-scale unconstrained optimization with non-convex objective function. Optim. Methods Softw. (2018). https://doi.org/10.1080/10556788.2018.1457152

    Article  MATH  Google Scholar 

  27. Kincaid, D., Cheney, W.: Numerical Analysis. Brooks/Cole Publishing Company, Pacific Grove (1991)

    MATH  Google Scholar 

  28. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–166 (1944)

    MathSciNet  MATH  Google Scholar 

  29. La Cruz, W., Martinez J.M., Raydan M.: Spectral residual method without gradient information for solving large-scale nonlinear systems: theory and experiments, Citeseer, Technical Report RT-04-08(2004)

  30. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18, 583–599 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Li, D.H., Fukushima, M.: A globally and superlinearly convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Li, D.H., Fukushima, M.: A derivative-free linesearch and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13, 583–599 (2000)

    Google Scholar 

  33. Li, G., Tang, C., Wei, Z.: New conjugacy condition and related new conjugate gradient methods for unconstrained optimization. J. Comput. Appl. Math. 202(2), 523–539 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Liu, D.Y., Shang, Y.F.: A new Perry conjugate gradient method with the generalized conjugacy condition. In: 2010 International Conference on Computational Intelligence and Software Engineering, Wuhan, pp. 1–4 (2010). https://doi.org/10.1109/CISE.2010.5677114

  35. Liu, D.Y., Xu, G.Q.: A Perry descent conjugate gradient method with restricted spectrum, pp. 1–19. Optimization Online, Nonlinear Optimization (unconstrained optimization) (2011)

  36. Liu, J.K., Li, S.J.: A projection method for convex constrained monotone nonlinear equations with applications. Comput. Math. Appl. 70(10), 2442–2453 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Livieris, I.E., Pintelas, P.: Globally convergent modified Perrys conjugate gradient method. Appl. Math. Comput. 218, 9197–9207 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Livieris, I.E., Pintelas, P.: A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization. J. Comput. Appl. Math. 239, 396–405 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Livieris, I.E., Pintelas, P.: A descent Dai-Liao conjugate gradient method based on a modified secant equation and its global convergence. ISRN Computational Mathematics (2012)

  40. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    MathSciNet  MATH  Google Scholar 

  41. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  42. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  43. Peiting, G., Chuanjiang, H.: A derivative-free three-term projection algorithm involving spectral quotient for solving nonlinear monotone equations. Optim. J. Math. Program. Oper. Res. 67, 1–18 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Perry, A.: A modified conjugate gradient algorithm. Oper. Res. Tech. Notes. 26(6), 1073–1078 (1978)

    MathSciNet  MATH  Google Scholar 

  45. Polak, B.T.: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 4, 94–112 (1969)

    Google Scholar 

  46. Polak, E., Ribiere, G.: Note sur la convergence de methodes de directions conjugutes. Rev. Fr. Inform. Rech. Oper. 16, 35–43 (1969)

    MATH  Google Scholar 

  47. Solodov, V.M., Iusem, A.N.: Newton-type methods with generalized distances for constrained optimization. Optimization 41(3), 257–27 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 355–369. Springer, Boston, MA (1998)

    Google Scholar 

  49. Sun, W., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming. Springer, New York (2006)

    MATH  Google Scholar 

  50. Sun, Z., Li, H., Wang, J., Tian, Y.: Two modified spectral conjugate gradient methods and their global convergence for unconstrained optimization. Int. J. Comput. Math. 95(1), 1–23 (2017)

    MathSciNet  Google Scholar 

  51. Tong, X.J., Qi, L.: On the convergence of a trust-region method for solving constrained nonlinear equations with degenerate solutions. J. Optim. Theory Appl. 123(1), 187–211 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Waziri, M.Y., Ahmed, K., Sabi’u, J.: A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations. Appl. Math. Comput. 361, 645–660 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Waziri, M.Y., Ahmed, K., Sabi’u, J.: A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations. Arab. J. Math. (2019). https://doi.org/10.1007/s40065-019-0264-6(2019)

    Article  MATH  Google Scholar 

  54. Waziri, M.Y., Leong, W.J., Hassan, M.A.: Jacobian free-diagonal Newton’s method for nonlinear systems with singular Jacobian. Malays. J. Math. Sci. 5(2), 241–255 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Waziri, M.Y., Sabiu, J.: A Derivative-free conjugate gradient method and its global convergence for solving symmetric nonlinear equations. Hindawi Publ. Corp. Int. J. Math. Math. Sci. 2015, 8 (2015)

