Skip to main content
Log in

Neural Predictor for Surface Roughness of Turned Parts

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Lathes and other turning machines are widely used in the metalworking and manufacturing sector which are powered by induction motors and subject to disturbances in power quality. The dimensions and surface roughness of turned parts produced by these machines are a function of the machining parameters, material properties of the parts and tools, and tool geometry. The surface roughness of machined parts varies with changes in the electromagnetic torque on the motor shaft, and it is considered one of the main indices of finished product quality. This paper seeks to present artificial neural networks as a surface roughness predictor for turned parts, based on the values of the effective current feeding a three-phase induction motor in a machining process. Simulation and experimental results are presented to validate the performance of the proposed method under different unbalanced voltage and machining conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abellan-Nebot, J. V., & Romero Subirón, F. (2010). A review of machining monitoring systems based on artificial intelligence process models. The International Journal of Advanced Manufacturing Technology, 47(1), 237–257.

    Article  Google Scholar 

  • Ahilan, C., Kumanan, S., Sivakumaran, N., & Dhas, J. E. R. (2013). Modeling and prediction of machining quality in CNC turning process using intelligent hybrid decision making tools. Applied Soft Computing, 13(3), 1543–1551.

    Article  Google Scholar 

  • Asilturk, I., & Çunkas, M. (2011). Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Systems with Applications, 38(5), 5826–5832.

    Article  Google Scholar 

  • Asilturk, I., & Unuvar, A. (2010). Development of a neural network based surface roughness prediction system using cutting parameters and an accelerometer in turning. In 2010 IEEE international conference on electro/information technology (pp. 1–4).

  • Benardos, P., & Vosniakos, G. C. (2003). Predicting surface roughness in machining: A review. International Journal of Machine Tools and Manufacture, 43(8), 833–844.

    Article  Google Scholar 

  • Feng, C. X. J., & Wang, X. F. D. (2003). Surface roughness predictive modeling: Neural networks versus regression. IIE Transactions, 35(1), 11–27.

    Article  Google Scholar 

  • Grzenda, M., & Bustillo, A. (2013). The evolutionary development of roughness prediction models. Applied Soft Computing, 13(5), 2913–2922.

    Article  Google Scholar 

  • Haykin, S. S., Haykin, S. S., Haykin, S. S., & Haykin, S. S. (2009). Neural networks and learning machines (Vol. 3). Upper Saddle River, NJ: Pearson.

    MATH  Google Scholar 

  • Huang, J., Zhang, W., & Chen, R. (2011). Selection and processing of surface roughness for mechanical parts. In 2011 international conference on electronic and mechanical engineering and information technology (EMEIT) (Vol. 8, pp. 4258–4261). IEEE.

  • Jian, Z., & Jin, Z. (2010). Surface roughness measure based on average texture cycle. In 2010 2nd international conference on intelligent human-machine systems and cybernetics (IHMSC) (Vol. 2, pp. 298–302). IEEE.

  • Jovic, S., Anicic, O., & Jovanovic, M. (2017). Adaptive neuro-fuzzy fusion of multi-sensor data for monitoring of cnc machining. Sensor Review, 37(1), 78–81.

    Article  Google Scholar 

  • Kalos, P., Nandurkar, K., & Navale, L. (2007). Control of roundness on turned cylindrical bars using artificial neural network. In 2007 IEEE international conference on industrial engineering and engineering management (pp. 597–601). IEEE.

  • Kamarthi, S., Sultornsanee, S., & Zeid, A. (2016). Recurrence quantification analysis to estimating surface roughness in finish turning processes. The International Journal of Advanced Manufacturing Technology, 87(1), 451–460.

    Article  Google Scholar 

  • Karpat, Y., & Özel, T. (2005). Hard turning optimization using neural network modeling and swarm intelligence. Transactions of NAMRI/SME, 33, 179–186.

    Google Scholar 

  • Karpat, Y., & Özel, T. (2006). Swarm-intelligent neural network system (sinns) based multi-objective optimization of hard turning. Transactions of NAMRI/SME, 38, 9–16.

    Google Scholar 

  • Karpat, Y., & Özel, T. (2007). Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization. The International Journal of Advanced Manufacturing Technology, 35(3), 234–247.

    Article  Google Scholar 

  • Krause, P. C., Wasynczuk, O., Sudhoff, S. D., & Pekarek, S. (2013). Analysis of electric machinery and drive systems (Vol. 75). London: Wiley.

    Book  Google Scholar 

  • Makadia, A. J., & Nanavati, J. (2013). Optimisation of machining parameters for turning operations based on response surface methodology. Measurement, 46(4), 1521–1529.

    Article  Google Scholar 

  • Nakai, M. E., Júnior, H. G., Aguiar, P. R., Bianchi, E. C., & Silva, P. S. D. (2015). Evaluation of neural models to estimate the roughness of advanced ceramics in surface grinding. International Journal of Machining and Machinability of Materials, 17(5), 454–479.

    Article  Google Scholar 

  • Ong, C. M. (1998). Dynamic simulation of electric machinery: Using MATLAB/SIMULINK. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Özel, T., & Karpat, Y. (2005). Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. International Journal of Machine Tools and Manufacture, 45, 467–479.

    Article  Google Scholar 

  • Paczkowski, T., & Zdrojewski, J. (2017). Monitoring and control of the electrochemical machining process under the conditions of a vibrating tool electrode. Journal of Materials Processing Technology, 244, 204–214.

    Article  Google Scholar 

  • Pontes, F. J., Ferreira, J. R., Silva, M. B., Paiva, A. P., & Balestrassi, P. P. (2010). Artificial neural networks for machining processes surface roughness modeling. The International Journal of Advanced Manufacturing Technology, 49(9), 879–902.

    Article  Google Scholar 

  • Svalina, I., Simunovic, G., Saric, T., & Lujic, R. (2017). Evolutionary neuro-fuzzy system for surface roughness evaluation. Applied Soft Computing, 52, 593–604.

    Article  Google Scholar 

  • Upadhyay, V., Jain, P., & Mehta, N. (2013). In-process prediction of surface roughness in turning of Ti–6Al–4V alloy using cutting parameters and vibration signals. Measurement, 46(1), 154–160.

    Article  Google Scholar 

  • Zainal, N., Zain, A. M., Radzi, N. H. M., & Othman, M. R. (2016). Glowworm swarm optimization (GSO) for optimization of machining parameters. Journal of Intelligent Manufacturing, 27(4), 797–804.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Araucaria Foundation (Process No. 06/56093-3), and CNPq (Process No. 474290/2008-5, No. 473576/2011-2 and No. 552269/2011-5) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Goedtel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizuyama, D., da Silva, C.E., Goedtel, A. et al. Neural Predictor for Surface Roughness of Turned Parts. J Control Autom Electr Syst 29, 360–370 (2018). https://doi.org/10.1007/s40313-018-0376-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-018-0376-9

Keywords

Navigation