Skip to main content
Log in

The formation of shock wave in a two-dimensional supersonic planar and axisymmetric non-ideal gas flow with magnetic field

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the of the shock formation in 2-D steady supersonic flow of non-ideal gas with magnetic field for the planar flow and axisymmetric flows. It is shown that the governing equations describing the non-ideal gas flow with magnetic field is hyperbolic in nature. Further, using the theory of the propagation of wavefronts defined by weak shock, we derived the transport equations for shock wave which lead to determination of shock formation distance and provide the conditions of shock formation. The formation of shock wave is affected by the presence of magnetic field, non-ideal parameter and upstream flow Mach number \(M_0 >1\) is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arora R, Siddiqui MJ, Singh V (2012) Wave interaction and resonance in a non-ideal gas. Chin Phys Lett 29(12):120202

    Article  Google Scholar 

  • Bira B, Raja Sekhar T, Zeidan D (2018) Exact solutions for some time-fractional evolution equations using lie group theory. Math Methods Appl Sci 41(16):6717–6725

    Article  MathSciNet  Google Scholar 

  • Boillat G (1976) Ondes asymptotiques non linéaires. Ann Math 111(1):31–43

    MATH  Google Scholar 

  • Chaturvedi RK, Gupta P, Singh L (2019) Evolution of weak shock wave in two-dimensional steady supersonic flow in dusty gas. Acta Astronaut 160:552–557

    Article  Google Scholar 

  • Chaturvedi RK, Srivastava SK, Singh L (2020) Effect of solid dust particles on the propagation of shock wave in planar and non-planar gasdynamics. Chin J Phys 65:114–122

    Article  MathSciNet  Google Scholar 

  • Chauhan A, Arora R, Tomar A (2018) Convergence of strong shock waves in non-ideal magnetogasdynamics. Phys Fluids 30(11):116105

    Article  Google Scholar 

  • Chen PJ (1976) Selected topics in wave propagation. erda

  • Courant R, Friedrichs KO (1999) Supersonic flow and shock waves, vol 21. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Engelbrecht J (1977) Theory of non-linear wave propagation with application to the interaction and inverse problems. Int J Non-Linear Mech 12(4):189–201

    Article  Google Scholar 

  • Goncalves E, Zeidan D (2017) Numerical study of turbulent cavitating flows in thermal regime. Int J Numer Methods Heat Fluid Flow

  • Gupta P, Chaturvedi RK, Singh L (2020) The propagation of weak shock waves in non-ideal gas flow with radiation. Eur Phys J Plus 135(1):17

    Article  Google Scholar 

  • Hunter JK (1995) Asymptotic equations for nonlinear hyperbolic waves. Surveys in applied mathematics. Springer, Berlin, pp 167–276

    Chapter  Google Scholar 

  • Jeffrey A (1976) Quasilinear hyperbolic systems and waves. London

  • Kluwick A, Cox E (1998) Nonlinear waves in materials with mixed nonlinearity. Wave Motion 27(1):23–41

    Article  MathSciNet  Google Scholar 

  • Lynn Y (1971) Magnetogasdynamic shock polar for aligned fields. J Plasma Phys 6(2):283–290

    Article  Google Scholar 

  • Menon V, Sharma V (1981) Characteristic wave fronts in magnetohydrodynamics. J Math Anal Appl 81(1):189–203

    Article  MathSciNet  Google Scholar 

  • Nath G, Vishwakarma J (2014) Similarity solution for the flow behind a shock wave in a non-ideal gas with heat conduction and radiation heat-flux in magnetogasdynamics. Commun Nonlinear Sci Numer Simul 19(5):1347–1365

    Article  MathSciNet  Google Scholar 

  • Nath G, Vishwakarma J (2016) Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes. Acta Astronaut 128:377–384

    Article  Google Scholar 

  • Nath T, Gupta R, Singh L (2017) Evolution of weak shock waves in non-ideal magnetogasdynamics. Acta Astronaut 133:397–402

    Article  Google Scholar 

  • Romenski E, Zeidan D, Slaouti A, Toro E (2003) Hyperbolic conservative model for compressible two-phase flow. Reprint of the Isaac Newton Institute for Mathematical Sciences, NI03022-NPA, Cambridge, UK pp. 1–13

  • Sharma V (1986) The development of jump discontinuities in radiative magnetogasdynamics. Int J Eng Sci 24(5):813–818

    Article  MathSciNet  Google Scholar 

  • Sharma V, Shyam R, Singh L (1987) Shock formation distance in a two-dimensional steady supersonic flow over a concave corner in radiative magnetogasdynamics. ZAMM 67(2):87–92

