Skip to main content

Advertisement

Log in

Modelling cystic echinococcosis and bovine cysticercosis co-infections with optimal control

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Cystic echinococcosis and bovine cysticercosis are diseases of economic importance especially to rural communities that earn their incomes from livestock. In this paper, a mathematical model for cystic echinococcosis and bovine cysticercosis co-infections is formulated and analyzed to determine parameters that drive the diseases and design the optimal control strategy. The basic reproduction number \({\mathcal {R}}_0\) that governs the dynamics of cystic echinococcosis and bovine cysticercosis is computed by the next-generation matrix method, and the normalized forward sensitivity index is used to derive the sensitivity indices of model parameters. Sensitivity analysis shows that co-infections of cattle with cystic echinococcosis and bovine cysticercosis, open defecation rate by humans who are infected with taeniasis and the rate of slaughtering co-infected cattle play a significant role in the persistence of cystic echinococcosis and bovine cysticercosis. Sobol sensitivity analysis has been carried out to study global sensitivity of model parameters to state variables. The results show that the rate at which exposed dogs progress to infectious class, the rate at which humans who are exposed to taeniasis progress to infectious stage, the rate at which dogs are recruited, cattle per capita natural death rate, cattle recruitment rate and tapeworm eggs’ natural death rate are the most sensitive parameters to exposed dogs, humans who are exposed to taeniasis, infectious dogs, infectious cattle, exposed cattle and tapeworm eggs in the environment respectively. The control strategies, such as cattle indoor keeping, meat inspection, and improved hygiene and sanitation are implemented in combination to determine the possibility of controlling the spread of cystic echinococcosis and bovine cysticercosis. The Pontryagin’s maximum principle is applied to determine diseases’ optimal control strategy. Results show that cattle indoor keeping and meat inspection are more effective in disease control when they are concurrently implemented. Rural communities that earn income from livestock can control cystic echinococcosis and bovine cysticercosis by reducing the number of cattle that are kept in free range system, inspect meat from cattle and improve hygiene and sanitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Most of data used in this paper were found from different literature and some were assumed.

References

  • Ashwani K, Gebrehiwot T (2011) Bovine cysticercosis in ethiopia: a review. Ethiop Vet J 15:1

    Google Scholar 

  • Symeonidou I, Arsenopoulos K, Tzilves D, Soba B, GabriĂ«l S, Papadopoulos E (2018) Human taeniasis/cysticercosis: a potentially emerging parasitic disease in europe. Ann Gastroenterol 31(4):406

    Google Scholar 

  • Dermauw V, Dorny P, Uffe CB, Devleesschauwer B, Robertson Lucy J, Saratsis A, Thomas Lian F (2018) Epidemiology of taenia saginata taeniosis/cysticercosis: a systematic review of the distribution in southern and eastern africa. Parasit vect 11(1):578

    Google Scholar 

  • Akira I, Toni W, Hiroshi Y, Minoru N, Yasuhito S, Kazuhiro N, Margono Sri S, Thomas S, Charles G, Lightowlers Marshall W (2004) Cysticercosis/taeniasis in Asia and the pacific. Vector-Borne Zoon Dis 4(2):95–107

    Google Scholar 

  • World Health Organization et al (2005) WHO/FAO/OIE guidelines for the surveillance, prevention and control of taeniosis/cysticercosis. Paris: World Organisation for Animal Health

  • Dorny P, Praet N (2007) Taenia saginata in Europe. Vet Parasitol 149(1–2):22–24

    Google Scholar 

  • Ana F, Rossanna R-C, Arve Lee Willingham III (2006) Control of the taeniosis/cysticercosis complex: future developments. Vet Parasitol 139(4):283–292

    Google Scholar 

  • Trevisan C, Devleesschauwer B, Schmidt V, Winkler AS, Harrison W, Johansen MV (2017) The societal cost of taenia solium cysticercosis in tanzania. Acta Trop 165:141–154

    Google Scholar 

  • Braae UC, Thomas LF, Robertson LJ, Dermauw V, Dorny P, Willingham AL, Saratsis A, Devleesschauwer B (2018) Epidemiology of taenia saginata taeniosis/cysticercosis: a systematic review of the distribution in the americas. Parasit Vect 11(1):1–12

    Google Scholar 

  • Swanepoel FJC , Stroebel A, Moyo S (2010) The role of livestock in developing communities: Enhancing multifunctionality. University of the Free State/CTA

