Skip to main content

Advertisement

Log in

Hybrid Operational High Step-Up DC–DC Converter

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

High step-up DC–DC voltage converters are widely employed in uninterruptible power supplies and photovoltaic systems. The voltage levels of batteries and photovoltaic panels are, usually, low when compared with the grid-connected inverter requirements. The employment of several PV panels or batteries associated in series, directly connected to the inverter, simplifies the system but at the expense of the cost increase and of a smaller solar lighting efficiency/utilization. Several high step-up DC–DC voltage conversions are presented in the technical literature and include the basic boost converter and its derivations such as cascade, quadratic and interleaved, and voltage multipliers based on Cockcroft–Walton, switched capacitors and hybrid converters. This work presents a hybrid converter based on the boost and the switched-capacitor voltage multiplier. Its features are a low energy processing, robustness and balanced cell voltages. Comparative analysis involving the proposal and existent solutions is carried out. The research is supported by simulation essays carried out with PSpice software and preliminary experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abutbul, O., Gherlitz, A., Berkovich, Y., & Ioinovici, A. (2003). Step-up switching-mode converter with high step-up voltage gain using a switched-capacitor circuit. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications,50(8), 1098–1102.

    Article  Google Scholar 

  • Bento, A. A. M., da Silva, E. R. C., & Hartmann, L. V. (2009). DC-DC converter with large conversion ratio employing one-cycle control technique. IEEE APEC,479–485, 2009.

    Google Scholar 

  • Chung, H. S. (1999). Design and analysis of a switched-capacitor-based step-up DC/DC converter with continuous input current. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications,46(6), 722–730.

    Article  Google Scholar 

  • da Silva, R. L., Lazzarin, T. B., & Barbi, I. (2018). Reduced switch count step-up/step-down switched-capacitor three-phase AC–AC converter. IEEE Transactions on Power Electronics,65(11), 8422–8432.

    Google Scholar 

  • Dwari, S., & Parsa, L. (2011). An efficient high-step-up interleaved DC-DC converter with a common active clamp. IEEE Transactions on Power Electronics,26(1), 66–78.

    Article  Google Scholar 

  • Erickson, R. W., & Maksimovic, D. (2004). Fundamentals of power electronics. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Fardoun, A. A., & Ismail, E. H. (2010). Ultra step-up DC–DC converter with reduced switch stress. IEEE Transactions on Industry Applications,46(5), 2025–2034.

    Article  Google Scholar 

  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., & Lehman, B. (2017). Step-up dc-dc converters: A comprehensive review of voltage boosting techniques, topologies, and applications. IEEE Transactions on Power Electronics,PP(99), 1.

    Google Scholar 

  • Gules, R., Pfitscher, L. L., & Franco, L. C. (2003). An interleaved boost DC-DC converter with large conversion ratio. In IEEE international symposium on industrial electronics. ISIE ‘03, 9–11 June 2003 (Vol. 1, pp. 411–416).

  • Ismail, E. H., Al-Saffar, M. A., & Sabzali, A. J. (2008). High conversion ratio DC–DC converters with reduced switch stress. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,55(7), 2139–2151.

    Article  MathSciNet  Google Scholar 

  • Ismail, E. H., Al-Saffar, M. A., Sabzali, A. J., & Fardoun, A. A. (2010). High voltage gain single-switch non-isolated DC-DC converters for renewable energy applications. In Proceedings of IEEE international conference on sustainable energy technologies (pp. 1–6).

  • Kawa, A., Stala, R., Mondzik, A., Pirog, S., & Penczek, A. (2016). High-power thyristor-based DC–DC switched-capacitor voltage multipliers: Basic concept and novel derived topology with reduced number of switches. IEEE Transactions on Power Electronics,31(10), 6797–6813.

    Google Scholar 

  • Kobougias, I. C., & Tatalis, E. C. (2010). Optimal design of a half-wave Cockcroft–Walton voltage multiplier with minimum total capacitance. IEEE Trans on Power Electronics,25(9), 2460–2468.

