Skip to main content
Log in

Variational multiscale element-free Galerkin method combined with the moving Kriging interpolation for solving some partial differential equations with discontinuous solutions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Solving partial differential equations with discontinuous solutions is an important challenging problem in numerical analysis. To this end, there are some methods such as finite volume method, discontinuous Galerkin approach and particle technique that are able to solve these problems. In the current paper, the moving Kriging element-free Galerkin method has been combined with the variational multiscale algorithm to obtain acceptable and high-resolution solutions. For testing this technique, we select some PDEs with discontinuous solution such as Burgers’, Sod’s shock tube, advection–reaction–diffusion, Kuramoto–Sivashinsky, Boussinesq and shallow water equations. First, we obtain a time-discrete scheme by approximating time derivative via finite difference technique. Then we introduce the moving Kriging interpolation and also obtain their shape functions. We use the element-free Galerkin method for approximating the spatial derivatives. This method uses a weak form of the considered equation that is similar to the finite element method with the difference that in the classical element-free Galerkin method test and trial functions are moving least squares approximation (MLS) shape functions. Since the shape functions of moving least squares (MLS) approximation do not have Kronecker delta property, we cannot implement the essential boundary condition, directly. Thus, we employ the shape functions of moving Kriging interpolation and radial point interpolation technique which have the mentioned property. Also, in the element-free Galekin method, we do not use any triangular, quadrangular or other type of meshes. The element-free Galerkin method is a global method while finite element method is a local one. This technique employs a background mesh for integration which makes it different from the truly mesh procedures. Several test problems are solved and numerical simulations are reported which confirm the efficiency of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://en.wikipedia.org/wiki/Boussinesq_approximation_(water_waves).

References

  • Abedian R, Adibi H, Dehghan M (2014) A high-order symmetrical weighted hybrid ENO-flux limiter scheme for hyperbolic conservation laws. Comput Phys Commun 185:106–127

    Article  MathSciNet  MATH  Google Scholar 

  • Abedian R, Adibi H, Dehghan M (2013) A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Comput Phys Commun 184:1874–1888

    Article  MathSciNet  MATH  Google Scholar 

  • Avesani D, Dumbser M, Bellin A (2014) A new class of moving-least-squares WENO-SPH schemes. J Comput Phys 270:278–299

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  • Bui TQ, Nguyen MN (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89:380–394

    Article  Google Scholar 

  • Bui TQ, Zhang C (2011) Moving Kriging interpolation-based meshfree method for dynamic analysis of structures. Proc Appl Math Mech 11:197–198

    Article  Google Scholar 

  • Bui TQ, Nguyen MN, Zhang C (2011) A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Comput Methods Appl Mech Engin 200:1354–1366

    Article  MATH  Google Scholar 

  • Bratsos AG (1998) The solution of the Boussinesq equation using the method of lines. Comput Methods Appl Mech Eng 157:33–44

    Article  MathSciNet  MATH  Google Scholar 

  • Bratsos AG (2010) A fourth-order numerical scheme for solving the modified Burgers equation. Comput Math Appl 60:1393–1400

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Liew KM (2011) A local Petrov–Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems. Comput Mech 47:455–467

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng Y, Bai FN, Peng MJ (2014) A novel interpolating element free Galerkin (IEFG) method for two-dimensional elastoplasticity. Appl Math Model 38:5187–5197

    Article  MathSciNet  Google Scholar 

  • Cheng Y, Li J (2005) A meshless method with complex variables for elasticity. Acta Phys Sin 54:4463–4471

    MathSciNet  MATH  Google Scholar 

  • Cheng Y, Peng M (2005) Boundary element free method for elastodynamics. Sci China G 48:641–657

    Article  Google Scholar 

  • Chung HJ, Belytschko T (1998) An error estimate in the EFG method. Comput Mech 21:91–100

    Article  MathSciNet  MATH  Google Scholar 

  • Claina S, Rochette D (2009) First- and second-order finite volume methods for the one-dimensional nonconservative Euler system. J Comput Phys 228:8214–8248

    Article  MathSciNet  MATH  Google Scholar 

  • Dai KY, Liu GR, Lim KM, Gu YT (2003) Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods. Comput Mech 32:60–70