  • Tewodros A, Tewodros A (2017) mini review on bovine cysticercosis. Arch Vet Sci Technol 2:1

    Google Scholar 

  • Grindle RJ (1978) Economic losses resulting from bovine cysticercosis with special reference to botswana and kenya. Trop Anim Health Prod 10(1):127–140

    Google Scholar 

  • Liumei W, Song B, Wen D, Lou J (2013) Mathematical modelling and control of echinococcus in qinghai province, china. Math Biosci Eng 10:425–444

    MathSciNet  MATH  Google Scholar 

  • Bitew BG, Munganga Justin Manango W, Shitu HA (2020) Mathematical modeling of echinococcosis in humans, dogs, and sheep. J Appl Math 20:20

    MathSciNet  MATH  Google Scholar 

  • Wang K, Zhang X, Jin Z, Ma H, Teng Z, Wang L (2013) Modeling and analysis of the transmission of echinococcosis with application to xinjiang uygur autonomous region of china. J Theor Biol 333:78–90

    MathSciNet  MATH  Google Scholar 

  • Ernest E, Nonga HE, Kynsieri N, Cleaveland S (2010) A retrospective survey of human hydatidosis based on hospital records during the period 1990–2003 in ngorongoro, tanzania. Zoonoses Public Health 57(7–8):e124–e129

    Google Scholar 

  • Craig Philip S, Tiaoying L, Jiamin Q, Ren Z, Qian W, Patrick G, Akira I, David H, Bill W, Peter S et al (2008) Echinococcoses and tibetan communities. Emerg Infect Dis 14(10):1674

    Google Scholar 

  • Otero-Abad B, Torgerson PR (2013) A systematic review of the epidemiology of echinococcosis in domestic and wild animals. PLoS Negl Trop Dis 7(6):e2249

    Google Scholar 

  • Eckert J, Conraths FJ, Tackmann K (2000) Echinococcosis: an emerging or re-emerging zoonosis? Int J Parasitol 30(12–13):1283–1294

    Google Scholar 

  • Mohammad SK (2002) Hydatid disease: current status and recent advances. Ann Saudi Med 22(1–2):56–64

    Google Scholar 

  • Shamsul Islam AWM, Chizyuka HGB (1983) Prevalence of helminth parasites of dogs in lusaka, zambia. Trop Anim Health Prod 15(4):234–236

    Google Scholar 

  • Macpherson CNL, French CM, Stevenson P, Karstad L, Arundel JH (1985) Hydatid disease in the turkana district of Kenya, iv. the prevalence of echinococcus granulosus infections in dogs, and observations on the role of the dog in the lifestyle of the turkana. Ann Trop Med Parasitol 79(1):51–61

    Google Scholar 

  • Dakkak A (1992) Echinococcus-hydatidiosis in north africa: geo-graphical distribution of species and strains and prevalence in man and animals. Guidelines for diagnosis, surveillance and control of echinococcosis

  • Mersie A (1993) Survey of echinococcosis in eastern ethiopia. Vet Parasitol 47(1–2):161–163

    Google Scholar 

  • Buishi IE, Njoroge Ernest M, Bouamra O, Craig Philip S (2005) Canine echinococcosis in northwest libya: assessment of coproantigen elisa, and a survey of infection with analysis of risk-factors. Vet Parasitol 130(3–4):223–232

    Google Scholar 

  • Buishi I, Njoroge E, Zeyhle E, Rogan MT, Craig PS (2006) Canine echinococcosis in turkana (north-western kenya): a coproantigen survey in the previous hydatid-control area and an analysis of risk factors. Ann Trop Med Parasitol 100(7):601–610

    Google Scholar 

  • Eblate E, Nonga HE, Cleaveland S (2013) Prevalence of echinococcosis in dogs and wild carnivores in selected serengeti ecosystem areas of tanzania

  • Miran MB, Kasuku AA, Swai ES (2017) Prevalence of echinococcosis and taenia hydatigena cysticercosis in slaughtered small ruminants at the livestock-wildlife interface areas of ngorongoro, tanzania. Vet World 10(4):411

    Google Scholar 

  • Ernest E, Nonga HE, Cleaveland S (2013) Prevalence of echinococcosis in dogs and wild carnivores in selected serengeti ecosystem areas of tanzania. Tanzan Vet J 28(1):1–7

    Google Scholar 

  • Sanga VT (2016) Epidemiological investigation of most prevalent clinical signs and symptoms of animal and human diseases in Ngorongoro district, Tanzania. PhD thesis, Sokoine University of Agriculture

