Skip to main content
Log in

Step fixed-charge solid transportation problem: a Lagrangian relaxation heuristic approach

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

A new large-scale optimization problem in the field of transportation engineering is introduced in this paper as step fixed-charge solid transportation problem, where products are sent from sources to destinations by some conveyances in existence of both unit and step fixed-charges. The problem has many real-world applications in transportation area. As a moderate-sized instance of this problem becomes intractable for general-purpose solvers, we propose a dual decomposition approach, which is based on a Lagrangian relaxation and capable of tackling larger instances. The Lagrangian approach is also equipped with a Lagrangian heuristic to produce upper bounds. Our extensive numerical experiments show that the approach produces high-quality solutions in very reasonable time when compared with general-purpose solvers such as CPLEX. The applicability of the step fixed-charge solid transportation problem is also shown by a real-life example of furniture production company.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adlakha V, Kowalski K, Lev B (2010) A branching method for the fixed charge transportation problem. Omega 38(5):393–397

    Article  Google Scholar 

  • Aguado JS (2009) Fixed charge transportation problems: a new heuristic approach based on Lagrangean relaxation and the solving of core problems. Ann Oper Res 172:45–69

    Article  MathSciNet  MATH  Google Scholar 

  • Baykasoglu A, Kaplanoglu V (2011) A multi-agent approach to load consolidation in transportation. Adv Eng Softw 42:477–490

    Article  Google Scholar 

  • Boros P, Fehér O, Lakner Z, Niroomand S, Vizvári B (2015) Modeling supermarket re-layout from the owner’s perspective. Ann Oper Res. doi:10.1007/s10479-015-1986-2

  • Christensen TRL, Andersen KA, Klose A (2013) Solving the single-sink, fixed-charge, multiple choice transportation problem by dynamic programming. Transp Sci 47(3):428–438

    Article  Google Scholar 

  • Cordeau JF, Laganà D, Musmanno R, Vocaturo F (2015) A decomposition-based heuristic for the multiple-product inventory-routing problem. Comput Oper Res 55:153–166

    Article  MathSciNet  MATH  Google Scholar 

  • Dolatabadi M, Lodi A, Afsharnejad Z (2011) Improving spectral bounds for clustering problems by Lagrangian relaxation. Int Trans Oper Res 18:647–661

    Article  MathSciNet  MATH  Google Scholar 

  • El-Sherbiny MM, Alhamali RM (2013) A hybrid particle swarm algorithm with artificial immune learning for solving the fixed charge transportation problem. Comput Ind Eng 64(2):610–620

    Article  Google Scholar 

  • Ertogral K (2008) Multi-item single source ordering problem with transportation cost: a Lagrangian decomposition approach. Eur J Oper Res 191(1):156–165

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 27(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher ML (1985) An applications oriented guide to Lagrangian relaxation. Interfaces 15:10–21

    Article  Google Scholar 

  • Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50:1861–1871

    Article  Google Scholar 

  • Giri PK, Maiti MK, Maiti M (2015) Fully fuzzy fixed charge multi-item solid transportation problem. Appl Soft Comput 27:77–91

    Article  Google Scholar 

  • Guignard M (2003) Lagrangian relaxation. TOP 11(2):151–228

    Article  MathSciNet  MATH  Google Scholar 

  • Habibzadeh Boukani H, Farhang Moghaddam B, Pishvaee MS (2014) Robust optimization approach to capacitated single and multiple allocation hub location problems. Comput Appl Math. doi:10.1007/s40314-014-0179-y

  • Hajiaghaei-Keshteli M, Molla-Alizadeh-Zavardehi S, Tavakkoli-Moghaddam R (2010) Addressing a nonlinear fixed-charge transportation problem using a spanning tree-based genetic algorithm. Comput Ind Eng 59(2):259–271

    Article  Google Scholar 

  • Ingold T, Gröflin H (1997) Feasible sequential decisions and a flexible Lagrangean-based heuristic for dynamic multi-level lot sizing. Int Trans Oper Res 4:327–340

    Article  MATH  Google Scholar 

  • Jo J, Li Y, Gen M (2007) Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Comput Ind Eng 53:290–298

    Article  Google Scholar 

  • Kannana D, Govindanb K, Soleimanic H (2014) Artificial immune system and sheep flock algorithms for two-stage fixed-charge transportation problem. Optimization 63(10):1465–1479

    Article  MathSciNet  Google Scholar 

  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Klose A (2008) Algorithms for solving the single-sink fixed-charge transportation problem. Comput Oper Res 35(6):2079–2092

    Article  MathSciNet  MATH  Google Scholar 

  • Kowalski K, Lev B (2008) On step fixed-charge transportation problem. Omega 36(5):913–917

    Article  Google Scholar 

  • Kowalski K, Lev B, Shen W, Tu Y (2014) A fast and simple branching algorithm for solving small scale fixed-charge transportation problem. Oper Res Perspect 1(1):1–5

    Article  MathSciNet  Google Scholar 

  • Kundu P, Kara S, Maitib M (2013a) Multi-objective solid transportation problems with budget constraint in uncertain environment. Int J Syst Sci 45(8):1668–1682

    Article  MathSciNet  Google Scholar 

  • Kundu P, Kara S, Maitib M (2013b) Multi-objective multi-item solid transportation problem in fuzzy environment. Appl Math Model 37(4):2028–2038

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu P, Kara S, Maitib M (2014) Fixed charge transportation problem with type-2 fuzzy variables. Inf Sci 255:170–186

