Skip to main content
Log in

Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite tensors

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present the pseudospectrum for generalized tensor eigenvalues, and a set to locate this pseudospectrum. By the relations between H-eigenvalues (Z-eigenvalues) of tensors and generalized tensor eigenvalues, a pseudospectral localization for H-eigenvalues (Z-eigenvalues, respectively) is given to seek positive definite tensors surrounding a positive definite tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bose N, Kamat P (1974) Algorithm for stability test of multidimensional filters. IEEE Trans Acoust Speech Signal Process 22(5):307–314

    Article  Google Scholar 

  • Bose N, Modarressi A (1976) General procedure for multivariable polynomial positivity test with control applications. IEEE Trans Auto Control 21(5):696–701

    Article  MathSciNet  MATH  Google Scholar 

  • Brauer A et al (1947) Limits for the characteristic roots of a matrix. II. Duke Math J 14(1):21–26

    Article  MathSciNet  MATH  Google Scholar 

  • Brualdi RA (1982) Matrices eigenvalues, and directed graphs. Linear Multilinear Algebra 11(2):143–165

    Article  MathSciNet  MATH  Google Scholar 

  • Bu C, Wei Y, Sun L, Zhou J (2015) Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl 480:168–175

    Article  MathSciNet  MATH  Google Scholar 

  • Bu C, Jin X, Li H, Deng C (2017) Brauer-type eigenvalue inclusion sets and the spectral radius of tensors. Linear Algebra Appl 512:234–248

    Article  MathSciNet  MATH  Google Scholar 

  • Chang KC, Pearson K, Zhang T (2008) Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci 6(2):507–520

    Article  MathSciNet  MATH  Google Scholar 

  • Chang KC, Pearson K, Zhang T (2009) On eigenvalue problems of real symmetric tensors. J Math Anal Appl 350(1):416–422

    Article  MathSciNet  MATH  Google Scholar 

  • Che M, Li G, Qi L, Wei Y (2017a) Pseudo-spectra theory of tensors and tensor polynomial eigenvalue problems. Linear Algebra Appl 533:536–572

    Article  MathSciNet  MATH  Google Scholar 

  • Che M, Qi L, Wei Y (2017b) Iterative algorithms for computing us-and u-eigenpairs of complex tensors. J Comput Appl Math 317:547–564

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H, Qi L (2015) Positive definiteness and semi-definiteness of even order symmetric cauchy tensors. J Ind Manag Optim 11(4):1263–1274

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Dai Y, Han D, Sun W (2013) Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming. SIAM J Imaging Sci 6(3):1531–1552

    Article  MathSciNet  MATH  Google Scholar 

  • Ching WK, Ng MK, Ching W (2006) Markov chains: models, algorithms and applications (international series in operations research & management science). Springer, Berlin

    Google Scholar 

  • Cui CF, Dai YH, Nie J (2014) All real eigenvalues of symmetric tensors. SIAM J Matrix Anal Appl 35(4):1582–1601

    Article  MathSciNet  MATH  Google Scholar 

  • De Silva V, Lim LH (2008) Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J Matrix Anal Appl 30(3):1084–1127

    Article  MathSciNet  MATH  Google Scholar 

  • Deng C, Li H, Bu C (2018) Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors. Linear Algebra Appl 556:55–69

    Article  MathSciNet  MATH  Google Scholar 

  • Ding W, Wei Y (2015) Generalized tensor eigenvalue problems. SIAM J Matrix Anal Appl 36(3):1073–1099

    Article  MathSciNet  MATH  Google Scholar 

  • Ding W, Qi L, Wei Y (2013) M-tensors and nonsingular M-tensors. Linear Algebra Appl 439(10):3264–3278

    Article  MathSciNet  MATH  Google Scholar 

  • Ding W, Hou Z, Wei Y (2016) Tensor logarithmic norm and its applications. Numer Linear Algebra 23(6):989–1006

    Article  MathSciNet  MATH  Google Scholar 

  • Friedland S, Mehrmann V, Miedlar A, Nkengla M (2011) Fast low rank approximations of matrices and tensors. Electron J Linear Algebra 22(1):67

