Skip to main content

Advertisement

Log in

Active Distribution Networks Implications on Transmission System Stability

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Renewable power generation sources are imposing new operational challenges for power systems around the world. The traditional passive operating conditions may change since the power flow can reverse its direction under certain conditions. When the penetration of distributed generation is low, the effects comprise only distribution system. On the other hand, high distributed generation penetration may harm the whole system. In this sense, the connection of these sources can cause a considerable impact on operation and planning of transmission and distribution systems. This paper focuses on the implications on transmission systems when active distribution networks are considered. Dynamic studies are performed to assess the effects in transmission systems of renewable power generation connected to the distribution systems, considering different models and several operating scenarios. The consequences of applying complete and equivalent models are also investigated. The analysis and approaches presented here demonstrate the active distribution networks may influence transmission system behavior and also support that choosing the adequate model to represent the system is essential according to the kind of investigation someone is performing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajjarapu, V. (2006). Computational techniques for voltage stability assessment and control. Berlin: Springer.

    Google Scholar 

  • Almeida, A. B., Zambroni de Souza, A. C., Lo, K., et al. (2013). Probabilistic voltage stability assessment considering renewable sources with the help of the PV and QV curves. IET Renewable Power Generation, 7(5), 521–530.

    Article  Google Scholar 

  • Anderson, P. M., & Fouad, A. A. (2003). Power system control and stability. New York: Wiley.

    Google Scholar 

  • Aristidou, P., & Van Cutsem, T. (2015). A parallel processing approach to dynamic simulations of combined transmission and distribution systems. International Journal of Electrical Power & Energy Systems, 72, 58–65.

    Article  Google Scholar 

  • Assis, T. M. L., Taranto, G. N., Falcao, D. M., et al. (2005). Long and short-term dynamic simulations in distribution networks with the presence of distributed generation. In IEEE power engineering society general meeting (p. 7).

  • Azmy, A. M., & Erlich, I. (2005). Impact of distributed generation on the stability of electrical power system. In Proceedings of IEEE power engineering society general meeting (pp. 1056–1063).

  • Azmy, A. M., Erlich, I., & Sowa, P. (2004). Artificial neural network-based dynamic equivalents for distribution systems containing active sources. IEE Proceedings Generation, Transmission, and Distribution, 151(6), 681–688.

    Article  Google Scholar 

  • Boemer, J. C., Rawn, B. G., Gibescu, M., et al. (2015). Response of wind power park modules in distribution systems to transmission network faults during reverse power flows. IET Renewable Power Generation, 9(8), 1033–1042.

    Article  Google Scholar 

  • Bueno, P. G., Hernández, J. C., & Ruiz-Rodriguez, F. J. (2016). Stability assessment for transmission systems with large utility-scale photovoltaic units. IET Renewable Power Generation, 10(5), 584–597.

    Article  Google Scholar 

  • CEPEL, Brazil. (2016). ANATEM: Programa de Análise de Transitór ios Eletromecânicos (Electromechanical Transient Analysis Program), available online: http://www.anatem.cepel.br (in Portuguese).

  • Chen, Y. C., & Dominguez-Garcia, A. D. (2012). A method to study the effect of renewable resource variability on power system dynamics. IEEE Transactions on Power Systems, 27(4), 1978–1989.

    Article  Google Scholar 

  • Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. IET Renewable Energy Series, 6, 2009.

    Google Scholar 

  • De Leon, F., & Ooi, B. T. (2001). Damping power system oscillations by unidirectional control of alternative power generation plants. In Proceedings of IEEE power engineering society winter meeting (pp. 747–752).

  • Donnelly, M. K., Dagle, J. E., Trudnowski, D. J., et al. (1996). Impacts of the distributed utility on transmission system stability. IEEE Transactions on Power Systems, 11(2), 741–746.

    Article  Google Scholar 

  • Huang, Q., Huang R., Fan, R., Fuller, J., et al. (2018). A comparative study of interface techniques for transmission and distribution dynamic co-simulation. In Proceedings of IEEE PES general meeting (pp. 1–5).

  • Huang, Q., & Vittal, V. (2017). Integrated transmission and distribution system power flow and dynamic simulation using mixed three-sequence/three-phase modeling. IEEE Transactions on Power Systems, 32(5), 3704–3714.

    Article  Google Scholar 

  • Huang, Q., & Vittal, V. (2018). Advanced EMT and phasor-domain hybrid simulation with simulation mode switching capability for transmission and distribution systems. IEEE Transactions on Power Systems, 33(6), 6298–6308.

    Article  Google Scholar 

  • IEEE. (2017). Contribution to bulk system control and stability by distributed energy resources connected at distribution network. Technical Report PES TR-022.

  • Kundur, P. (1993). Power system stability and control. New York: McGraw-Hill Publishing.

    Google Scholar 

  • Operador Nacional do Sistema, ONS. (2010). Documentação do Modelo do aerogerador ENERCON E44F1 e E48F1 para os usuários do programa ANATEM. Report 3/036/2009.

