Skip to main content
Log in

Modeling and solving the uncapacitated r-allocation p-hub median problem under congestion

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The hub location problems deal with determining the optimal location of hub facilities and allocating the demand nodes to these hubs in such a way that the traffic between any origin–destination pair is routed effectively. This paper proposes the uncapacitated r-allocation p-hub median problem under congestion. The problem is formulated as a second-order cone programming and an efficient simulated annealing heuristic algorithm is proposed to solve the large instances of the problem. Extensive computational experiments are conducted based on three well-known data sets to demonstrate the efficiency of the proposed algorithm and also to study the effect of different input parameters on the optimal solutions. Some managerial insights are derived based on the obtained numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alizadeh F, Goldfarb D (2003) Second-order cone programming. Math Program 95(1):3–51

    MathSciNet  MATH  Google Scholar 

  • Alkaabneh F, Diabat A, Elhedhli S (2019) A Lagrangian heuristic and grasp for the hub-and-spoke network system with economies-of-scale and congestion. Transp Res Part C Emerg Technol 102:249–273

    Google Scholar 

  • Alumur S, Kara BY (2008) Network hub location problems: the state of the art. Eur J Oper Res 190(1):1–21

    MathSciNet  MATH  Google Scholar 

  • Alumur S, Kara BY (2009) A hub covering network design problem for cargo applications in turkey. J Oper Res Soc 60(10):1349–1359

    MATH  Google Scholar 

  • Alumur SA, Nickel S, Rohrbeck B, Saldanha-da Gama F (2018) Modeling congestion and service time in hub location problems. Appl Math Model 55:13–32

    MathSciNet  MATH  Google Scholar 

  • Alumur SA, Campbell JF, Contreras I, Kara BY, Marianov V, O’Kelly ME (2021) Perspectives on modeling hub location problems. Eur J Oper Res 291(1):1–17

    MathSciNet  MATH  Google Scholar 

  • Boukani FH, Moghaddam BF, Pishvaee MS (2016) Robust optimization approach to capacitated single and multiple allocation hub location problems. Comput Appl Math 35(1):45–60

    MathSciNet  MATH  Google Scholar 

  • Brimberg J, Mišković S, Todosijević R, Uroševic D (2021) The uncapacitated r-allocation p-hub center problem. Int Trans Oper Res. https://doi.org/10.1111/itor.12801

    Article  Google Scholar 

  • Campbell JF (1996) Hub location and the p-hub median problem. Oper Res 44(6):923–935

    MathSciNet  MATH  Google Scholar 

  • Campbell JF, O’Kelly ME (2012) Twenty-five years of hub location research. Transp Sci 46(2):153–169

    Google Scholar 

  • Černỳ V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45(1):41–51

    MathSciNet  MATH  Google Scholar 

  • Contreras I, O’Kelly M (2019) Hub location problems. In: Laporte G, Nickel S, Saldanha-daGama F (eds) Location science, chapt. 12, 2nd edn. Springer, Heidelberg, pp 327–363

  • Čvokić DD, Stanimirović Z (2020) A single allocation hub location and pricing problem. Comput Appl Math 39(1):1–24

    MathSciNet  MATH  Google Scholar 

  • de Camargo RS, Miranda G (2012) Single allocation hub location problem under congestion: network owner and user perspectives. Expert Syst Appl 39(3):3385–3391

    Google Scholar 

  • De Camargo RS, de Miranda Jr G, Ferreira RP (2011) A hybrid outer-approximation/benders decomposition algorithm for the single allocation hub location problem under congestion. Oper Res Lett 39(5):329–337

    MathSciNet  MATH  Google Scholar 

  • Elhedhli S, Hu FX (2005) Hub-and-spoke network design with congestion. Comput Oper Res 32(6):1615–1632

    MATH  Google Scholar 

  • Elhedhli S, Wu H (2010) A Lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion. INFORMS J Comput 22(2):282–296

    MathSciNet  MATH  Google Scholar 

  • Ernst AT, Krishnamoorthy M (1996) Efficient algorithms for the uncapacitated single allocation p-hub median problem. Locat Sci 4(3):139–154

    MATH  Google Scholar 

  • Ernst AT, Krishnamoorthy M (1998) Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem. Eur J Oper Res 104(1):100–112

    MATH  Google Scholar 

  • Ernst AT, Krishnamoorthy M (1999) Solution algorithms for the capacitated single allocation hub location problem. Ann Oper Res 86:141–159

    MathSciNet  MATH  Google Scholar 

  • Farahani RZ, Hekmatfar M, Arabani AB, Nikbakhsh E (2013) Hub location problems: a review of models, classification, solution techniques, and applications. Comput Ind Eng 64(4):1096–1109

    Google Scholar 

  • Gendreau M, Potvin JY et al (2010) Handbook of metaheuristics, vol 2. Springer, Berlin