    Article  MathSciNet  MATH  Google Scholar 

  • Fu M (1998) Comments on “a procedure for the positive definiteness of forms of even order”. IEEE Trans Auto Control 43(10):1430

    Article  MATH  Google Scholar 

  • Gadenz R, Li C (1964) On positive definiteness of quartic forms of two variables. IEEE Trans Auto Control 9(2):187–188

    Article  Google Scholar 

  • Gershgorin SA (1931) Uber die abgrenzung der eigenwerte einer matrix. Izv Akad Nauk SSSR Ser Mat 6:749–754

    MATH  Google Scholar 

  • Golub G, Loan CV (2013) Matrix computations (4th edn), Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press, Baltimore

  • Hasan MA, Hasan AA (1996) A procedure for the positive definiteness of forms of even order. IEEE Trans Auto Control 41(4):615–617

    Article  MathSciNet  MATH  Google Scholar 

  • Hillar CJ, Lim LH (2013) Most tensor problems are np-hard. J ACM 60(6):45

    Article  MathSciNet  MATH  Google Scholar 

  • Hu S, Qi L (2012) Algebraic connectivity of an even uniform hypergraph. J Comb Optim 24(4):564–579

    Article  MathSciNet  MATH  Google Scholar 

  • Hu S, Qi L (2014) The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. Discrete Appl Math 169:140–151

    Article  MathSciNet  MATH  Google Scholar 

  • Hu S, Huang Z, Ni H, Qi L (2012) Positive definiteness of diffusion kurtosis imaging. Inverse Probl Imaging 6:57–75

    Article  MathSciNet  MATH  Google Scholar 

  • Hu S, Qi L, Shao JY (2013) Cored hypergraphs, power hypergraphs and their Laplacian h-eigenvalues. Linear Algebra Its Appl 439(10):2980–2998

    Article  MathSciNet  MATH  Google Scholar 

  • Hu S, Qi L, Zhang G (2016) Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys Rev A 93(1):012304

    Article  MathSciNet  Google Scholar 

  • Hua B, Ni GY, Zhang MS (2017) Computing geometric measure of entanglement for symmetric pure states via the Jacobian sdp relaxation technique. J Oper Res Soc China 5(1):111–121

    Article  MathSciNet  MATH  Google Scholar 

  • Kannan MR, Shaked-Monderer N, Berman A (2015) Some properties of strong h-tensors and general h-tensors. Linear Algebra Appl 476:42–55

    Article  MathSciNet  MATH  Google Scholar 

  • Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    Article  MathSciNet  MATH  Google Scholar 

  • Kolda TG, Mayo JR (2011) Shifted power method for computing tensor eigenpairs. SIAM J Matrix Anal Appl 32(4):1095–1124

    Article  MathSciNet  MATH  Google Scholar 

  • Kolda TG, Mayo JR (2014) An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J Matrix Anal Appl 35(4):1563–1581

    Article  MathSciNet  MATH  Google Scholar 

  • Kostić V, Cvetković L, Varga RS (2009) Geršgorin-type localizations of generalized eigenvalues. Numer Linear Algebra 16(11–12):883–898

    Article  MathSciNet  MATH  Google Scholar 

  • Kostić V, Cvetković L, Cvetković DL (2016) Pseudospectra localizations and their applications. Numer Linear Algebra 23(2):356–372

    Article  MathSciNet  MATH  Google Scholar 

  • Ku W (1965) Explicit criterion for the positive definiteness of a general quartic form. IEEE Trans Auto Control 10(3):372–373

    Article  Google Scholar 

  • Li C, Li Y (2015) Double b-tensors and quasi-double B-tensors. Linear Algebra Appl 466:343–356

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Li Y (2016) An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors. Linear Multilinear A 64(4):587–601

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Li Y, Kong X (2014a) New eigenvalue inclusion sets for tensors. Numer Linear Algebra 21(1):39–50

