Skip to main content
Log in

On a fractional boundary value problem in a weighted space

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of solutions for a boundary value problem involving both left Riemann–Liouville and right Caputo fractional derivatives in a weighted space. For this, we convert the posed problem to a sum of of a contraction and a compact operator, then we apply Krasnoselskii’s fixed point theorem to conclude the existence of a nontrivial solution. We end the paper by some numerical examples illustrating the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Analytical schemes for a new class of fractional differential equations. J. Phys. A: Math. Theor. 40, 5469–5477 (2007)

    Article  MathSciNet  Google Scholar 

  2. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  Google Scholar 

  3. Atanackovic, T.M., Stankovic, B.: On a differential equation with left and right fractional derivatives. Fract. Calc. Appl. Anal. 10(2), 139–150 (2007)

  4. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2011)

    Article  MathSciNet  Google Scholar 

  5. Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dyn. 52, 331–335 (2008)

    Article  MathSciNet  Google Scholar 

  6. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore (2012)

    Book  Google Scholar 

  7. Blaszczyk, T., Ciesielski, M.: Fractional oscillator equation transformation into integral equation and numerical solution. Appl. Math. Comput. 257, 428–435 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Blaszczyk, T., Ciesielski, M.: Numerical solution of Euler–Lagrange equation with Caputo derivatives. Adv. Appl. Math. Mech. 9(1), 173–185 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(3), 717–744 (2014)

    Article  MathSciNet  Google Scholar 

  10. Burton, T.A, Zhang, B.: Fixed points and fractional differential equations: Examples, Fixed Point Theory 14(2), 313–326 (2013)

  11. Drapaca, C.S.: Fractional calculus in neuronal electromechanics. J. Mech. Mater. Struct. 12(1), 35–55 (2017)

    Article  MathSciNet  Google Scholar 

  12. Guezane-Lakoud, A., Khaldi, R., Torres, D.F.M.: On a fractional oscillator equation with natural boundary conditions. Progr. Fract. Differ. Appl. 3(3), 191–197 (2017)

    Article  Google Scholar 

  13. Guezane-Lakoud, A., Khaldi, R., Torres, D.F.M.: Lyapunov-type inequality for a fractional boundary value problem with natural conditions. SeMA (2017). https://doi.org/10.1007/s40324-017-0124-2

    Article  MathSciNet  Google Scholar 

  14. Khaldi, R., Guezane-Lakoud, A.: Higher order fractional boundary value problems for mixed type derivatives. J. Nonlinear Funct. Anal. 2017, 30 (2017). https://doi.org/10.23952/jnfa.2017.30

  15. Guezane Lakoud, A., Khaldi, R., Kılıçman, A.: Existence of solutions for a mixed fractional boundary value problem. Adv. Differ. Equations 2017, 164 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, North-Holland Mathematics Studies. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  17. Nyamoradi, N., Rodríguez-López, R.: On boundary value problems for impulsive fractional differential equations. Appl. Math. Comput. 271, 874–892 (2015)

    MathSciNet  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equation. Academic Press, Sain Diego (1999)

    MATH  Google Scholar 

  19. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referee for his (her) valuable comments and suggestions. This research was done while the first author was visiting the University of Santiago De Compostela, Spain. The hospitality of the host institution and the financial support of Badji Mokhtar Annaba University, Algeria, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guezane-Lakoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guezane-Lakoud, A., Rodríguez-López, R. On a fractional boundary value problem in a weighted space. SeMA 75, 435–443 (2018). https://doi.org/10.1007/s40324-017-0142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-017-0142-0

Keywords

Mathematics Subject Classifications

Navigation