    Article  MATH  Google Scholar 

  • Dai BD, Cheng J, Zheng BJ (2013) Numerical solution of transient heat conduction problems using improved meshless local Petrov–Galerkin method. Appl Math Comput 219:10044–10052

    MathSciNet  MATH  Google Scholar 

  • Dai BD, Cheng J, Zheng BJ (2013) A moving Kriging interpolation-based meshless local Petrov–Galerkin method for elastodynamic analysis. Int J Appl Mech 5(1):1350011–1350021

    Article  Google Scholar 

  • Daǧ İ, Canivar A, Ṣahin A (2011) Taylor–Galerkin and Taylor-collocation methods for the numerical solutions of Burgers equation using B-splines. Commun Nonlinear Sci Numer Simul 16:2696–2708

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M (2004) Weighted finite difference techniques for the one-dimensional advection-diffusion equation. Appl Math Comput 147:307–319

    MathSciNet  MATH  Google Scholar 

  • Dehghan M, Salehi R (2012) A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation. Appl Math Model 36:1939–1956

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M (2007) Time-splitting procedures for the solution of the two-dimensional transport equation. Kybernetes 36(5):791–805

    Article  MATH  Google Scholar 

  • Dehghan M (2004) Numerical solution of the three-dimensional advection-diffusion equation. Appl Math Comput 150(1):5–19

    MathSciNet  MATH  Google Scholar 

  • Dhawan S, Bhowmik SK, Kumar S (2015) Galerkin-least square B-spline approach toward advection-diffusion equation. Appl Math Comput 261:128–140

    MathSciNet  MATH  Google Scholar 

  • Gao P (2015) A new global Carleman estimate for the one-dimensional Kuramoto–Sivashinsky equation and applications to exact controllability to the trajectories and an inverse problem. Nonlinear Anal: Theory, Methods Appl 117:133–147

    Article  MathSciNet  MATH  Google Scholar 

  • Gu L (2003) Moving Kriging interpolation and element-free Galerkin method. Int J Numer Methods Eng 56:1–11

    Article  MATH  Google Scholar 

  • Gu YT, Zhuang P, Liu F (2010) An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput Model Eng Sci (CMES) 56:303–334

    MathSciNet  MATH  Google Scholar 

  • Gu YT, Wang QX, Lam KY (2007) A meshless local Kriging method for large deformation analyses. Comput Methods Appl Mech Eng 196:1673–1684

    Article  MATH  Google Scholar 

  • Gu YT, Liu GR (2001) A local point interpolation method for static and dynamic analysis of thin beams. Comput Methods Appl Mech Eng 190:5515–5528

    Article  MATH  Google Scholar 

  • Gu YT, Liu GR (2002) A boundary point interpolation method for stress analysis of solids. Comput Mech 28:47–54

    Article  MATH  Google Scholar 

  • Gu YT, Wang W, Zhang LC, Feng XQ (2011) An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Eng Fract Mech 78:175–190

    Article  Google Scholar 

  • Greenough JA, Rider WJ (2004) A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov. J Comput Phys 196:259–281

    Article  MathSciNet  MATH  Google Scholar 

  • Hauke G, Garćia-Olivares A (2001) Variational subgrid scale formulations for the advection-diffusion-reaction equation. Comput Methods Appl Mech Eng 190:6847–6865

    Article  MathSciNet  MATH  Google Scholar 

  • Huang W, Russell RD (2010) Adaptive moving mesh methods. Springer, Berlin

    MATH  Google Scholar 

  • Huang W, Zheng L, Zhan X (2002) Adaptive moving mesh methods for simulating onedimensional groundwater problems with sharp moving fronts. Int J Numer Methods Eng 54:1579–1603

    Article  MATH  Google Scholar 

  • Jafari H, Borhanifar A, Karimi SA (2009) New solitary wave solutions for the bad Boussinesq and good Boussinesq equations. Numer Methods Partial Differ Equ 25:1231–1237

    Article  MathSciNet  MATH  Google Scholar 

  • Jia X, Zeng F, Gu Y (2013) Semi-analytical solutions to one-dimensional advection-diffusion equations with variable diffusion coefficient and variable flow velocity. Appl Math Comput 221:268–281

    MathSciNet  MATH  Google Scholar 

  • Jiwari R (2015) A hybrid numerical scheme for the numerical solution of the Burgers equation. Comput Phys Commun 188:59–67