    Article  Google Scholar 

  • Sharma V, Singh L, Ram R (1987) The progressive wave approach analyzing the decay of a sawtooth profile in magnetogasdynamics. Phys Fluids 30(5):1572–1574

    Article  Google Scholar 

  • Sharma VD (2010) Quasilinear hyperbolic systems, compressible flows, and waves. CRC Press, Boca Raton

    Book  Google Scholar 

  • da Silva EG, Zeidan D (2018) Simulation of compressible two-phase flows using a void ratio transport equation. Commun Comput Phys 24(1):167–203

    MathSciNet  MATH  Google Scholar 

  • Singh L, Husain A, Singh M (2011) Evolution of weak discontinuities in a non-ideal radiating gas. Commun Nonlinear Sci Numer Simul 16(2):690–697

    Article  MathSciNet  Google Scholar 

  • Singh L, Ram S, Singh D (2012) Quasi-similar solution of the strong shock wave problem in non-ideal gas dynamics. Astrophys Space Sci 337(2):597–604

    Article  Google Scholar 

  • Singh L, Ram S, Singh D (2013) The influence of magnetic field upon the collapse of a cylindrical shock wave. Meccanica 48(4):841–850

    Article  MathSciNet  Google Scholar 

  • Singh L, Sharma V, Gupta N (1988) Wave propagation in a steady supersonic flow of a radiating gas past plane and axisymmetric bodies. Acta Mech 73(1–4):213–220

    Article  Google Scholar 

  • Singh L, Singh D, Ram S (2011) Propagation of weak shock waves in a non-ideal gas. Open Eng 1(3):287–294

    Article  Google Scholar 

  • Singh L, Singh M, Husain A (2011) Similarity solutions for imploding shocks in non-ideal magnetogasdynamics. Astrophys Space Sci 331(2):597–603

    Article  Google Scholar 

  • Singh R, Sharma V (1980) Propagation of discontinuities along bi-characteristics in magnetohydrodynamics. Phys Fluids 23(3):648–649

    Article  Google Scholar 

  • Srivastava SK, Chaturvedi RK, Singh LP (2020) On the evolution of finite and small amplitude waves in non-ideal gas with dust particles. Phys Scrip. http://iopscience.iop.org/10.1088/1402-4896/ab7fec

  • Srivastava SK, Chaturvedi RK, Singh LP (2021) On the evolution of acceleration discontinuities in van der waals dusty magnetogasdynamics. Zeitschrift Naturforschung Teil A 76(5):435–443

    Article  Google Scholar 

  • Taniuti T (1974) Reductive perturbation method and far fields of wave equations. Prog Theor Phys Suppl 55:1–35

    Article  Google Scholar 

  • Ting T (1975) Propagation of discontinuities of all orders in nonlinear media. Recent Adv Eng Sci 6:101–110

    Google Scholar 

  • Varley E, Cumberbatch E (1965) Non-linear theory of wave-front propagation. IMA J Appl Math 1(2):101–112

    Article  MathSciNet  Google Scholar 

  • Varley E, Rogers T (1967) The propagation of high frequency, finite acceleration pulses and shocks in viscoelastic materials. Proc R Soc Lond Ser A Math Phys Sci 296(1447):498–518

    Google Scholar 

  • Whitham GB (2011) Linear and nonlinear waves, vol 42. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Wu C, Roberts P (1996) Structure and stability of a spherical shock wave in a van der waals gas. Q J Mech Appl Mech 49(4):501–543

    Article  MathSciNet  Google Scholar 

  • Zeidan D, Bähr P, Farber P, Gräbel J, Ueberholz P (2019) Numerical investigation of a mixture two-phase flow model in two-dimensional space. Comput Fluids 181:90–106

    Article  MathSciNet  Google Scholar 

  • Zeidan D, Govekar S, Pandey M (2021) Discontinuity wave interactions in generalized magnetogasdynamics. Acta Astronaut 180:110–114

    Article  Google Scholar 

  • Zeidan D, Romenski E, Slaouti A, Toro E (2007) Numerical study of wave propagation in compressible two-phase flow. Int J Numer Meth Fluids 54(4):393–417

    Article  MathSciNet  Google Scholar 

  • Zeidan D, Zhang L, Goncalves E (2020) High-resolution simulations for aerogel using two-phase flow equations and godunov methods. Int J Appl Mech 12(05):2050049

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for his valuable comments, which have helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep.

Additional information

Communicated by Abdellah Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, R.K., Pradeep & Singh, L.P. The formation of shock wave in a two-dimensional supersonic planar and axisymmetric non-ideal gas flow with magnetic field. Comp. Appl. Math. 40, 307 (2021). https://doi.org/10.1007/s40314-021-01672-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01672-7

Keywords

Mathematics Subject Classification

Navigation