Skip to main content

Advertisement

Log in

Optimization of Grid-Tied Microgrids Under Binomial Differentiated Tariff and Net Metering Policies: A Brazilian Case Study

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Integration and coordinated operation of renewable energy sources (RESs) offer to conventional consumers the possibility to control energy production and consumption in order to obtain technical and economic benefits. In this work, a mixed-integer linear programming approach is proposed to model and optimize DC-coupled grid-tied microgrids. The objective is to reduce industrial consumer electricity bill and energy storage systems degradation, considering operational constraints and rules defined by a complex binomial differentiated tariff and net metering policies to exchange energy. A novel model is developed to DC-coupling integration considering the efficiency of power transformation process and elements with two possible power flow conditions. An original formulation based on logical constraints is also proposed to model the net metering policies and to find the best compensation energy strategy for solving the optimization problem. A case study of a Brazilian industrial consumer, owner of a real-world DC grid-tied microgrid, is presented. The proposed approach involves low-cost procedures that can be integrated into a commercial solution to optimize microgrids in similar net metering contexts, encouraging the use of RESs in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ANEEL. (2015). Normative Resolution 687 (in portuguese). http://www2.aneel.gov.br/cedoc/ren2015687.pdf. Accessed 1 June 2018.

  • ANNEL. (2010). Normative Resolution 414 (in portuguese). http://www2.aneel.gov.br/cedoc/ren2010414.pdf. Accessed 14 May 2015.

  • Bordin, C., Anuta, H. O., Crossland, A., Gutierrez, I. L., Dent, C. J., & Vigo, D. (2017). A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. Renewable Energy, 101, 417–430.

    Article  Google Scholar 

  • Bordons, C., García-Torres, F., & Valverde, L. (2015). Optimal energy management for renewable energy microgrids. Revista Iberoamericana de Automática e Informatica Industrial, 12, 117–132.

    Article  Google Scholar 

  • Dufo-López, R., Bernal-Agustín, J. L., & Contreras, J. (2007). Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage. Renewable Energy, 32, 1102–1126.

    Article  Google Scholar 

  • Fonseca, A. G., Langner, A. L., López-Salamanca, H., Siebert, L. C., Ferronato, F. A. S., Aoki, A. R., Alves, P., Riella R., et al. (2015). Building integrated photovoltaics for smart grids. In Proceedings of 2015 IEEE PES innovative smart grid technologies Latin America, Montevideo, Uruguay. https://doi.org/10.1109/ISGT-LA.2015.7381267.

  • Gambino, G., Verrilli, F., Meola, D., Himanka, M., Del Vecchio, C., & Glielmo, L. (2014). Model predictive control for optimization of combined heat and electric power microgrid. In Proceedings of the 19th IFAC World Congress, Cape Town, South Africa. https://doi.org/10.3182/20140824-6-ZA-1003.02354.

  • Garcia-Torres, F., Valverde, L., & Bordons, C. (2016). Optimal load sharing of hydrogen-based microgrids with hybrid storage using model-predictive control. IEEE Transactions on Industrial Electronics, 63, 4919–4928.

    Article  Google Scholar 

  • GUSEK. (2014). GLPK Under Scite Extended Kit. http://gusek.sourceforge.net/gusek.html. Accessed 2 November 2014.

  • HOMER Energy. (2015). Global standard in microgrid software. http://www.homerenergy.com/index.html. Accessed 13 July 2015.

  • Januzzi, G., & Augustos, C. (2013). Grid-connected photovoltaic in Brazil: Policies and potential impacts for 2030. Energy for Sustainable Development, 17, 40–46.

    Article  Google Scholar 

  • López-Salamanca, H., Arruda, L., Magatão, L., & Normey-Rico, J. (2014). Using a MILP model for battery bank operation in the white tariff Brazilian context. In Proceedings of the international renewable energy congress, Hammammet, Tunisia. https://doi.org/10.1109/IREC.2014.6826921.

  • Lotfi, H., & Khodaei, A. (2017). AC versus DC microgrid planning. IEEE Transactions on Smart Grid, 8(1), 296–304.

    Article  Google Scholar 

  • Nehrir, M. H., Wang, C., Strunz, K., Aki, H., Ramakumar, R., Bing, J., et al. (2011). A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications. IEEE Transactions on Sustainable Energy, 2, 392–403.

    Article  Google Scholar 

  • Nejabatkhah, F., & Li, Y. W. (2015). Overview of power management strategies of hybrid AC/DC microgrid. IEEE Transactions on Power Electronics, 30, 7072–7089.

    Article  Google Scholar 

  • Palizban, O., Kauhaniemi, K., & Guerrero, J. M. (2014). Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation. Renewable and Sustainable Energy Reviews, 36, 428–439.

    Article  Google Scholar 

  • Parisio, A., Rikos, E., & Glielmo, L. (2016). Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study. Journal of Process Control, 43, 24–37.

    Article  Google Scholar 

  • Peukert, W. (1897). Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren. Elektrotechnische Zeitschrift, 18, 287–288.

    Google Scholar 

  • Ratnam, E. L., Weller, S. R., & Kellet, C. M. (2015). Scheduling residential battery storage with solar PV: Assessing the benefits of net metering. Applied Energy, 155, 881–891.

    Article  Google Scholar 

  • Ravichandrad, A., Sirouspour, S., Malysz, P., & Emadi, A. (2018). A chance-constraints-based control strategy for microgrids with energy storage and integrated electric vehicles. IEEE Transactions on Smart Grid, 9, 346–359.

    Article  Google Scholar 

  • Sherali, H. D. (2001). On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions. Operations Research Letters, 28, 155–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, J., & Venkitasubramaniam, P. (2015). Optimal end user energy storage sharing in demand response. In Proceedings of the 2015 IEEE international conference on smart grid communications, Miami, USA. https://doi.org/10.1109/SmartGridComm.2015.7436296

Download references

Acknowledgements

Technical support from the Institute of Technology for Development—LACTEC is gratefully acknowledged. The authors also acknowledge CNPq, Grants 305816/2014-4, 401126/2014-5, 305785/2015-0 and 406507/2016-3 and CAPES, PDSE program, process 88881.135220/2016-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry L. López-Salamanca.

Appendix

Appendix

Parameters and variables for the proposed MILP approach optimization model are presented in Tables 3 and 4, respectively. Dimensional values are between parentheses.

Table 3 Parameters
Table 4 Variables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Salamanca, H.L., Arruda, L.V.R., Magatão, L. et al. Optimization of Grid-Tied Microgrids Under Binomial Differentiated Tariff and Net Metering Policies: A Brazilian Case Study. J Control Autom Electr Syst 29, 731–741 (2018). https://doi.org/10.1007/s40313-018-0403-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-0403-x

Keywords

Navigation