  • World Health Organization (2020) Echinococcosis fact sheet. https://www.https://www.who.int/news-room/fact-sheets/detail/echinococcosis, march

  • Craig PS, McManus DP, Lightowlers MW, Chabalgoity JA, Garcia HH, Gavidia CM, Gilman RH, Gonzalez AE, Lorca M, Naquira C et al (2007) Prevention and control of cystic echinococcosis. Lancet Infect Dis 7(6):385–394

    Google Scholar 

  • Budke Christine M, Peter D, Torgerson Paul R (2006) Global socioeconomic impact of cystic echinococcosis. Emerg Infect Dis 12(2):296

    Google Scholar 

  • Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, Rokni MB, Zhou X-N, Fèvre EM, Sripa B et al (2015) World health organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med 12(12):e1001920

    Google Scholar 

  • Wang K, Teng Z, Zhang X (2017) Dynamical behaviors of an echinococcosis epidemic model with distributed delays. Math Biosci Eng 14(5 &6):1425

    MathSciNet  MATH  Google Scholar 

  • Torgerson PR, Burtisurnov KK, Shaikenov BS, Rysmukhambetova AT, Abdybekova AM, Ussenbayev AE (2003) Modelling the transmission dynamics of echinococcus granulosus in sheep and cattle in kazakhstan. Vet Parasitol 114(2):143–153

    Google Scholar 

  • Torgerson PR, Ziadinov I, Aknazarov D, Nurgaziev R, Deplazes P (2009) Modelling the age variation of larval protoscoleces of echinococcus granulosus in sheep. Int J Parasitol 39(9):1031–1035

    Google Scholar 

  • Lahmar S, Debbek H, Zhang LH, McManus DP, Souissi A, Chelly S, Torgerson PR (2004) Transmission dynamics of the echinococcus granulosus sheep-dog strain (g1 genotype) in camels in tunisia. Vet Parasitol 121(1–2):151–156

    Google Scholar 

  • Mwasunda Joshua A, Irunde Jacob I, Damian K, Dmitry K (2022) Outbreak or extinction of bovine cysticercosis and human taeniasis: A stochastic modelling approach. Appl Math Model 106:73–85

    MathSciNet  Google Scholar 

  • Mwasunda JA, Irunde JI, Kajunguri D, Kuznetsov D (2022) Optimal control analysis of taenia saginata bovine cysticercosis and human taeniasis. Paras Epidemiol Control 16:e00236

    Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382

    MathSciNet  MATH  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

    MathSciNet  MATH  Google Scholar 

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70(5):1272

    MathSciNet  MATH  Google Scholar 

  • Saltelli A, Aleksankina K, Becker W, Fennell P, Ferretti F, Holst N, Li S, Qiongli W (2019) Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environ Model Softw 114:29–39

    Google Scholar 

  • Bichara Derdei Mahamat (2019) Global analysis of multi-host and multi-vector epidemic models. J Math Anal Appl 475(2):1532–1553

    MathSciNet  MATH  Google Scholar 

  • Nossent J, Elsen P, Bauwens W (2011) Sobol’sensitivity analysis of a complex environmental model. Environ Model Softw 26(12):1515–1525

    Google Scholar 

  • Puy A, Piano SL, Saltelli A, Levin SA (2021) Sensobol: an r package to compute variance-based sensitivity indices. arXiv preprint arXiv:2101.10103

  • Mwasunda JA, Irunde JI, Kajunguri D, Kuznetsov D (2021) Modeling and analysis of taeniasis and cysticercosis transmission dynamics in humans, pigs and cattle. Adv Diff Equ 2021(1):1–23

    MathSciNet  Google Scholar 

  • Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1(2):361

    MathSciNet  MATH  Google Scholar 

  • Okosun KO, Mukamuri M, Makinde DO (2016) Global stability analysis and control of leptospirosis. Open Math 14(1):567–585

    MathSciNet  MATH  Google Scholar 

  • Osman S, Otoo D, Sebil C (2020) Analysis of listeriosis transmission dynamics with optimal control. Appl Math 11(7):712–737

    Google Scholar 

  • LaSalle JP (1976) The stability of dynamical systems. vol 25. Siam

  • Rong X, Fan M, Zhu H (2020) Dynamic modeling and optimal control of cystic echinococcosis

  • Camacho A, Jerez S (2019) Bone metastasis treatment modeling via optimal control. J Math Biol 78(1):497–526