    MATH  Google Scholar 

  56. Wei, Z., Li, G., Qi, L.: New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput. 175(2), 1156–1188 (2006)

    MathSciNet  MATH  Google Scholar 

  57. Xiao, Y., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405, 310–319 (2013)

    MathSciNet  MATH  Google Scholar 

  58. Yabe, H., Takano, M.: Global convergence properties of nonlinear conjugate gradient methods with modified secant condition. Comput. Optim. Appl. 28(2), 203–225 (2004)

    MathSciNet  MATH  Google Scholar 

  59. Yan, Q.R., Peng, X.Z., Li, D.H.: A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J. Comput. Appl. Math. 234, 649–657 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Yu, G.: A derivative-free method for solving large-scale nonlinear systems of equations. J. Ind. Manag. Optim. 6, 149–160 (2010)

    MathSciNet  MATH  Google Scholar 

  61. Yu, G.: Nonmonotone spectral gradient-type methods for large-scale unconstrained optimization and nonlinearsystems of equations. Pac. J. Optim. 7, 387–404 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Yuan, G., Wang, B., Sheng, Z.: The Hager–Zhang conjugate gradient algorithm for large-scale nonlinear equations. Int. J. Comput. Math. 96(8), 1533–1547 (2018). https://doi.org/10.1080/00207160.2018.1494825

  63. Yuan, Y.X.: A modified BFGS algorithm for unconstrained optimization. IMA J. Numer. Anal. 11, 325–332 (1991)

    MathSciNet  MATH  Google Scholar 

  64. Yuan, Y.: Subspace methods for large scale nonlinear equations and nonlinear least squares. Optim. Eng. 10, 207–218 (2009)

    MathSciNet  MATH  Google Scholar 

  65. Yuan, G.L., Wei, Z.X., Lu, X.W.: A BFGS trust-region method for nonlinear equations. Computing 92(4), 317–333 (2011)

    MathSciNet  MATH  Google Scholar 

  66. Yuan, G., Zhang, M.: A three term Polak–Ribiere–Polyak conjugate gradient algorithm for large-scale nonlinear equations. J. Comput. Appl. Math. 286, 186–195 (2015)

    MathSciNet  MATH  Google Scholar 

  67. Zhang, J.Z., Deng, N.Y., Chen, L.H.: New quasi-Newton equation and related methods for unconstrained optimization. J. Optim. Theory Appl. 102(1), 147–157 (1999)

    MathSciNet  MATH  Google Scholar 

  68. Zhang, J., Xu, C.: Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations. J. Comput. Appl. Math. 137(2), 269–278 (2001)

    MathSciNet  MATH  Google Scholar 

  69. Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)

    MathSciNet  MATH  Google Scholar 

  70. Zhang, L., Zhou, W.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196, 478–484 (2006)

    MathSciNet  MATH  Google Scholar 

  71. Zhao, Y.B., Li, D.: Monotonicity of fixed point and normal mappings associated with variational inequality and its application. SIAM J. Optim. 11, 962–973 (2001)

    MathSciNet  MATH  Google Scholar 

  72. Zhou, W., Shen, D.: Convergence properties of an iterative method for solving symmetric non-linear equations. J. Optim. Theory Appl. 164(1), 277–289 (2015)

    MathSciNet  MATH  Google Scholar 

  73. Zhou, W., Li, D.: Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 25(1), 89–96 (2007)

    MathSciNet  Google Scholar 

  74. Zhou, W., Wang, F.: A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math. Comput. 261, 1–7 (2015)

    MathSciNet  MATH  Google Scholar 

  75. Zhou, W., Zhang, L.: A nonlinear conjugate gradient method based on the MBFGS secant condition. Optim. Methods Softw. 21(5), 707–714 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Waziri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waziri, M.Y., Ahmed, K., Sabi’u, J. et al. Enhanced Dai–Liao conjugate gradient methods for systems of monotone nonlinear equations. SeMA 78, 15–51 (2021). https://doi.org/10.1007/s40324-020-00228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-020-00228-9

Keywords

Mathematics Subject Classification

Navigation