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Wang F, Zhao J, Zhu Y, Li Y (2014b) Criterions for the positive definiteness of real supersymmetric tensors. J Comput Appl Math 255:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Qi L, Li Y (2015) MB-tensors and MB\(_0\)-tensors. Linear Algebra Appl 484:141–153

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Jiao A, Li Y (2016) An S-type eigenvalue localization set for tensors. Linear Algebra Appl 493:469–483

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Ng MK (2014) On the limiting probability distribution of a transition probability tensor. Linear Multilinear A 62(3):362–385

    Article  MathSciNet  MATH  Google Scholar 

  • Lim LH (2005) Singular values and eigenvalues of tensors: a variational approach. In: 1st IEEE international workshop on computational advances in multi-sensor adaptive processing, 2005. IEEE, pp 129–132

  • Lim LH (2008) Spectrum and pseudospectrum of a tensor. University of California, Berkeley

    Google Scholar 

  • Liu L, Wu W (2006) Dynamical system for computing largest generalized eigenvalue. In: International symposium on neural networks. Springer, pp 399–404

  • Liu Y, Zhou G, Ibrahim NF (2010) An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor. J Comput Appl Math 235(1):286–292

    Article  MathSciNet  MATH  Google Scholar 

  • Ni G, Bai M (2016) Spherical optimization with complex variablesfor computing us-eigenpairs. Comput Optim Appl 65(3):799–820

    Article  MathSciNet  MATH  Google Scholar 

  • Ni G, Qi L, Bai M (2014) Geometric measure of entanglement and u-eigenvalues of tensors. SIAM J Matrix Anal Appl 35(1):73–87

    Article  MathSciNet  MATH  Google Scholar 

  • Ni Q, Lq Qi, Wang F (2008) An eigenvalue method for the positive definiteness identification problem. IEEE Trans Autom Control 53(5):1096–1107

    Article  Google Scholar 

  • Nie J, Wang L (2014) Semidefinite relaxations for best rank-1 tensor approximations. SIAM J Matrix Anal Appl 35(3):1155–1179

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L (2005) Eigenvalues of a real supersymmetric tensor. J Symb Comput 40(6):1302–1324

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L (2011) The best rank-one approximation ratio of a tensor space. SIAM J Matrix Anal Appl 32(2):430–442

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L, Luo Z (2017) Tensor analysis: spectral theory and special tensors, vol 151. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Qi L, Song Y (2014) An even order symmetric b tensor is positive definite. Linear Algebra Appl 457:303–312

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L, Wang Y, Wu EX (2008) D-eigenvalues of diffusion kurtosis tensors. J Comput Appl Math 221(1):150–157

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L, Yu G, Wu EX (2010a) Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci 3(3):416–433

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L, Yu G, Wu EX (2010b) Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci 3(3):416–433

    Article  MathSciNet  MATH  Google Scholar 

  • Sang C (2019) A new Brauer-type Z-eigenvalue inclusion set for tensors. Numer Algorithms 80(3):781–794

    Article  MathSciNet  MATH  Google Scholar 

  • Song Y, Qi L (2014) Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl 451:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Song Y, Qi L (2015) Properties of some classes of structured tensors. J Optim Theory Appl 165(3):854–873

    Article  MathSciNet  MATH  Google Scholar 

  • Sun L, Ji S, Ye J (2008) Hypergraph spectral learning for multi-label classification. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 668–676

  • Varga RS (2010) Geršgorin and his circles, vol 36. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • Wang F, Qi L (2005) Comments on “explicit criterion for the positive definiteness of a general quartic form”. IEEE Trans Autom Control 50(3):416–418

    Article  MathSciNet  MATH  Google Scholar 

  • Wang G, Zhou G, Caccetta L (2017) Z-eigenvalue inclusion theorems for tensors. Discrete Cont Dyn-B 22:187–198

    MathSciNet  MATH  Google Scholar 

  • Wang X, Navasca C (2018) Low-rank approximation of tensors via sparse optimization. Numer Linear Algebra 25(2):e2136

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Wang G (2017) Two s-type z-eigenvalue inclusion sets for tensors. J Inequal Appl 2017(1):152