    Article  MathSciNet  MATH  Google Scholar 

  • Khan LA, Liu PL-F (1995) An operator splitting algorithm for coupled one-dimensional advection-diffusion-reaction equations. Comput Methods Appl Mech Eng 127:181–201

    Article  MathSciNet  MATH  Google Scholar 

  • Khater AH, Temsah RS (2008) Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods. Comput Math Appl 56:1465–1472

    Article  MathSciNet  MATH  Google Scholar 

  • Krongauz Y, Belytschko T (1998) EFG approximation with discontinuous derivatives. Int J Numer Methods Eng 41:1215–1233

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar A, Jaiswal DK, Kumar N (2010) Analytical solutions to one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media. J Hydrol 380:330–337

    Article  Google Scholar 

  • Lakestani M, Dehghan M (2012) Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Appl Math Model 36:605–617

    Article  MathSciNet  MATH  Google Scholar 

  • Lai H, Ma CF (2009) Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation. Physica A 388:1405–1412

    Article  MathSciNet  Google Scholar 

  • Lam KY, Wang QX, Li H (2004) A novel meshless approach Local Kriging (LoKriging) method with two-dimensional structural analysis. Comput Mech 33:235–244

    Article  MathSciNet  MATH  Google Scholar 

  • Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37:141–158

    Article  MathSciNet  MATH  Google Scholar 

  • Lee CK, Zhou CE (2004) On error estimation and adaptive refinement for element free Galerkin method Part I: stress recovery and a posteriori error estimation. Comput Struct 82:413–428

    Article  Google Scholar 

  • Lee CK, Zhou CE (2004) On error estimation and adaptive refinement for element free Galerkin method Part II: adaptive refinement. Comput Struct 82:429–443

    Article  Google Scholar 

  • LeVeque R (2004) Finite volume methods for hyperbolic problems, Cambridge texts in applied mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Li H, Wang QX, Lam KY (2004) Development of a novel meshless Local Kriging (LoKriging) method for structural dynamic analysis. Comput Methods Appl Mech Eng 193:2599–2619

    Article  MATH  Google Scholar 

  • Li XG, Dai BD, Wang LH (2010) A moving Kriging interpolation-based boundary node method for two-dimensional potential problems. Chin Phys B 19(12):120202–120207

    Article  Google Scholar 

  • Liu B (2009) An error analysis of a finite element method for a system of nonlinear advection-diffusion-reaction equations. Appl Numer Math 59:1947–1959

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal RC, Arora G (2010) Quintic B-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation. Commun Nonlinear Sci Numer Simul 15:2798–2808

    Article  MathSciNet  MATH  Google Scholar 

  • Manoranjan VS, Mitchell AR, Ll J (1984) Morris, numerical solutions of the good Boussinesq equation. SIAM J Sci Stat Comput 5(4):946–957

    Article  MATH  Google Scholar 

  • Mohammadi R (2013) B-spline collocation algorithm for numerical solution of the generalized Burger’s–Huxley equation. Numer Methods Partial Differ Equ 29:1173–1191

    Article  MathSciNet  MATH  Google Scholar 

  • Mohebbi A, Dehghan M (2010) High-order compact solution of the one-dimensional heat and advection-diffusion equations. Appl Math Model 34:3071–3084

    Article  MathSciNet  MATH  Google Scholar 

  • Mohebbi A, Asgari Z (2011) Efficient numerical algorithms for the solution of “good” Boussinesq equation in water wave propagation. Comput Phys Commun 182:2464–2470

    Article  MathSciNet  MATH  Google Scholar 

  • Montecinos GI, Toro EF (2014) Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes. J Comput Phys 275:415–442

    Article  MathSciNet  MATH  Google Scholar 

  • Seydaoǧlu M, Erdoǧan U, Öziṣ T (2016) Numerical solution of the Burgers equation with high order splitting methods. J Comput Appl Math 291:410–421

  • Shiue MC (2013) An initial boundary value problem for one-dimensional shallow water magnetohydrodynamics in the solar tachocline. Nonlinear Anal: Theory, Methods Appl 76:215–228

    Article  MathSciNet  MATH  Google Scholar 

  • Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Shokri A, Dehghan M (2010) A Not-a-Knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation. Comput Phys Commun 181:1990–2000