    Article  MathSciNet  Google Scholar 

  • Lotfi MM, Tavakk oli-Moghaddam R (2013) A genetic algorithm using priority-based encoding with new operators for fixed charge transportation problems. Appl Soft Comput 13(5):2711–2726

    Article  Google Scholar 

  • Ma W, Xu B, Liu M, Huang H (2014) An efficient algorithm based on sparse optimization for the aircraft departure scheduling problem. Comput Appl Math. doi:10.1007/s40314-014-0195-y

  • Mahapatra DR, Roy SK, Biswal MP (2013) Multi-choice stochastic transportation problem involving extreme value distribution. Appl Math Model 37(4):2230–2240

    Article  MathSciNet  MATH  Google Scholar 

  • Maity G, Roy SK (2014) Solving multi-choice multi-objective transportation problem: a utility function approach. J Uncertain Anal Appl 2(1):1–20

    Article  Google Scholar 

  • Marín A, Pelegrín B (1997) A branch-and-bound algorithm for the transportation problem with location of p transshipment points. Comput Oper Res 24(7):659–678

    Article  MathSciNet  MATH  Google Scholar 

  • Midya S, Roy SK (2014) Solving single-sink, fixed-charge, multi-objective, multi-index stochastic transportation problem. Am J Math Manag Sci 33(4):300–314

    Google Scholar 

  • Molla-Alizadeh-Zavardehi S, Sadi Nezhad S, Tavakkoli-Moghaddam R, Yazdani M (2013) Solving a fuzzy fixed charge solid transportation problem by metaheuristics. Math Comput Model 57(5–6):1543–1558

    Article  MathSciNet  Google Scholar 

  • Nasiri GR, Zolfaghari R, Davoudpour H (2014) An integrated supply chain production-distribution planning with stochastic demands. Comput Ind Eng 77:35–45

    Article  Google Scholar 

  • Navarro-González FJ, Villacampa Y (2013) Generation of representation models for complex systems using Lagrangian functions. Adv Eng Softw 64:33–37

    Article  Google Scholar 

  • Niroomand S, Hadi-Vencheh A, Sahin R, Vizvari B (2015) Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems. Expert Syst Appl 42:6586–6597. doi:10.1016/j.eswa.2015.04.040

    Article  Google Scholar 

  • Niroomand S, Vizvari B (2015) Exact mathematical formulations and metaheuristic algorithms for production cost minimization: a case study of the cable industry. Int Trans Oper Res 22:519–544. doi:10.1111/itor.12096

    Article  MathSciNet  MATH  Google Scholar 

  • Ojha A, Das B, Mondal S, Maiti M (2010) A solid transportation problem for an item with fixed charge, vehicle cost and price discounted varying charge using genetic algorithm. Appl Soft Comput 10(1):100–110

    Article  Google Scholar 

  • Roy SK, Mahapatra DR (2014) Solving solid transportation problems with multi-choice cost and stochastic supply and demand. Int J Strateg Decis Sci 5(3):1–26

    Article  Google Scholar 

  • Sadjady H, Davoudpour H (2012) Two-echelon, multi-commodity supply chain network design with mode selection, lead-times and inventory costs. Comput Oper Res 39(7):1345–1354

    Article  MathSciNet  MATH  Google Scholar 

  • Safi MR, Razmjoo A (2013) Solving fixed charge transportation problem with interval parameters. Appl Math Model 37(18–19):8341–8347

    Article  MathSciNet  Google Scholar 

  • Saharidis GKD, Minoux M, Ierapetritou MG (2010) Accelerating Benders method using covering cut bundle generation. Int Trans Oper Res 17:221–237

    Article  MathSciNet  MATH  Google Scholar 

  • Santibanez-Gonzalez EDR, Diabat A (2013) Solving a reverse supply chain design problem by improved Benders decomposition schemes. Comput Ind Eng 66:889–898

    Article  Google Scholar 

  • Schaffer JR, O’Leary DE (1989) Use of penalties in a branch and bound procedure for the fixed charge transportation problem. Eur J Oper Res 43(3):305–312

    Article  MATH  Google Scholar 

  • Shi J, Zhang G, Sha J (2012) A Lagrangian based solution algorithm for a build-to-order supply chain network design problem. Adv Eng Softw 49:21–28

    Article  Google Scholar 

  • Tang L, Jiang W, Saharidis GKD (2013) An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions. Ann Oper Res 210:165–190

    Article  MathSciNet  MATH  Google Scholar 

  • Wright DD, Haehling von Lanzenauer C (1989) Solving the fixed charge problem with Lagrangian relaxation and cost allocation heuristic. Eur J Oper Res 42:305–312

    Article  MathSciNet  MATH  Google Scholar 

  • Yang L, Liu P, Li S, Gao Y, Ralescu DA (2015) Reduction methods of type-2 uncertain variables and their applications to solid transportation problem. Inf Sci 291(10):204–237

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to the editors and anonymous referees of the journal for their helpful comments and suggestions which helped us to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Niroomand.

Additional information

Communicated by Andreas Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanei, M., Mahmoodirad, A., Niroomand, S. et al. Step fixed-charge solid transportation problem: a Lagrangian relaxation heuristic approach. Comp. Appl. Math. 36, 1217–1237 (2017). https://doi.org/10.1007/s40314-015-0293-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-015-0293-5

Keywords

Mathematics Subject Classification

Navigation