    Article  MathSciNet  MATH  Google Scholar 

  • Wei TC, Goldbart PM (2003) Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev A 68(4):042307

    Article  Google Scholar 

  • Wei Y, Ding W (2016) Theory and computation of tensors: multi-dimensional arrays. Academic Press, Cambridge

    MATH  Google Scholar 

  • Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  • Zhang L, Qi L, Zhou G (2014) M-tensors and some applications. SIAM J Matrix Anal Appl 35(2):437–452

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Maolin Che and Dr. Xuezhong Wang for their useful discussions on this topic. Chaoqian Li is supported partly by the Shanghai Key Laboratory of Contemporary Applied Mathematics under Grant KBH1411209; the National Natural Science Foundation of China under Grant 11601473; the Applied Basic Research Programs of Science and Technology Department of Yunnan Province under Grant 2018FB001; Program for Excellent Young Talents in Yunnan University; Outstanding Youth Cultivation Project for Yunnan Province under Grant 2018YDJQ021; Yunnan Provincial Ten Thousands Plan Young Top Talents. Qilong Liu is supported by Doctoral Scientific Research Foundation of Guizhou Normal University in 2017 under Grant GZNUD [2017]26. Yimin Wei is supported by the National Natural Science Foundation of China under Grant 11771099 and Innovation Program of Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilong Liu.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We shall show the relations of US-eigenvalues and generalized tensor eigenvalues. Let \( {\mathcal {A}} \in {\mathbb {C}}^{[m,n]}\) be a complex symmetric tensor, and let \( \widehat{{\mathcal {A}}} \in {\mathbb {C}}^{[m,2n]}\) with

$$\begin{aligned} \widehat{{\mathcal {A}} }\left( 1:n,\ldots , 1:n\right) ={\mathcal {A}}^*,~ \widehat{{\mathcal {A}} }\left( n+1:2n,\ldots , n+1:2n\right) ={\mathcal {A}}, \end{aligned}$$

and \( \widehat{\mathbf{x }}= \left( \mathbf{x }^\top ,(\mathbf{x }^*)^\top \right) ^\top =({\widehat{x}}_1,\ldots , {\widehat{x}}_{2n})^\top \). When m is even, let

$$\begin{aligned} {\mathcal {J}}=({\mathcal {J}}_{i_1\cdots i_m}) \in {\mathbb {R}}^{[m,2n]} \end{aligned}$$
(13)

be a tensor such that

$$\begin{aligned} ({\mathcal {J}} \mathbf{y }^{m-1})_i= \left\{ \begin{array}{c@{\quad }l} y_{i+n}(y_1y_{n+1}+y_2y_{n+2}+\cdots y_ny_{2n})^{\frac{m-2}{2}}, \quad &{}i=1,2,\ldots ,n, \\ y_{i-n}(y_1y_{n+1}+y_2y_{n+2}+\cdots y_ny_{2n})^{\frac{m-2}{2}}, \quad &{}i=n+1,n+2,\ldots ,2n, \end{array} \right. \end{aligned}$$

for an arbitrary vector \(\mathbf{y }\in {\mathbb {C}}^{2n}\). Since

$$\begin{aligned} {\widehat{x}}_1{\widehat{x}}_{n+1}+\cdots +{\widehat{x}}_n{\widehat{x}}_{2n}= x_1x_{1}^*+\cdots +x_nx_{n}^*=||\mathbf{x }||^2_2=1, \end{aligned}$$

we rewrite the definition of US-eigenvalues into

$$\begin{aligned} \widehat{{\mathcal {A}}} \widehat{\mathbf{x }}^{m-1}= \lambda {\mathcal {J}} \widehat{\mathbf{x }}^{m-1}. \end{aligned}$$
(14)

This implies that if \(\lambda \) is an US-eigenvalue of an even complex symmetric tensor \({\mathcal {A}}\), then \(\lambda \in \sigma ( \widehat{{\mathcal {A}}}, {\mathcal {J}})\), also see Page 1074-1075 of Ding and Wei (2015).

