Skip to main content
Log in

Dynamics of a diffusive predator–prey model with modified Leslie–Gower schemes and additive Allee effect

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a diffusive predator–prey model with modified Leslie–Gower schemes and additive Allee effect on prey under homogeneous Neumann boundary condition. Firstly, we investigate the qualitative properties of the system including the persistent property, and local and global asymptotical stability of the unique positive constant equilibrium point of the system. Next, we also show the existence and nonexistence of nonconstant positive steady states of the reaction–diffusion system, which reflect the effect of large diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguirre P, González-Olivares E, Sáez E (2009a) Two limit cycles in a Leslie–Gower predator–prey model with additive Allee effect. Nonlinear Anal RWA 10:1401–1416

    Article  MATH  Google Scholar 

  • Aguirre P, González-Olivares E, Sáez E (2009b) Three limit cycles in a Leslie–Gower predator–prey model with additive Allee effect. SIAM J Appl Math 69:1244–1269

    Article  MATH  MathSciNet  Google Scholar 

  • Allee WC (1931) Animal aggregations, a study in general sociology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Bazykin AD (1998) Nonlinear dynamics of interacting populations. World Scientific, Singapore

    Google Scholar 

  • Boukal DS, Sabelis MW, Berec L (2007) How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theor Popul Biol 72:136–147

    Article  MATH  Google Scholar 

  • Chen SS, Shi JP (2012) Stability in a diffusive Holling–Tanner predator–prey model. Appl Math Lett 25:614–618

    Article  MATH  MathSciNet  Google Scholar 

  • Chen FD, You MS (2008) Permanence, extinction and periodic solution of the predator–prey system with Beddington–DeAngelis functional response and stage structure for prey. Nonlinear Anal RWA 9:207–221

    Article  MATH  MathSciNet  Google Scholar 

  • Conway ED, Smoller JA (1986) Global analysis of a system of predator–prey equations. SIAM J Appl Math 46(4):630–642

    Article  MATH  MathSciNet  Google Scholar 

  • Dennis B (1989) Allee effect: Population growth, critical density, and the chance of extinction. Nat Resour Model 3:481–538

    MATH  MathSciNet  Google Scholar 

  • Freedman HI, Wolkowicz GSK (1986) Predator–prey systems with group defence: the paradox of enrichment revisited. Bull Math Biol 8:493–508

    Article  MathSciNet  Google Scholar 

  • Gascoigne JC, Lipcius RN (2004) Allee effects driven by predation. J Appl Ecol 41:801–810

    Article  Google Scholar 

  • Gilbarg D, Trudinger NS (2001) Elliptic partial differential equations of second order. Springer, Berlin

    MATH  Google Scholar 

  • Henry D (1993) Geometric theory of semilinear parabolic equations. Lecture notes in mathematics, vol 840. Springer, Berlin

    Google Scholar 

  • Hsu SB, Huang TW (1995) Global stability for a class of predator–prey systems. SIAM J Appl Math 55:763–783

    Article  MATH  MathSciNet  Google Scholar 

  • Huang CY, Li YJ, Huo HF (2012) The dynamics of a stage-structured predator–prey system with impulsive effect and Holling mass defence. Appl Math Model 36:87–96

    Article  MATH  MathSciNet  Google Scholar 

  • Kent A, Doncaster CP, Sluckin T (2003) Consequences for predators of rescue and Allee effects on prey. Ecol Model 162:233–245

    Article  Google Scholar 

  • Kramer AM, Dennis B, Liebhold AM, Drake JM (2009) The evidence for Allee effects. Popul Ecol 51:341–354

    Article  Google Scholar 

  • Lin LS, Ni WM, Takagi I (1988) Large amplitude stationary solutions to a chemotaxis systems. J Differ Equ 72:1–27

    Article  MATH  MathSciNet  Google Scholar 

  • Liu J (2013) Qualitative analysis of a Holling–Tanner predator–prey model with mutual interference. Appl Math Comput 219:5283–5289

    Article  MATH  MathSciNet  Google Scholar 

  • Lou Y, Ni WM (1996) Diffusion, self-diffusion and cross-diffusion. J Differ Equ 131:79–131

    Article  MATH  MathSciNet  Google Scholar 

  • Morozov A, Petrovskii S, Li BL (2004) Bifurcations and chaos in a predator–prey system with the Allee effect. Proc R Soc Lond B 271:1407–1414

    Article  Google Scholar 

  • Nirenberg L (2001) Topics in nonlinear functional analysis. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Pang PYH, Wang M (2003) Qualitative analysis of a ratio-dependent predator–prey system with diffusion. Proc R Soc Edinb 133A:919–942

    Article  MathSciNet  Google Scholar 

  • Peng R, Wang MX (2007) Global stability of the equilibrium of a diffusive Holling–Tanner prey–predator model. Appl Math Lett 20:664–670

    Article  MATH  MathSciNet  Google Scholar 

  • Shao YF, Dai BX (2010) The dynamics of an impulsive delay predator–prey model with stage structure and Beddington-type functional response. Nonlinear Anal RWA 11:3567–3576

    Article  MATH  MathSciNet  Google Scholar 

  • Shi HB, Li WT, Lin G (2010) Positive steady states of a diffusive predator–prey system with modified Holling–Tanner functional response. Nonlinear Anal RWA 11:3711–3721

    Article  MATH  MathSciNet  Google Scholar 

  • Smoller J (1983) Shock waves and reaction–diffusion equations. Springer, New York

    Book  MATH  Google Scholar 

  • Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol 14:401–405

    Article  Google Scholar 

  • Tanner JT (1975) The stability and the intrinsic growth rates of prey and predator populations. Ecology 56:855–867

    Article  Google Scholar 

  • Wollkind DJ, Collings JB, Logan JA (1988) Metastability in a temperature-dependent model system for predator–prey mite outbreak interactions on fruit flies. Bull Math Biol 50:379–409

    Article  MATH  MathSciNet  Google Scholar 

  • Yang WS (2013) Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional response. Nonlinear Anal RWA 14:1323–1330

    Article  MATH  Google Scholar 

  • Ye Q, Li Z (1990) Introduction to reaction–diffusion equations. Science Press, Beijing

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous referees for their valuable comments and suggestions on this paper. This work was supported by the Program for New Century Excellent Talents in University (NCET-10-0097), the NSFC Tianyuan Foundation (Grant No. 11226256) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13A010010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang.

Additional information

Communicated by Antonio José Silva Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Zhong, S. Dynamics of a diffusive predator–prey model with modified Leslie–Gower schemes and additive Allee effect. Comp. Appl. Math. 34, 671–690 (2015). https://doi.org/10.1007/s40314-014-0131-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-014-0131-1

Keywords

Mathematics Subject Classification

Navigation