    MathSciNet  MATH  Google Scholar 

  • Fernando S, Andrei K, Ignacio B (2019) Optimal control against the human papillomavirus: protection versus eradication of the infection. Abstr Appl Anal 20:19

    MathSciNet  MATH  Google Scholar 

  • Saldaña F, Korobeinikov A, Barradas I (2019) Optimal control against the human papillomavirus: protection versus eradication of the infection. Abst Appl Anal 2019:2

    MathSciNet  MATH  Google Scholar 

  • Nkuba N, Luboobi Livingstone S, Mpeshe Saul C, Shirima Gabriel M (2020) Optimal control strategies for the infectiology of brucellosis. Int J Math Math Sci 20:20

    MathSciNet  Google Scholar 

  • Biswas S, Sasmal SK, Sudip Samanta Md, Saifuddin NP, Chattopadhyay J (2017) Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak allee effects. Nonlinear Dyn 87(3):1553–1573

    MATH  Google Scholar 

  • Pontryagin LS, Boltyanskii VG, Gankrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal

  • Pontryagin LS, Boltyanskij VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. John Wiley & Sons, New York

    Google Scholar 

  • Semenovich PL (2018) Mathematical theory of optimal processes. Routledge, New York

    Google Scholar 

Download references

Funding

The authors have not received any funding for this research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally towards publication of this work.

Corresponding author

Correspondence to Joshua A. Mwasunda.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests upon publication of this work.

Additional information

Communicated by Juan Carlos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I: non-negativity and boundedness of solutions

Appendix I: non-negativity and boundedness of solutions

The model system (1) is mathematically and biologically meaningful if its solutions are non-negative and bounded. In this section we investigate non-negativity of model solutions and establish their boundedness.

1.1 Non-negativity of model solutions

Showing that model solutions are positive for all \(t\ge 0\), the first equation for susceptible humans in model system (1) can be written as;

$$\begin{aligned} \begin{aligned}&\dfrac{dS_H}{dt}=\Lambda _H-\sigma _H E_VS_H-\Phi _H M S_H-\mu _HS_H,\\&\dfrac{dS_H}{dt}\ge -(\sigma _H E_V+\Phi _H M +\mu _H)S_H. \end{aligned} \end{aligned}$$

Separation of variables leads to;

$$\begin{aligned} \dfrac{dS_H}{S_H}\ge -(\sigma _H E_V+\Phi _H M +\mu _H)dt. \end{aligned}$$

Integration and application of initial condition gives

$$\begin{aligned} S_H(t)\ge S_H(0)e^{-\displaystyle \int _{0}^{t}(\sigma _H E_V(s)+\Phi _H M(s) +\mu _H)ds}\ge 0. \end{aligned}$$
(39)

Applying the same approach for the rest of equations, we obtain;

$$\begin{aligned} \begin{aligned}&E_{HE}(t)\ge E_{HE}(0)e^{-(\gamma _E+\mu _H+\rho _T\Psi _{HE})t}\ge 0,~~\\ {}&E_{HT}(t)\ge E_{HT}(0)e^{-(\mu _E+\tau _E \theta _{HT})t}\ge 0,~~\\ {}&E_{HB}(t)\ge E_{HB}(0)e^{-(\mu _{H}+\gamma _{B})t}\ge 0,~~\\ {}&I_{HE}(t)\ge I_{HE}(0)e^{-(\mu _H+\mu _E)t}\ge 0,~~\\ {}&I_{HT}(t)\ge E_{HT}(0)e^{-\mu _{H}t}\ge 0,~~\\ {}&I_{HB}(t)\ge I_{HB}(0)e^{-(\mu _H+\mu _E)t}\ge 0,~~\\ {}&S_C(t)\ge S_C(0)e^{-\displaystyle \int _{0}^{t}(\sigma _{C}E_V(s)+\mu _C+\delta _1)ds}\ge 0,~~\\ {}&E_{C}(t)\ge E_{C}(0)e^{-(\gamma _{C}+\mu _{C}+\delta _2)t}\ge 0,~~\\ {}&I_C(t)\ge I_C(0)e^{-(\delta _3+\mu _C)t}\ge 0,~~\\ {}&S_D(t)\ge S_D(0)e^{-\displaystyle \int _{0}^{t}(\sigma _{D}M(s)+\mu _D)ds}\ge 0,~~\\ {}&E_{D}(t)\ge E_{D}(0)e^{-(\gamma _{D}+\mu _{D})t}\ge 0,~~\\ {}&I_D(t)\ge I_D(0)e^{-\mu _D t}\ge 0,~~\\ {}&M(t)\ge M(0)e^{-\mu _Mt}\ge 0,\\ {}&E_V(t)\ge E_V(0)e^{-\mu _Et}\ge 0. \end{aligned} \end{aligned}$$
(40)

This indicates that all solutions of the model system (1) are non-negative for all \(t\ge 0\).