The \( \epsilon \)-pseudo-spectrum for US-eigenvalues of a complex symmetric tensor \({\mathcal {A}}\in {\mathbb {C}}^{[m,n]}\) is defined as follows:

$$\begin{aligned} \varLambda _\epsilon ^{US}({\mathcal {A}},|| \cdot ||):= & {} \left\{ \lambda \in {\mathbb {C}} : ({\mathcal {A}}+{\mathcal {E}})^*\mathbf{x }^{m-1}=\lambda \mathbf{x }^{*}, ~({\mathcal {A}}+ {\mathcal {E}})\mathbf{x }^{*m-1} =\lambda \mathbf{x },\right. \\&\left. ||\mathbf{x }||_2=1~{\mathrm{for~ some ~symmetric ~tensor }} ~{\mathcal {E}}\in {\mathbb {C}}^{[m,n]} \right. \\&\left. {\mathrm{with}}~ ||{\mathcal {E}}||\le \epsilon , \mathbf{x } \in {\mathbb {C}}^{n}\right\} . \end{aligned}$$

Clearly, \(\varLambda _0^{US}({\mathcal {A}},|| \cdot ||)\) can be denoted the spectrum for US-eigenvalues of a complex symmetric tensor \({\mathcal {A}}\).

Based the relations between US-eigenvalues with generalized tensor eigenvalues, we give the following set to locate \( \epsilon \)-pseudo-spectrum for US-eigenvalues relative to the tensor infinity norm: \(\varLambda _\epsilon ^{US}({\mathcal {A}},|| \cdot ||_\infty )\).

Theorem 3

Let \({\mathcal {A}}=(a_{i_1\cdots i_m}) \in {\mathbb {C}}^{[m,n]}\) be symmetric with an even m, and \(\epsilon \ge 0\). Then

$$\begin{aligned} \varLambda _\epsilon ^{US}({\mathcal {A}},|| \cdot ||_\infty ) \subseteq \varGamma ^{US}({\mathcal {A}},\epsilon ){:=}\bigcup \limits _{i\in N} \varGamma _i^{US}({\mathcal {A}},\epsilon ) , \end{aligned}$$

where

$$\begin{aligned} \varGamma _i^{US}({\mathcal {A}},\epsilon ){:=} \left\{ z\in {\mathbb {C}} : | a_{i\cdots i}|-r_{i}({\mathcal {A}})\le |\lambda | n^{\frac{m-2}{2}}+ \epsilon \right\} . \end{aligned}$$

Proof

Let \(\lambda \in \varLambda _\epsilon ^{US}({\mathcal {A}},|| \cdot ||_\infty )\). Then there is a symmetric tensor \({\mathcal {E}}=({\mathcal {E}}_{i_1\cdots i_m})\in {\mathbb {C}}^{[m,n]}\) and a nonzero vector \(\mathbf{x }=(x_1,\ldots ,x_n)^\top \in {\mathbb {C}}^{n} \) such that

$$\begin{aligned} ({\mathcal {A}}+{\mathcal {E}})^*\mathbf{x }^{m-1}=\lambda \mathbf{x }^{*}, ({\mathcal {A}}+ {\mathcal {E}})\mathbf{x }^{*m-1} =\lambda \mathbf{x }, ||\mathbf{x }||_2=1. \end{aligned}$$

By (14), we have

$$\begin{aligned} \lambda \in \sigma \left( \widehat{{\mathcal {A}}+{\mathcal {E}}}, {\mathcal {J}}\right) , \end{aligned}$$

where \(\widehat{{\mathcal {A}}+{\mathcal {E}} } =({\widehat{a}}_{i_1\cdots i_m})\in {\mathbb {C}}^{[m,2n]}\) with

$$\begin{aligned} \widehat{{\mathcal {A}}+{\mathcal {E}} }\left( 1:n,\ldots , 1:n\right) =({\mathcal {A}}+{\mathcal {E}})^*,~ \widehat{{\mathcal {A}}+{\mathcal {E}} }\left( n+1:2n,\ldots , n+1:2n\right) ={\mathcal {A}}+{\mathcal {E}}, \end{aligned}$$

and \({\mathcal {J}}\) is defined as in (13). Furthermore, by Corollary 1 it follows that

$$\begin{aligned} \lambda \in \varGamma \left( \widehat{{\mathcal {A}}+{\mathcal {E}}}, {\mathcal {J}}\right) =\bigcup \limits _{i\in \{1,\ldots ,2n\}} \varGamma _i\left( \widehat{{\mathcal {A}}+{\mathcal {E}}}, {\mathcal {J}}\right) . \end{aligned}$$

