Skip to main content
Log in

High accurate modified WENO method for the solution of Black–Scholes equation

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a high accurate method based on non-standard Runge–Kutta (NRK), modified weighted essentially non-oscillatory (MWENO) and grid stretching methods to solve the Black–Scholes equation with discontinuous final condition. For the spatial and temporal discretization of the Black–Scholes equation, the MWENO method and the NRK method are applied, respectively. The MWENO method is a high-order method that prevents the appearance of spurious solutions close to non-smooth points. To achieve the high-order accuracy in non-smooth points as well as smooth points, a grid stretching technique is employed. The accuracy analysis and the CFL stability condition of this hybrid method are presented. The high efficiency of this method for the solution of non-linear Black–Scholes equation is demonstrated numerically. Comparisons are made with the available methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Wilmott P, Howison S, Dewynne J (2002) The Mathematics of financial derivatives. A student introduction. Cambridge University Press, Cambridge

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654

    Article  MATH  Google Scholar 

  • Merton RC (1973) Theory of rational option pricing. Bell J Econ 4:141–183

    Article  MathSciNet  Google Scholar 

  • Forsyth P, Vetzal K, Zvan R (1999) A finite element approach to the pricing of discrete lookbacks with stochastic volatility. Appl Math Finance 6:87–106

    Article  MATH  Google Scholar 

  • Kluge T (2002) Pricing derivatives in stochastic volatility models using the finite difference method. Dipl. thesis, TU Chemnitz

  • Company R, Navarro E, Pintos JP, Ponsoda E (2008) Numerical solution of linear and nonlinear Black–Scholes option pricing equations. Comput. Math. Appl. 56:813–821

    Article  MATH  MathSciNet  Google Scholar 

  • Company R, Jodar L, Pintos J (2012) A consistent stable numerical scheme for a nonlinear option pricing model in illiquid markets. Math. Comput. Simul. 82:1972–1985

    Article  MATH  MathSciNet  Google Scholar 

  • Ankudinova J, Ehrhardt M (2008) On the numerical solution of nonlinear Black–Scholes equations. Comput. Math. Appl. 56:799–812

    Google Scholar 

  • Tangman DY, Gopau A, Bhuruth M (2008) Numerical pricing of options using high-order compact finite difference schemes. J. Comput Appl Math 218:270–280

    Article  MATH  MathSciNet  Google Scholar 

  • Dremkova E, Ehrhardt M (2011) A high-order compact method for nonlinear Black–Scholes option pricing equations of American options. Int J Comput Math 88:2782–2797

    Article  MATH  MathSciNet  Google Scholar 

  • Bohner M, Zheng Y (2009) On analytical solutions of the Black–Scholes equation. Appl Math Lett 22:309–313

    Article  MATH  MathSciNet  Google Scholar 

  • Oosterlee CW, Frisch JC, Gaspar FJ (2004) TVD, WENO and blended BDF discretizations for Asian options. Comput Visual Sci 6:131–138

    Article  MATH  MathSciNet  Google Scholar 

  • Hajipour M, Malek A (2012) High accurate NRK and MWENO scheme for nonlinear degenerate parabolic PDEs. Appl Math Model 36:4439–4451

    Article  MATH  MathSciNet  Google Scholar 

  • Hajipour M, Malek A (2011) An efficient high order modified WENO scheme for nonlinear parabolic equations. Int J Appl Math 24:443–458

    MATH  MathSciNet  Google Scholar 

  • Liu Y-Y, Shu C-W, Zhang M (2011) High order finite difference WENO schemes for nonlinear degenerate parabolic equations. SIAM J Sci Comput 33:939–965

    Article  MATH  MathSciNet  Google Scholar 

  • Liu X-D, Osher S, Chan T (1994) Weighted essentially non-oscillatory schemes. J Comput Phys 115:200–212

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang G, Shu C-W (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126:202–228

    Article  MATH  MathSciNet  Google Scholar 

  • Balsara D, Shu C-W (2000) Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J Comput Phys 160:405–452

    Article  MATH  MathSciNet  Google Scholar 

  • Hidalgo A, Dumbser M (2011) ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations. J Sci Comput 48:173–189

    Article  MATH  MathSciNet  Google Scholar 

  • Shu C-W (2009) High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev 51(1):82–126

    Article  MATH  MathSciNet  Google Scholar 

  • Pedro JC, Banda MK, Sibanda P (2013) On one-dimensional arbitrary high-order WENO schemes for systems of hyperbolic conservation laws. Comput Appl Math. doi:10.1007/s40314-013-0066-y

  • Jandačka M, Ševčovič D (2005) On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. J Appl Math 2005(3):235–258

    Article  MATH  Google Scholar 

  • Leland HE (1985) Option pricing and replication with transactions costs. J Finance 40:1283–1301

    Article  Google Scholar 

  • Barles G, Soner HM (1998) Option pricing with transaction costs and a nonlinear Black–Scholes equation. Finance Stoch 2:369–397

    Article  MATH  MathSciNet  Google Scholar 

  • Dormand JR, Prince PJ (1980) A family of embedded Runge–Kutta formulae. J Comput Appl Math 6:19–26

    Article  MATH  MathSciNet  Google Scholar 

  • Wang R, Spiteri RJ (2007) Linear instability of the fifth-order WENO method. SIAM J Numer Anal 45(5):1871–1901

    Article  MATH  MathSciNet  Google Scholar 

  • Chen B, Solis F (1998) Discretizations of nonlinear differential equations using explicit finite order methods. J Comput Appl Math 90:171–183

    Article  MATH  MathSciNet  Google Scholar 

  • Mickens RE (1994) Nonstandard finite difference models of differential equations. World Scientific, Singapore

    MATH  Google Scholar 

  • Carpenter MH, Gottlieb D, Abarbanel S, Don W-S (1995) The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error. SIAM J Sci Comput 16:1241–1252

    Article  MATH  MathSciNet  Google Scholar 

  • Oosterlee CW, Leentvaar CCW, Huang X (2005) Accurate American option pricing by grid stretching and high-order finite differences, Working papers. Delft University of Technology, the Netherlands, DIAM

  • Hull JC (1989) Options, futures and other derivatives. Prentice-Hall Int. Inc, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaeddin Malek.

Additional information

Communicated by Eduardo Souza de Cursi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajipour, M., Malek, A. High accurate modified WENO method for the solution of Black–Scholes equation. Comp. Appl. Math. 34, 125–140 (2015). https://doi.org/10.1007/s40314-013-0108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-013-0108-5

Keywords

Mathematics Subject Classification (2010)

Navigation