1.2 Boundedness of model solutions

To establish boundedness of solutions, we consider separately the total populations for humans, cattle and dogs. Considering the total populations for humans, cattle and dogs respectively, we have;

$$\begin{aligned} \begin{aligned}&\dfrac{dN_H}{dt}\le \Lambda _H-\mu _HN_H,\\ {}&\dfrac{dN_C}{dt}\le \Lambda _C-\mu _CN_C,\\&\dfrac{dN_D}{dt}\le \Lambda _D-\mu _DN_D. \end{aligned} \end{aligned}$$
(41)

Solving the first equation in (41) and applying initial conditions, we obtain:

$$\begin{aligned} N_H(t)\le \dfrac{\Lambda _H}{\mu _H}+\left( N_H(0)-\dfrac{\Lambda _H}{\mu _H}\right) e^{-\mu _Ht}. \end{aligned}$$
(42)

Two cases when \(N_H(0)>\dfrac{\Lambda _H}{\mu _H}\) and when \(N_H(0)<\dfrac{\Lambda _H}{\mu _H}\) are considered to analyze (42). For the two cases we obtain;

$$\begin{aligned} \begin{aligned}&\dfrac{\Lambda _H}{\mu _H}\le N_H(t)\le \dfrac{\Lambda _H}{\mu _H}+\left( N_H(0)-\dfrac{\Lambda _H}{\mu _H}\right) e^{-\mu _Ht}\\ {}&~~~~~~~~~~~~~~~~~~~~~~~~\text {and}\\ {}&\dfrac{\Lambda _H}{\mu _H}+\left( N_H(0)-\dfrac{\Lambda _H}{\mu _H}\right) e^{-\mu _Ht}\le N_H(t)\le \dfrac{\Lambda _H}{\mu _H} \end{aligned} \end{aligned}$$
(43)

respectively. As \(t\rightarrow \infty \), equation (43) becomes;

$$\begin{aligned} N_H(t)\le \dfrac{\Lambda _H}{\mu _H}. \end{aligned}$$
(44)

Applying the same procedure for the second and third equations in (41), we have respectively:

$$\begin{aligned} \begin{aligned}&N_C(t)\le \dfrac{\Lambda _C}{\mu _C+\delta _1}~~\text {and}~~ N_D(t)\le \dfrac{\Lambda _D}{\mu _D}. \end{aligned}\nonumber \\ \end{aligned}$$
(45)

Since \(N_C(t)\le \dfrac{\Lambda _C}{\mu _C+\delta _1}\) and \(N_D(t)\le \dfrac{\Lambda _D}{\mu _D}\) then \(I_C\le \dfrac{\Lambda _C}{\mu _C+\delta _1}\) and \(I_D\le \dfrac{\Lambda _D}{\mu _D}\) . Without loss of generality, it can be shown that

$$\begin{aligned} M(t)\le \dfrac{\delta _3\Lambda _C}{(\mu _C+\delta _1)(\mu _M+\Phi _H +\sigma _D)}~~\text {and}~~ E_V(t)\le \dfrac{\alpha _D\Lambda _D}{\mu _E\mu _D(\mu _C+\delta _1)}+\dfrac{2\omega _{T}\Lambda _H}{\mu _E\mu _H}. \end{aligned}$$
(46)

The solutions of the model system (1) enter the region

$$\begin{aligned} \begin{array}{lll} \Omega =\left\{ (X_H, Y_C,Z_D, M, E_V)\in {\mathbb {R}}^{15}_{+}: N_H\le \dfrac{\Lambda _H}{\mu _H}, N_C\le \dfrac{\Lambda _C}{\mu _C+\delta _1},\right. \\ \qquad \qquad \left. N_D\le \dfrac{\Lambda _D}{\mu _D} M(t)\le \Gamma , E_V\le \beta \right\} , \end{array} \end{aligned}$$
(47)

where

$$\begin{aligned} \begin{aligned}&X_H=S_H, E_{HE},E_{HT},E_{HT},E_{HB} I_{HE}, I_{HT},I_{HB}; ~ Y_C=S_C, E_C, I_C;Z_D = S_D, E_D, I_D; \\ {}&\Gamma = \dfrac{\delta _3\Lambda _C}{(\mu _C+\delta _1)(\mu _M+\Phi _H +\sigma _D)};\beta =\dfrac{\alpha _D\Lambda _D}{(\mu _C+\delta _1)(\mu _E\mu _D)}+\dfrac{2\omega _{T}\Lambda _H}{\mu _E\mu _H} . \end{aligned} \end{aligned}$$