Then there is an index \(i_0\in \{1,2,\ldots , 2n\}\) such that

$$\begin{aligned} | \lambda {\mathcal {J}}_{i_0\cdots i_0}- {\widehat{a}}_{i_0\cdots i_0}| \le \sum \limits ^{2n}_{\begin{array}{c} i_2,\ldots ,i_m=1, \\ (i_2,\ldots ,i_m)\ne (i_0,\ldots ,i_0) \end{array}} |\lambda {\mathcal {J}}_{i_0i_2\cdots i_m} - {\widehat{a}}_{i_0i_2\cdots i_m}|. \end{aligned}$$
(15)

For the tensor \( {\mathcal {J}}\), it is not difficult to see that

$$\begin{aligned} {\mathcal {J}}_{i\cdots i}=0, \quad i=1,2\ldots ,2n, \end{aligned}$$
(16)

and that for any \(i_k\in \{1,2,\ldots ,n\}\) and any \( j_k \in \{n+1,n+2,\ldots ,2n\}, k=1,\ldots ,m\),

$$\begin{aligned} {\mathcal {J}}_{i_1i_2\cdots i_m}={\mathcal {J}}_{j_1j_2\cdots j_m}=0. \end{aligned}$$
(17)

On the other hand, for the tensor \(\widehat{{\mathcal {A}}+{\mathcal {E}} } =({\widehat{a}}_{i_1\cdots i_m})\), it is easy to see that for each \(i\in \{1,2,\ldots ,n\}\),

$$\begin{aligned} {\widehat{a}}_{ii_2\cdots i_m}=0, ~ \mathrm{for} ~\mathrm{some}~i_k\in \{n+1,\ldots ,2n\}, k=2,\ldots ,m, \end{aligned}$$
(18)

and that for each \(i\in \{n+1,n+2,\ldots ,2n\}\),

$$\begin{aligned} {\widehat{a}}_{ii_2\cdots i_m}=0, ~ \mathrm{for} ~\mathrm{some}~i_k\in \{1,\ldots ,n\}, k=2,\ldots ,m. \end{aligned}$$
(19)

Combining (15), (16), (17), (18), (19) and Remark 2, we have that if \(i_0\in \{1,2,\ldots ,n\}\), then

$$\begin{aligned} | {\widehat{a}}_{i_0\cdots i_0}|\le \sum \limits ^n_{\begin{array}{c} i_2,\ldots ,i_m=1, \\ (i_2,\ldots ,i_m)\ne (i_0,\ldots ,i_0) \end{array}} | {\widehat{a}}_{i_0i_2\cdots i_m}| + \sum \limits _{(i_2,\ldots ,i_m)\in \varDelta _{i_0}({\mathcal {J}})} |\lambda {\mathcal {J}}_{i_0i_2\cdots i_m}|, \end{aligned}$$
(20)

and that if \(i_0\in \{n+1,n+2,\ldots ,2n\}\), then

$$\begin{aligned} | {\widehat{a}}_{i_0\cdots i_0}|\le \sum \limits ^{2n}_{\begin{array}{c} i_2,\ldots ,i_m=n+1, \\ (i_2,\ldots ,i_m)\ne (i_0,\ldots ,i_0) \end{array}} | {\widehat{a}}_{i_0i_2\cdots i_m}| + \sum \limits _{(i_2,\ldots ,i_m)\in \varDelta _{i_0}({\mathcal {J}})} |\lambda {\mathcal {J}}_{i_0i_2\cdots i_m}|. \end{aligned}$$
(21)

