Skip to main content
Log in

Numerical investigations of turbulent free surface flows using TOPUS scheme

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a numerical technique for the simulation of two-dimensional incompressible turbulent flows. In particular, the performance of the realizable Reynolds stress algebraic equation model and the high-order polynomial upwind scheme, TOPUS, is assessed for free surface incompressible turbulent flows. The Reynolds averaged Navier–Stokes equations and continuity equations are solved using the finite difference methodology on a staggered grid system. The numerical method is investigated by solving two free surface fluid flow problems, namely, a turbulent free jet impinging onto a flat surface and a broken dam. The method is then applied to simulate a sluice gate and a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amsden AA, Harlow FH (1971) A simplified MAC technique for incompressible fluid flow calculations. J Comput Phys 6:322–325

    Article  MATH  Google Scholar 

  • Castello AF, Tomé MF, César CNL, McKee S, Cuminato JA (2000) Freeflow: an integrated simulation system for three-dimensional free surface flows. Comput Vis Sci 2:199–210

    Article  MATH  Google Scholar 

  • Choi SK, Nam HY, Cho M (1995) A comparison of higher-order bounded convection schemes. Comput Methods Appl Mech Eng 121:281–301

    Article  MATH  Google Scholar 

  • Denaro FM (2003) On the applications of the Helmoltz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions. Int J Numer Methods Fluids 43:43–69

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira VG, Oishi CM, Kurokawa FA, Kaibara MK, Cuminato JA, Castelo A, Mangiavacchi N, Tomé MF, McKee S (2007) A combination of implicit and adaptative upwind tools for the numerical solution of incompressible free surface flows. Commun Numer Methods Eng 23:419–445

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira VG, Queiroz RAB, Lima GAB, Cuenca RG, Oishi CM, Azevedo JLF, Mckee S (2012a) A bounded upwinding scheme for computing convection-dominated transport problems. Comput Fluids 57:208–224

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira VG, Queiroz RAB, Candezano MAC, Lima GAB, Corrêa L, Oishi CM, Santos FLP (2012b) Simulation results and applications of an advection bounded scheme to practical flows. Comput Appl Math 31:591–616

    Article  MathSciNet  Google Scholar 

  • Gaskell PH, Lau AKC (1988) Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm. Int J Numer Methods Fluids 8:617–641

    Article  MathSciNet  MATH  Google Scholar 

  • Gatski TB, Speziale CG (1993) On explicit algebraic stress models for complex turbulent flows. J Fluid Mech 254:59–78

    Article  MathSciNet  MATH  Google Scholar 

  • Girimaji SS (1995) Fully-explicit and self-consistent algebraic Reynolds stress model. ICASE, pp 95–82

  • Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189

    Article  MathSciNet  MATH  Google Scholar 

  • Harten A (1983) High resolution schemes for conservation laws. J Comput Phys 49:357–393

    Article  MathSciNet  MATH  Google Scholar 

  • Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluids. Nucl Sci Eng 123:421–434

    Article  Google Scholar 

  • Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  MATH  Google Scholar 

  • Leonard BP (1988) Simple high-accuracy resolution program for convective modeling of discontinuities. Int J Numer Methods Fluids 8:1291–1318

    Article  MATH  Google Scholar 

  • Martin JC, Moyce WJ (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plate. Phil Trans Math Phys Eng Sci 244:312–324

    Article  Google Scholar 

  • Mouaze D, Murzyn F, Chaplin JR (2005) Free surface length scale estimation in hydraulics jumps. J Fluids Eng 127:1191–1193

    Article  MATH  Google Scholar 

  • Norris HL, Reynolds WC (1975) Turbulent channel flow with a moving wavy boundary. Stanford Univ. Dept. Mech. Eng. TR TF-7

  • Pascau A, Perez C (1993) A well-behaved scheme to model strong convection in a general transport equation. In: Proceedings of the Eighth International Conference on Numerical Methods in Laminar and Turbulent Flow, Swansea, Pineridge Press

  • Patel VC (1998) Perspective: flow at high Reynolds number and over rough surfaces-Achilles Heel of CFD. J Fluids Eng 120:434–444

    Article  Google Scholar 

  • Queiroz RAB, Ferreira VG (2010) Development and testing of high-resolution upwind schemes: upwind schemes for incompressible free surface flows. VDM Verlag Dr. Muller, Germany

    Google Scholar 

  • Sankaranarayanan S, Suresh Rao H (1996) Finite element analysis of free surface flow through gates. Int J Numer Methods Fluids 22:375–392

    Article  MATH  Google Scholar 

  • Shih T-H, Zhu J, Lumley JL (1993) A realizable Reynolds stress algebraic equation model. National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, Cleveland

    Google Scholar 

  • Sondak DL, Pletcher RH (1995) Application of wall functions to generalized nonorthogonal curvilinear coordinate systems. AIAA J 33:33–41

    Article  MATH  Google Scholar 

  • Sweby PK (1984) High resolution scheme using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21:995–1011

    Article  MathSciNet  MATH  Google Scholar 

  • Tomé MF, McKee S (1994) GENSMAC: a computational marker and cell method for free surface flows in general domains. J Comput Phys 110:171–186

    Article  MATH  Google Scholar 

  • Tomé MF, Castelo A, Murakami J, Cuminato JA, Minghim R, Oliveira MCF, Mangiavacchi N, McKee S (2000) Numerical simulation of axisymmetric free surface flows. J Comput Phys 157:441–472

    Article  MathSciNet  MATH  Google Scholar 

  • van Leer B (1977) Towards the ultimate conservative difference scheme V, a second-order sequel to Godunov’s method. J Comput Phys 135:229–248

    Article  MATH  Google Scholar 

  • Waterson NP, Deconinck H (2007) Design principles for bounded higher-order convection schemes—a unified approach. J Comput Phys 224:182–207

    Article  MathSciNet  MATH  Google Scholar 

  • Watson EJ (1964) The radial spread of a liquid jet over a horizontal plane. J Fluid Mech 20:481–499

    Article  MathSciNet  MATH  Google Scholar 

  • Wilcox DC (2006) Turbulence modeling for CFD, 3rd edn. DCW Industries, USA

    Google Scholar 

  • Zijlema M (1996) On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general domains. Int J Numer Methods Fluids 22:619–641

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou G, Davidson L, Olsson E (1995) Transonic inviscid/turbulent airfoil flow simulations using a pressure-based method with high order schemes. Lecture Notes Phys 453:372–378

    Article  MATH  Google Scholar 

  • Zhu J (1992) On the higher-order bounded discretization schemes for finite volume computations of incompressible flows. Comput Methods Appl Mech Eng 98:345–360

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research work was supported by the FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) under Grants 05/51458-0, 06/05910-1 and 10/16865-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. B. de Queiroz.

Additional information

Communicated by Eduardo Souza de Cursi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Queiroz, R.A.B., Kurokawa, F.A., Candezano, M.A.C. et al. Numerical investigations of turbulent free surface flows using TOPUS scheme. Comp. Appl. Math. 36, 1145–1160 (2017). https://doi.org/10.1007/s40314-015-0289-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-015-0289-1

Keywords

Mathematics Subject Classification

Navigation