    MATH  Google Scholar 

  • Ghaffarinasab N (2018) An efficient matheuristic for the robust multiple allocation p-hub median problem under polyhedral demand uncertainty. Comput Oper Res 97:31–47

    MathSciNet  MATH  Google Scholar 

  • Ghaffarinasab N (2020) A tabu search heuristic for the bi-objective star hub location problem. Int J Manag Sci Eng Manag 15(3):213–225

    Google Scholar 

  • Ghaffarinasab N, Kara BY (2019) Benders decomposition algorithms for two variants of the single allocation hub location problem. Netw Spat Econ 19(1):83–108

    MathSciNet  MATH  Google Scholar 

  • Ghaffarinasab N, Motallebzadeh A (2018) Hub interdiction problem variants: models and metaheuristic solution algorithms. Eur J Oper Res 267(2):496–512

    MathSciNet  MATH  Google Scholar 

  • Ghaffari-Nasab N, Ahari SG, Ghazanfari M (2013a) A hybrid simulated annealing based heuristic for solving the location-routing problem with fuzzy demands. Sci Iran 20(3):919–930

    Google Scholar 

  • Ghaffari-Nasab N, Jabalameli MS, Saboury A (2013b) Multi-objective capacitated location-routing problem: modelling and a simulated annealing heuristic. Int J Serv Oper Manag 15(2):140–156

    MATH  Google Scholar 

  • Ghaffarinasab N, Jabarzadeh Y, Motallebzadeh A (2017) A tabu search based solution approach to the competitive multiple allocation hub location problem. Iran J Oper Res 8(1):61–77

    MATH  Google Scholar 

  • Ghaffarinasab N, Motallebzadeh A, Jabarzadeh Y, Kara BY (2018) Efficient simulated annealing based solution approaches to the competitive single and multiple allocation hub location problems. Comput Oper Res 90:173–192

    MathSciNet  MATH  Google Scholar 

  • Ghaffarinasab N, Zare Andaryan A, Ebadi Torkayesh A (2020) Robust single allocation p-hub median problem under hose and hybrid demand uncertainties: models and algorithms. Int J Manag Sci Eng Manag 15(3):184–195

    Google Scholar 

  • Gillen D, Levinson D (1999) Full cost of air travel in the California corridor. Transp Res Rec 1662(1):1–9

    Google Scholar 

  • Günlük O, Linderoth J (2008) Perspective relaxation of mixed integer nonlinear programs with indicator variables. In: Lodi A, Panconesi A, Rinaldi, G (eds) IPCO, Lecture Notes in Computer Science, vol 5035. pp 1–16

  • Hamacher HW, Meyer T (2006) Hub cover and hub center problems. Working paper

  • Ishfaq R, Sox CR (2012) Design of intermodal logistics networks with hub delays. Eur J Oper Res 220(3):629–641

    MathSciNet  MATH  Google Scholar 

  • Jabalameli MS, Barzinpour F, Saboury A, Ghaffari-Nasab N (2012) A simulated annealing-based heuristic for the single allocation maximal covering hub location problem. Int J Metaheuristics 2(1):15–37

    MathSciNet  MATH  Google Scholar 

  • Janković O, Stanimirović Z (2017) A general variable neighborhood search for solving the uncapacitated r-allocation p-hub maximal covering problem. Electron Notes Discret Math 58:23–30

    MathSciNet  MATH  Google Scholar 

  • Karimi-Mamaghan M, Mohammadi M, Pirayesh A, Karimi-Mamaghan AM, Irani H (2020) Hub-and-spoke network design under congestion: a learning based metaheuristic. Transp Res Part E Logist Transp Rev 142:102069

    Google Scholar 

  • Kian R, Kargar K (2016) Comparison of the formulations for a hub-and-spoke network design problem under congestion. Comput Ind Eng 101:504–512

    Google Scholar 

  • Kibiroğlu Çağrı Özgün, Serarslan MN, İlker Topcu Y (2019) Particle swarm optimization for uncapacitated multiple allocation hub location problem under congestion. Expert Syst Appl 119:1–19

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  • Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra Appl 284(1–3):193–228

    MathSciNet  MATH  Google Scholar 

  • Lüer-Villagra A, Eiselt HA, Marianov V (2019) A single allocation p-hub median problem with general piecewise-linear costs in arcs. Comput Ind Eng 128:477–491

    Google Scholar 

  • Marianov V, Serra D (2003) Location models for airline hubs behaving as M/D/c queues. Comput Oper Res 30(7):983–1003

    MATH  Google Scholar 

  • Mayer C, Sinai T (2003) Network effects, congestion externalities, and air traffic delays: or why not all delays are evil. Am Econ Rev 93(4):1194–1215

