Skip to main content

Advertisement

Log in

From Spatio-Temporal Data to Manufacturing System Model

A Data-Knowledge Integration Approach

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper presents an original approach for automatic construction of a simulation model for complex manufacturing systems. The model generation is based on spatio-temporal product trajectories, and it is detailed by the integration of heterogeneous knowledge & product data flows. The products, therefore, contribute directly to the control of the system. The formal generated model, a queuing network with spatial structure, is a permanent image of the real state of the system to be modelled; it can be described as being auto-adaptive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam, M., Cardin, O., Berruet, P., & Castagna, P. (2011) Proposal of an approach to automate the generation of a transitic system’s observer and decision support using MDE. Proceedings of the 18th IFAC World Congress, (pp. 3593–3598).

  • Bar-Yam, Y. (2003). Dynamics of complex systems (Studies in Nonlinearity). Boulder: Westview Press, http://www.worldcat.org/isbn/0813341213

  • Bourne, C. (1997). Catégorisation et formalisation des connaissances industrielles. In J. M. Fouet (Ed.), Connaissances et Savoir-faire en entreprise (pp. 179–197). Paris: Hermès.

    Google Scholar 

  • Brown, N., & Powers, S. (2000). Simulation in a box: a generic reusable maintenance model. In: Proceedings of the 32nd conference on Winter simulation, Society for Computer Simulation International, San Diego, CA, USA, WSC ’00 (pp. 1050–1056).

  • Cao, B., Farr, R., Byrne, M., & Tannock, J. (2004) Data-driven simulation of the extended enterprise. 18th International Conference on Production Research.

  • Charpentier, P., & Véjar, A. (2013). A product trajectory-driven model builder for manufacturing systems. In: 11th IFAC Workshop on Intelligent Manufacturing Systems, IMS’2013, Sao Paulo, Brazil, vol 11, (pp. 324–329), doi: 10.3182/20130522-3-BR-4036.00032.

  • Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., & Magee, J. (2009). Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science, 5525, doi:10.1007/978-3-642-02161-9.

  • Darema, F. (2004). Dynamic data driven applications systems: A new paradigm for application simulations and measurements. In: Bubak M, Albada, G., Sloot, P., Dongarra, J. (eds). Computational Science—ICCS 2004, Lecture Notes in Computer Science, vol 3038, Springer, Berlin Heidelberg, (pp. 662–669), doi:10.1007/978-3-540-24688-6_86.

  • Diaz-Calderon, A., Paredis, C., & Khosla, P. K. (2000) Architectures and languages for model building and reuse: Organization and selection of reconfigurable models. In: Proceeedings 2000 Winter Simulation Conference, (pp 386–393).

  • Fowler, J. W., & Rose, O. (2004). Grand challenges in modeling and simulation of complex manufacturing systems. SIMULATION, 80(9), 469–476. doi:10.1177/0037549704044324.

  • Garnier, H., Gilson, M., Bastogne, T., & Richard, A. (2007). Identification de modèles paramétriques à temps continu à partir de données expérimentales. Techniques de l’Ingenieur p, S7, 140.

    Google Scholar 

  • Guru, A., & Savory, P. (2004). A template-based conceptual modeling infrastructure for simulation of physical security systems. In: Proceedings of the 36th conference on Winter simulation, Winter Simulation Conference, WSC ’04, (pp 866–873).

  • Kasputis, S., Ng, H.C. (2000). Model composability: Formulating a research thrust: composable simulations. In: Proceedings of the 32nd conference on Winter simulation, Society for Computer Simulation International, San Diego, CA, USA, WSC ’00, (pp. 1577–1584).

  • Koh, S., Gunasekaran, A., & Saad, S. (2006). Parts verification for multi-level-dependent demand manufacturing systems: a recognition and classification structure. The International Journal of Advanced Manufacturing Technology, 31, 305–315. doi:10.1007/s00170-005-0184-9.

    Article  Google Scholar 

  • Page, E.H., & Opper, J.M. (1999). Observations on the complexity of composable simulation. In: Proceedings of the 31st conference on Winter simulation: Simulation–a bridge to the future - Volume 1, ACM, New York, NY, USA, WSC ’99, (pp. 553–560), doi: 10.1145/324138.324433.

  • Revel, L., Habchi, G., & Maire, J. (2004). Analyse du processus d’élaboration d’un projet de simulation. In: 5ème Conf. Int. Francophone de MOdélisation et SIMulation, Nantes, France, vol 1, (pp. 293–301).

  • Robertson, N., & Perera, T. (2002). Automated data collection for simulation? Simulation Practice and Theory, 9(6), 349–364. doi:10.1016/S0928-4869(01)00055-6.

    Article  MATH  Google Scholar 

  • Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P. Y., et al. (1995). Nonlinear black-box modeling in system identification: A unified overview. Automatica, 31(12), 1691–1724. doi:10.1016/0005-1098(95)00120-8.

    Article  MATH  MathSciNet  Google Scholar 

  • Son, Y., Jones, A., & Wysk, R. (2000). Automatic generation of simulation models from neutral libraries: an example. In: Simulation Conference, 2000. Proceedings. Winter, vol 2, (pp. 1558–1567), doi: 10.1109/WSC.2000.899140.

  • Steele, M. J., Rabadi, M. M. G., & Cates, G. (2002). Generic simulation models of reusable launch vehicles. In: Proceedings of the 2002 Winter Simulation Conference, (pp 747–753).

  • Véjar, A. (2011). Génération de modèles de simulation adaptatifs, pilotée par les trajectoires produits. Thése de Doctorat: Université Henri Poincaré - Nancy I.

    Google Scholar 

  • Véjar, A., & Charpentier, P. (2012). Generation of an adaptive simulation driven by product trajectories. Journal of Intelligent Manufacturing, 23, 2667–2679. doi:10.1007/s10845-011-0504-x.

    Article  Google Scholar 

  • Yang, M. (2008). Using data driven simulation to build inventory model. In: Proceedings of the 40th Conference on Winter Simulation, Winter Simulation Conference, WSC ’08, pp 2595–2599.

  • Zhou, M., Son, Y., & Chen, Z. (2004). Knowledge representation for conceptual simulation modeling. In: Simulation Conference, 2004. Proceedings of the 2004 Winter, vol 1, (p. 458), doi: 10.1109/WSC.2004.1371348.

  • Zhou, M., Zhang, Q., & Chen, Z. (2006). What can be done to automate conceptual simulation modeling? In: Proceedings of the 38th conference on Winter simulation, Winter Simulation Conference, WSC ’06, (pp. 809–814).

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the CPER 2007-2013 “Structuration du Pôle de Compétitivité Fibres Grand’Est” (Competitiveness Fibre Cluster), through local (Conseil Général des Vosges), regional (Région Lorraine), national (DRRT and FNADT) and European (FEDER) funds. The study is cofounded by the European Union from resources of the European Social Fund. Project PO KL “Information Technologies: Research and their interdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Charpentier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 7676 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charpentier, P., Véjar, A. From Spatio-Temporal Data to Manufacturing System Model. J Control Autom Electr Syst 25, 557–565 (2014). https://doi.org/10.1007/s40313-014-0133-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-014-0133-7

Keywords

Navigation