  • Ortega, Á., & Milano, F. (2018) Frequency control of distributed energy resources in distribution networks. In 10th symposium on control of power and energy systems (IFAC CPES2018).

  • Reza, M., Schavemaker, P. H., Slootweg, J. G., et al. (2004). Impacts of distributed generation penetration levels on power systems transient stability. In Proceedings of IEEE power engineering society general meeting (pp. 2150–2155).

  • Slootweg, J. G., & Kling, W. L. (2002). Impacts of distributed generation on power system transient stability. In Proceedings of IEEE power engineering society summer meeting (pp. 862–867).

  • Strbac, G. (2002). Impact of dispersed generation on distribution systems: A European perspective. In Proceedings of IEEE power engineering society winter meeting (pp. 118–120).

  • Valverde, G., & Van Cutsem, T. (2013). Model predictive control of voltages in active distribution networks. IEEE Transactions on Smart Grid, 4(4), 2152–2161.

    Article  Google Scholar 

  • Wang, C., Yu, H., Li, P., et al. (2015). Model order reduction for transient simulation of active distribution networks. IET Generation, Transmission and Distribution, 9(5), 457–467.

    Article  Google Scholar 

  • Zali, S. M., & Milanovic, J. V. (2013). Generic model of active distribution network for large power system stability studies. IEEE Transactions on Power Systems, 28(3), 3126–3133.

    Article  Google Scholar 

  • Zambroni de Souza, A. C., Santos, M., Marujo, D., et al. (2015). Voltage security in AC microgrids: A power flow-based approach considering droop-controlled inverters. IET Renewable Power Generation, 9(8), 954–960.

    Article  Google Scholar 

Download references

Acknowledgements

Diogo Marujo thanks CNPq for the financial support. A. C. Zambroni de Souza, B. I. L. Lopes and D. Q. Oliveira thank CNPq, CAPES, FAPEMIG and INERGE for partially supporting this work. D. Q. Oliveira also thanks to FAPEMA for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Zambroni de Souza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Synchronous Generator Model

The synchronous machine model represents the transient and subtransient effects in d and q axes and considers the variation of the machine parameters and voltages with frequency and the stator dynamics. It is described in Eqs. (5)–(10) (CEPEL 2016).

$$ \frac{{{\text{d}}E_{d}^{{\prime \prime }} }}{{{\text{d}}t}} = \frac{1}{{T_{q0}^{''} }}\left[ { - E_{d}^{{\prime \prime }} + E_{d}^{{\prime }} + \left( {X_{q}^{{\prime }} - X_{q}^{{\prime \prime }} } \right)I_{q} + \frac{{X_{q}^{{\prime \prime }} - X_{l} }}{{X_{q}^{{\prime }} - X_{l} }}\frac{{{\text{d}}E_{d}^{{\prime }} }}{{{\text{d}}t}}} \right] $$
(5)
$$ \frac{{{\text{d}}E_{q}^{{\prime \prime }} }}{{{\text{d}}t}} = \frac{1}{{T_{d0}^{{\prime \prime }} }}\left[ { - E_{q}^{{\prime \prime }} + E_{q}^{{\prime }} + \left( {X_{d}^{{\prime }} - X_{d}^{{\prime \prime }} } \right)I_{d} + \frac{{\left( {X_{d}^{{\prime \prime }} - X_{l} } \right)}}{{X_{d}^{{\prime }} - X_{l} }}\frac{{{\text{d}}E_{q}^{{\prime }} }}{{{\text{d}}t}}} \right] $$
(6)
$$ \frac{{{\text{d}}E_{d}^{{\prime }} }}{{{\text{d}}t}} = \frac{1}{{T_{q0}^{{\prime }} }}\left[ {\frac{{X_{q} - X_{q}^{{\prime }} }}{{X_{q}^{{\prime }} - X_{l} }}E_{d}^{{\prime \prime }} - \frac{{X_{q} - X_{l} }}{{X_{q}^{'} - X_{l} }}E_{d}^{{\prime }} + \frac{{\left( {X_{q} - X_{q}^{{\prime }} } \right)\left( {X_{q}^{{\prime \prime }} - X_{l} } \right)}}{{X_{q}^{{\prime }} - X_{l} }}I_{q} + SAT_{q} } \right] $$
(7)
$$ \frac{{{\text{d}}E_{q}^{{\prime }} }}{{{\text{d}}t}} = \frac{1}{{T_{d0}^{{\prime }} }}\left[ {E_{fd} + \frac{{X_{d} - X_{d}^{{\prime }} }}{{X_{d}^{{\prime }} - X_{l} }}E_{q}^{{\prime \prime }} - \frac{{X_{d} - X_{l} }}{{X_{d}^{{\prime }} - X_{l} }}E_{q}^{{\prime }} + \frac{{\left( {X_{d} - X_{d}^{{\prime }} } \right)\left( {X_{d}^{{\prime \prime }} - X_{l} } \right)}}{{X_{d}^{{\prime }} - X_{l} }}I_{q} + SAT_{d} } \right] $$
(8)
$$ V_{d} = E_{d}^{{\prime \prime }} + X_{q}^{{\prime \prime }} I_{q} - R_{a} I_{d} $$
(9)
$$ V_{q} = E_{q}^{{\prime \prime }} + X_{d}^{{\prime \prime }} I_{d} - R_{a} I_{q} $$
(10)