    Google Scholar 

  • Mohammadi M, Jula P, Tavakkoli-Moghaddam R (2019) Reliable single-allocation hub location problem with disruptions. Transp Res Part E Logist Transp Rev 123:90–120

    Google Scholar 

  • Nemirovski A (2001) Lectures on modern convex optimization. Society for Industrial and Applied Mathematics

  • Nesterov Y, Nemirovsky A (1992) Conic formulation of a convex programming problem and duality. Optim Methods Softw 1(2):95–115

    Google Scholar 

  • O’Kelly ME (1986) Activity levels at hub facilities in interacting networks. Geogr Anal 18(4):343–356

    Google Scholar 

  • O’Kelly ME (1987) A quadratic integer program for the location of interacting hub facilities. Eur J Oper Res 32(3):393–404

    MathSciNet  MATH  Google Scholar 

  • Peiró J, Corberán Á, Martí R (2014) Grasp for the uncapacitated r-allocation p-hub median problem. Comput Oper Res 43:50–60

    MathSciNet  MATH  Google Scholar 

  • Peiró J, Corberán Á, Laguna M, Martí R (2018) Models and solution methods for the uncapacitated r-allocation p-hub equitable center problem. Int Trans Oper Res 25(4):1241–1267

    MathSciNet  MATH  Google Scholar 

  • Rahimi Y, Tavakkoli-Moghaddam R, Mohammadi M, Sadeghi M (2016) Multi-objective hub network design under uncertainty considering congestion: an M/M/c/K queue system. Appl Math Model 40(5–6):4179–4198

    MathSciNet  MATH  Google Scholar 

  • Rahmati R, Neghabi H (2021) Adjustable robust balanced hub location problem with uncertain transportation cost. Comput Appl Math 40(1):1–28

    MathSciNet  MATH  Google Scholar 

  • Saboury A, Ghaffari-Nasab N, Barzinpour F, Jabalameli MS (2013) Applying two efficient hybrid heuristics for hub location problem with fully interconnected backbone and access networks. Comput Oper Res 40(10):2493–2507

    MathSciNet  MATH  Google Scholar 

  • Silva MR, Cunha CB (2009) New simple and efficient heuristics for the uncapacitated single allocation hub location problem. Comput Oper Res 36(12):3152–3165

    MATH  Google Scholar 

  • Silva MR, Cunha CB (2017) A tabu search heuristic for the uncapacitated single allocation p-hub maximal covering problem. Eur J Oper Res 262(3):954–965

    MathSciNet  MATH  Google Scholar 

  • Taherkhani G, Alumur SA (2019) Profit maximizing hub location problems. Omega 86:1–15

    Google Scholar 

  • Tan PZ, Kara BY (2007) A hub covering model for cargo delivery systems. Netw Int J 49(1):28–39

    MathSciNet  MATH  Google Scholar 

  • Tikani H, Honarvar M, Mehrjerdi YZ (2018) Developing an integrated hub location and revenue management model considering multi-classes of customers in the airline industry. Comput Appl Math 37(3):3334–3364

    MathSciNet  MATH  Google Scholar 

  • Todosijević R, Urošević D, Mladenović N, Hanafi S (2017) A general variable neighborhood search for solving the uncapacitated \(r\)-allocation \(p\)-hub median problem. Optim Lett 11(6):1109–1121

    MathSciNet  MATH  Google Scholar 

  • Topcuoglu H, Corut F, Ermis M, Yilmaz G (2005) Solving the uncapacitated hub location problem using genetic algorithms. Comput Oper Res 32(4):967–984

    MATH  Google Scholar 

  • Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. In: Simulated annealing: theory and applications. Springer, Dordrecht. pp 7–15

  • Yaman H (2011) Allocation strategies in hub networks. Eur J Oper Res 211(3):442–451

    MathSciNet  MATH  Google Scholar 

  • Yang TH (2009) Stochastic air freight hub location and flight routes planning. Appl Math Model 33(12):4424–4430

    MATH  Google Scholar 

  • Yang TH, Chiu TY (2016) Airline hub-and-spoke system design under stochastic demand and hub congestion. J Ind Prod Eng 33(2):69–76

    Google Scholar 

  • Yıldız B, Karaşan OE (2015) Regenerator location problem and survivable extensions: a hub covering location perspective. Transp Res Part B Methodol 71:32–55

    Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers and the editor for their valuable comments on an earlier version of this paper that resulted in improved content and exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Ghaffarinasab.

Additional information

Communicated by Hector Cancela.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffarinasab, N., Motallebzadeh, A. Modeling and solving the uncapacitated r-allocation p-hub median problem under congestion. Comp. Appl. Math. 40, 251 (2021). https://doi.org/10.1007/s40314-021-01650-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01650-z

Keywords

Mathematics Subject Classification

Navigation