    Article  MathSciNet  MATH  Google Scholar 

  • Ponthot JP, Belytschko T (1998) Arbitrary Lagrangian–Eulerian formulation for element free Galerkin method. Comput Methods Appl Mech Eng 152:19–46

    Article  MATH  Google Scholar 

  • Rademacher JDM, Wattenberg R (2006) Viscous shocks in the destabilized Kuramoto–Sivashinsky. J Comput Nonlinear Dyn 1:336–347

    Article  Google Scholar 

  • Ren H, Cheng Y (2012) The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems. Eng Anal Bound Elem 36:873–880

    Article  MathSciNet  MATH  Google Scholar 

  • Tongsuk P, Kanok-Nukulchai W (2004) Further investigation of element free Galerkin method using moving Kriging interpolation. Int J Comput Methods 01:345–365

    Article  MATH  Google Scholar 

  • Uddin M, Haq S, Islam S (2009) A mesh-free numerical method for solution of the family of Kuramoto–Sivashinsky equations. Appl Math Comput 212:458–469

    MathSciNet  MATH  Google Scholar 

  • Wang JF, Sun FX, Cheng YM, Huang AX (2014) Error estimates for the interpolating moving least-squares method. Appl Math Comput 245:321–342

    MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2007) Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl Math Comput 190:1198–1206

    MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2004) An analytical study of compacton solutions for variants of Kuramoto–Sivashinsky equation. Appl Math Comput 148:571–585

    MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2011) N-soliton solutions for shallow water waves equations in (1 + 1) and (2 + 1) dimensions. Appl Math Comput 217:8840–8845

    MathSciNet  MATH  Google Scholar 

  • Zheng B, Dai BD (2011) A meshless local moving Kriging method for two-dimensional solids. Appl Math Comput 218:563–573

    MathSciNet  MATH  Google Scholar 

  • Zhang Z, Hao SY, Liew KM, Cheng YM (2013) The improved element-free Galerkin method for two-dimensional elastodynamics problems. Eng Anal Boundary Elem 37:1576–1584

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang LW, Deng YJ, Liew KM (2014) An improved element-free Galerkin method for numerical modeling of the biological population problems. Eng Anal Bound Elem 40:181–188

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang LW, Deng YJ, Liew KM, Cheng YM (2014) The improved complex variable element free Galerkin method for two-dimensional Schrödinger equation. Comput Math Appl 68(10):1093–1106

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Liew KM, Cheng Y (2008) Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems. Eng Anal Bound Elem 32:100–107

    Article  MATH  Google Scholar 

  • Zhang Z, Liew KM, Cheng Y, Lee YY (2008) Analyzing 2D fracture problems with the improved element free Galerkin method. Eng Anal Bound Elem 32:241–250

    Article  MATH  Google Scholar 

  • Zhang L, Ouyang J, Wang X, Zhang X (2010) Variational multiscale element-free Galerkin method for 2D Burgers equation. J Comput Phys 229:7147–7161

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Ouyang J, Zhang X, Zhang W (2008) On a multiscale element free Galerkin method for the Stokes problem. Appl Math Comput 203:745–753

    MathSciNet  MATH  Google Scholar 

  • Zhang L, Ouyang J, Jiang T, Ruan C (2011) Variational multiscale element free Galerkin method for the water wave problems. J Comput Phys 230:5045–5060

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Ouyang J, Zhang X (2013) The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers. Comput Phys Commun 184:1106–1118

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng B, Dai B (2011) A meshless local moving Kriging method for two-dimensional solids. Appl Math Comput 218:563–573

    MathSciNet  MATH  Google Scholar 

  • Zhao S, Ovadia J, Liu X, Zhang YT, Nie Q (2011) Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems. J Comput Phys 230:5996–6009

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu P, Zhang LW, Liew KM (2014) Geometrically nonlinear thermo-mechanical analysis of moderately thick functionally graded plates using a local Petrov–Galerkin approach with moving Kriging interpolation. Compos Struct 107:298–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Communicated by Pascal Frey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Abbaszadeh, M. Variational multiscale element-free Galerkin method combined with the moving Kriging interpolation for solving some partial differential equations with discontinuous solutions. Comp. Appl. Math. 37, 3869–3905 (2018). https://doi.org/10.1007/s40314-017-0546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-017-0546-6

Keywords

Mathematics Subject Classification

Navigation