Thus, the region \(\Omega \) is positive invariant and the solutions of the model system (1) that start at the boundary of \(\Omega \) enter the region in finite time. Hence, we can consider the flow generated by the model (1) for the analysis. This result is summarized in Theorem 1.

Theorem 5

The solutions of the model system (1) are non-negative and bounded in the region \(\Omega \).

Appendix II: global sensitivity indices of model parameters

Variable

Low.ci

High.ci

Sensitivity

Parameter

\(S_H\)

0.1528

0.2081

\(T_i\)

\( \sigma _H\)

\(S_H\)

0.1461

0.1980

\(T_i\)

\(\mu _C\)

\(E_{HE}\)

0.6418

0.8181

\(T_i\)

\(\gamma _E\)

\(E_{HT}\)

0.5586

0.6973

\(T_i\)

\(\gamma _T\)

\(E_{HB}\)

0.3887

0.4988

\(T_i\)

\(\gamma _T\)

\(E_{HB}\)

0.2538

0.3363

\(T_i\)

\( \sigma _{HT}\)

\(I_{HE}\)

0.1614

0.2118

\(T_i\)

\( \sigma _H\)

\(I_{HE}\)

0.1226

0.1679

\(T_i\)

\(\gamma _E\)

\(I_{HT}\)

0.2809

0.3742

\(T_i\)

\(\gamma _T\)

\(I_{HT}\)

0.1181

0.1584

\(T_i\)

\(\sigma _H\)

\(I_{HB}\)

0.3047

0.3929

\(T_i\)

\(\gamma _T\)

\(I_{HB}\)

0.2766

0.3663

\(T_i\)

\( \sigma _{HT}\)

\(S_C\)

0.2492

0.3354

\(T_i\)

\(\mu _V\)

\(S_C\)

0.2082

0.2796

\(T_i\)

\( \Lambda _D\)

\(E_C\)

0.3821

0.4847

\(T_i\)

\(\Lambda _D\)

\(E_C\)

0.2879

0.3684

\(T_i\)

\(\mu _C\)

\(E_C\)

0.2651

0.3419

\(T_i\)

\(\gamma _C\)

\(I_C\)

0.4739

0.6144

\(T_i\)

\(\mu _C\)

\(I_C\)

0.1455

0.1940

\(T_i\)

\( \delta _3\)

\(S_D\)

0.2293

0.3065

\(T_i\)

\( \mu _C\)

\(S_D\)

0.1960

0.2641

\(T_i\)

\(\Lambda _D\)

\(S_D\)

0.1355

0.1887

\(T_i\)

\(\delta _3\)

\(S_D\)

0.0976

0.1298

\(T_i\)

\(\Phi _H\)

\(E_D\)

0.6100

0.7645

\(T_i\)

\(\gamma _D\)

\(E_D\)

0.2676

0.3442

\(T_i\)

\(\Lambda _D\)

\(I_D\)

0.5384

0.6745

\(T_i\)

\(\Lambda _D\)

\(I_D\)

0.2434

0.3146

\(T_i\)

\(\mu _D\)

\(I_D\)

0.0938

0.1226

\(T_i\)

\( \gamma _D\)

M

0.3161

0.4123

\(T_i\)

\( \mu _C\)

M

0.1640

0.2181

\(T_i\)

\(\delta _3\)

M

0.1360

0.1802

\(T_i\)

\(\Phi _H\)

\(E_V\)

0.3662

0.4715

\(T_i\)

\(\mu _V\)

\(E_V\)

0.2244

0.2885

\(T_i\)

\(\Lambda _D\)

\(E_V\)

0.1714

0.2251

\(T_i\)

\(\alpha _D\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mwasunda, J.A., Chacha, C.S., Stephano, M.A. et al. Modelling cystic echinococcosis and bovine cysticercosis co-infections with optimal control. Comp. Appl. Math. 41, 342 (2022). https://doi.org/10.1007/s40314-022-02034-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02034-7

Keywords

Mathematics Subject Classification

Navigation