    Article  Google Scholar 

  • Mahajan, S. B., Sanjeevikumar, P., Ojo, O., Rivera, M., & Kulkarani, R. (2016). Non-isolated and inverting Nx multilevel boost converter for photovoltaic DC link applications. In Proceedings of IEEE international conference on automatic IEEE-ICA-ACCA’16, 19–21 Oct. 2016 (pp. 1–8).

  • Peng, F. Z. (2001). A generalized multilevel inverter topology with self voltage balancing. IEEE Transactions on Industry Applications,37(2), 611–618.

    Article  Google Scholar 

  • Rashid, M. H. (Ed.). (2011). Power electronics handbook: Devices, circuits, and applications handbook (3rd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Saadat, P., & Abbaszadeh, K. (2016). A single switch high step up DC–DC converter based on quadratic boost. IEEE Transactions on Industrial Electronics,63(12), 7733–7742.

    Article  Google Scholar 

  • Santos, R. S., Lazzarin, T. B., & Barbi, I. (2017). A single-phase hybrid switched-capacitor inverter for high step-down application. Brazilian Journal of Power Electronics,22(4), 398–407.

    Google Scholar 

  • Schmitz, L., Coelho, R. F., & Martins, D. C. (2015). High step-up high efficiency dc–dc converter for module-integrated photovoltaic applications. In 2015 IEEE 13th Brazilian power electronics conference (pp. 1–6).

  • Schmitz, L., Martins, D. C., & Coelho, R. F. (2017). Generalized high step-up DC-DC boost-based converter with gain cell. IEEE Transactions on Circuits and Systems I: Regular Papers,64(2), 480–493.

    Article  Google Scholar 

  • Tofoli, F. L., Pereira, D. C., de Paula, W. J., et al. (2015). Survey on nonisolated high-voltage step-up dc–dc topologies based on the boost converter. IET Power Electronics,8(10), 2044–2057.

    Article  Google Scholar 

  • Waradzyn, Z., Stala, R., Mondzik, A., Penczek, A., Skala, A., & Pirog, S. (2017). Efficiency analysis of MOSFET-based air-choke resonant DC–DC step-up switched-capacitor. IEEE Transactions on Industrial Electronics,64(11), 8728–8738.

    Article  Google Scholar 

  • Young, C., Chen, H., & Chen, M. (2014). A Cockcroft–Walton voltage multiplier fed by a three-phase-to-single-phase matrix converter with PFC. IEEE Transactions on Industry Applications,50(3), 1994–2004.

    Article  Google Scholar 

  • Young, C. M., Ko, C. C., Wu, C. C., Chen, M. H. (2011). A Cockcroft–Walton voltage multiplier with PFC using ZC-ZVT auxiliary circuit. In Proceedings of the IEEE IECON (pp. 1000–1005).

  • Zhang, X., & Green, T. C. (2015). The modular multilevel converter for high step-up/Dn ratio DC–DC conversion. IEEE Transactions on Industrial Electronics,62(8), 4925–4936.

    Article  Google Scholar 

  • Zhang, N., Sutanto, D., Muttaqi, K. M., Zhang, B., & Qiu, D. (2015). High-voltage-gain quadratic boost converter with voltage multiplier. IET Power Electronics,8(12), 2511–2519.

    Article  Google Scholar 

  • Zhu, X., Zhang, B., Li, Z., Li, H., & Ran, L. (2017). Extended switched-boost dc-dc converters adopting switched-capacitor/switched-inductor cells for high step-up conversion. IEEE Journal of Emerging and Selected Topics in Power Electronics,5(3), 1020–1030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aluísio Alves de Melo Bento.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bento, A.A.d. Hybrid Operational High Step-Up DC–DC Converter. J Control Autom Electr Syst 31, 350–359 (2020). https://doi.org/10.1007/s40313-019-00548-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00548-w

Keywords

Navigation