We now consider the equivalent form of

$$\begin{aligned} \sum \limits _{(i_2,\ldots ,i_m)\in \varDelta _{i_0}({\mathcal {J}})} |\lambda {\mathcal {J}}_{i_0i_2\cdots i_m}|. \end{aligned}$$

Taking \(\mathbf{y }=\mathbf{e }=(1,1,\ldots ,1)^\top \in {\mathbb {R}}^{2n} \), then by (13) we have

$$\begin{aligned} ({\mathcal {J}} \mathbf{e }^{m-1})_{i}= \sum \limits _{i_2,\ldots ,i_m\in N} {\mathcal {J}}_{ii_2\cdots i_m}= \sum \limits _{(i_2,\ldots ,i_m)\in \varDelta _{i}({\mathcal {J}})} {\mathcal {J}}_{ii_2\cdots i_m}= n^{\frac{m-2}{2}}, \end{aligned}$$

whenever \(i=1,2\ldots ,2n\). Hence,

$$\begin{aligned} \sum \limits _{(i_2,\ldots ,i_m)\in \varDelta _{i_0}({\mathcal {J}})} |\lambda {\mathcal {J}}_{i_0i_2\cdots i_m}|=|\lambda | n^{\frac{m-2}{2}}. \end{aligned}$$
(22)

Furthermore, note that

$$\begin{aligned} {\widehat{a}}_{i_1i_2\cdots i_m}= \left( a_{i_1i_2\cdots i_m}+ {\mathcal {E}}_{i_1i_2\cdots i_m}\right) ^*,~ \mathrm{for} ~ i_1,\ldots ,i_m\in \{1,2,\ldots ,n\} \end{aligned}$$

and

$$\begin{aligned} {\widehat{a}}_{i_1i_2\cdots i_m}=a_{i_1i_2\cdots i_m}+ {\mathcal {E}}_{i_1i_2\cdots i_m}, ~\mathrm{for}~ i_1,\ldots ,i_m\in \{n+1,n+2,\ldots ,2n\}. \end{aligned}$$

Then (20), (21), and (22) together give

$$\begin{aligned} | a_{j_0\cdots j_0}+{\mathcal {E}}_{j_0\cdots j_0}|\le \sum \limits _{\begin{array}{c} i_2,\ldots ,i_m\in N, \\ (i_2,\ldots ,i_m)\ne (j_0,\ldots ,j_0) \end{array}} | a_{j_0i_2\cdots i_m}+ {\mathcal {E}}_{j_0i_2\cdots i_m}| + |\lambda | n^{\frac{m-2}{2}}, \end{aligned}$$

where

$$\begin{aligned} j_0=\left\{ \begin{array}{ll} i_0, &{} \quad \mathrm{if} ~i_0\in \{1,2,\ldots , n\},\\ i_0-n,&{} \quad \mathrm{if} ~i_0\in \{n+1,n+2,\ldots , 2n\}. \end{array}\right. \end{aligned}$$
(23)

Using the triangle inequality yields

$$\begin{aligned} | a_{j_0\cdots j_0}|-r_{j_0}({\mathcal {A}})\le |\lambda | n^{\frac{m-2}{2}}+ R_{j_0}({\mathcal {E}}). \end{aligned}$$

Since \(R_{i_0}({\mathcal {E}})\le || {\mathcal {E}}||_\infty \le \epsilon \), we have

$$\begin{aligned} | a_{j_0\cdots j_0}|-r_{j_0}({\mathcal {A}})\le |\lambda | n^{\frac{m-2}{2}}+ \epsilon , \end{aligned}$$

and thus \( \lambda \in \varGamma ^{US}_{j_0}({\mathcal {A}},\epsilon )\in \varGamma ^{US}({\mathcal {A}},\epsilon )\). The conclusion follows. \(\square \)

Taking \(\epsilon =0\) in Theorem 3 yields Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Liu, Q. & Wei, Y. Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite tensors. Comp. Appl. Math. 38, 183 (2019). https://doi.org/10.1007/s40314-019-0958-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0958-6

Keywords

Mathematics Subject Classification

Navigation