1.2 Excitation System

The excitation system model is described in Eqs. (11)–(13) (Ajjarapu 2006).

$$ \frac{{{\text{d}}E_{fd} }}{{{\text{d}}t}} = \frac{1}{{T_{e} }}\left[ { - \left( {K_{e} + S_{e} } \right)E_{fd} + V_{R} } \right] $$
(11)
$$ \frac{{{\text{d}}V_{R} }}{{{\text{d}}t}} = \frac{1}{{T_{a} }}\left[ { - V_{R} + K_{a} R_{f} - \frac{{K_{a} K_{f} }}{{T_{f} }}E_{fd} + K_{a} \left( {V_{ref} - V_{i} } \right)} \right] $$
(12)
$$ \frac{{{\text{d}}R_{f} }}{{{\text{d}}t}} = \frac{1}{{T_{f} }}\left[ { - R_{f} + \frac{{K_{f} }}{{T_{f} }}E_{fd} } \right] $$
(13)

1.3 Speed Governor and Hydraulic Prime Mover

The speed governor and prime mover models for hydraulic units are described in Eqs. (14)–(16) (Kundur 1993).

$$ \frac{{{\text{d}}\Delta P_{m} }}{{{\text{d}}t}} = \frac{1}{{T_{w} }}\left[ { - 2P_{m} + \left( {\frac{{2T_{w} R_{P} }}{{R_{T} T_{R} }} + 2} \right)\Delta G - \frac{{2T_{w} R_{P} }}{{R_{T} T_{R} }}\left( {1 - \frac{{T_{R} }}{{T_{g} }}} \right)\Delta y + \left( {\frac{{2T_{w} }}{{R_{T} T_{g} }}} \right)\Delta \omega - \left( {\frac{{2T_{w} R_{P} }}{{T_{g} R_{T} }}} \right)P_{c} } \right] $$
(14)
$$ \frac{{{\text{d}}\Delta y}}{{{\text{d}}t}} = \frac{1}{{T_{g} }}\left[ { - \Delta y + P_{c} - \frac{\Delta \omega }{{R_{P} }}} \right] $$
(15)
$$ \frac{{{\text{d}}\Delta G}}{{{\text{d}}t}} = \frac{1}{{T_{R} }}\left[ { - \left( {\frac{{R_{P} }}{{R_{T} }}} \right)\Delta G + \frac{{R_{P} }}{{R_{T} }}\left( {1 - \frac{{T_{R} }}{{T_{g} }}} \right)\Delta y - \left( {\frac{{T_{R} }}{{T_{g} R_{T} }}} \right)\Delta \omega + \left( {\frac{{T_{R} R_{P} }}{{T_{g} R_{T} }}} \right)P_{c} } \right] $$
(16)

1.4 Speed Governor and Steam Prime Mover

The speed governor and prime mover models for steam units are described in Eqs. (17)–(19) (Kundur 1993).

$$ \frac{{{\text{d}}\Delta P_{m} }}{{{\text{d}}t}} = \frac{1}{{T_{RH} }}\left[ { - \Delta P_{m} + \left( {1 + \frac{{F_{HP} T_{RH} }}{{T_{CH} }}} \right)\Delta P_{CH} + \left( {\frac{{F_{HP} T_{RH} }}{{T_{CH} }}} \right)\Delta y} \right] $$
(17)
$$ \frac{{{\text{d}}\Delta P_{CH} }}{{{\text{d}}t}} = \frac{1}{{T_{CH} }}\left[ {\Delta y - \Delta P_{CH} } \right] $$
(18)
$$ \frac{{{\text{d}}\Delta y}}{{{\text{d}}t}} = \frac{1}{{T_{g} }}\left[ { - \Delta y + P_{c} - \frac{1}{{R_{P} }}\Delta \omega } \right] $$
(19)

1.5 Wind Power

The complete wind turbine model is depicted in Fig. 2, where the block diagram with transfer functions is presented (ONS 2010) (Fig. 9).

Fig. 9
figure 9

Wind turbine model

1.6 ZIP Load

ZIP load model is described in Eqs. (2021) (Kundur 1993).

$$ P_{L} = P_{L0} \left[ {a\left( {\frac{V}{{V_{0} }}} \right)^{2} + b\left( {\frac{V}{{V_{0} }}} \right) + c} \right] $$
(20)
$$ Q_{L} = Q_{L0} \left[ {d\left( {\frac{V}{{V_{0} }}} \right)^{2} + e\left( {\frac{V}{{V_{0} }}} \right) + f} \right] $$
(21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marujo, D., Zambroni de Souza, A.C., Lopes, B.I.L. et al. Active Distribution Networks Implications on Transmission System Stability. J Control Autom Electr Syst 30, 380–390 (2019). https://doi.org/10.1007/s40313-019-00458-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-019-00458-x

Keywords

Navigation