Skip to main content
Log in

Real-Time Implementation of Neuro Adaptive Observer-Based Robust Backstepping Controller for Twin Rotor Control System

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

In this paper, a robust backstepping controller based on the neuro adaptive observer for the twin rotor multiple-input-multiple-output (MIMO) system is designed and implemented in real time. The twin rotor MIMO system (TRMS) belongs to a class of nonlinear uncertain system having unstable, coupled dynamics. Nonlinearities of the TRMS are estimated using Chebyshev neural network. A tuning scheme based on Lyapunov theory of stability is developed which can guarantee the boundedness of tracking error and weights of the neural network. The proposed observer-based control guarantees the stability of the closed-loop adaptive system and the tracking errors converge to small residual sets in the presence of constraints on the control input. The effectiveness of the proposed observer-based robust controller is illustrated through simulation and experimental results. The real time implementation has been carried out on the real-time TRMS using MATLAB real-time tool box and Advantech PCI1711 card.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abdollahi, F., Talebi, H. A., & Patel, R. V. (2006). A stable neural network-based observer with application to flexible-joint manupulators. IEEE Transaction on Neural Networks, 17(1), 118–129.

    Article  Google Scholar 

  • Byungkook, Y., & Woonchul, H. (1998). Adaptive fuzzy sliding mode control of nonlinear system. IEEE Transaction on Fuzzy Systems, 6(2), 315–321.

    Article  Google Scholar 

  • Elmali, H., & Olgac, N. (1992). Robust output tracking control of nonlinear MIMO systems via sliding mode technique. Automatica, 28(1), 145–151.

    Article  MathSciNet  Google Scholar 

  • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks’. Neural Networks, 2(3), 183–191.

    Article  Google Scholar 

  • Ge, S. S., Hang, C. C., & Zhang, T. (1999). Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Transaction on Systems, Man, and Cybernetics, Part B, 29(6), 818–828.

    Article  Google Scholar 

  • Ge, S. S., & Zhang, J. (2003). Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Transaction on Neural Networks, 14(4), 900–918.

    Article  Google Scholar 

  • Ge, S. S., & Zhang, J. (2004). Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Transaction on Neural Networks, 14(4), 900–918.

    Google Scholar 

  • Gong, J. Q., & Yao, B. (2001). Neural network adaptive robust control of nonlinear systems in semi-strict feedback form. Automatica, 37(8), 1149–1160.

    Article  MATH  MathSciNet  Google Scholar 

  • Haddad, W. M., Hayakawa, T., & Chellaboina, V. (2003). Robust adaptive control for nonlinear uncertain systems. Automatica, 39(3), 551–556.

    Article  MATH  MathSciNet  Google Scholar 

  • He, S. L., Reif, K., & Unbehauen, R. (1998). A neural approach for control of nonlinear systems with feedback linearization. IEEE Transaction on Neural Networks, 9(6), 1409–1421.

    Article  Google Scholar 

  • Hornick, K., Stinchombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.

    Article  Google Scholar 

  • Huang, A. C., & Chen, Y. C. (2004). Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Transaction on Control Systems Technology, 12(5), 770–775.

    Article  Google Scholar 

  • Juang, J. G., Huang, M. T., & Liu, W. K. (2008). PID control using prescribed genetic algorithms for MIMO system. IEEE Transaction on Systems, Man and Cybernetics, Part C, 38(5), 716–727.

    Article  Google Scholar 

  • Juang, J. G., Lin, R. W., & Liu, W. K. (2008). Comparison of classical control and intelligent control for a MIMO system. Applied Mathematics and Computation, 205(2), 778–791.

    Article  MATH  MathSciNet  Google Scholar 

  • Juang, J. G., Liu, W. K., & Lin, R. W. (2011). A hybrid intelligent controller for a twin rotor MIMO system and its hardware Implementation. ISA Transactions, 50(4), 609–619.

    Article  Google Scholar 

  • Kaloust, J., Ham, J. C., & Qu, Z. (1997). Nonlinear autopilot control design for a 2-DOF helicopter model. Proceedings of IEE Control Theory and Applications, 144(6), 612–616.

    Article  MATH  Google Scholar 

  • Khan, K. U. and Iqbal, N. (2003). Modeling and controller design of twin rotor system/ helicopter lab process developed at PIEAS. Proceedings of IEEE, 7th International Multi Topic Conference, 321–326.

  • Khan A. Q. and Iqbal, N. (2004). Modeling and design of an optimal regulator for three degree of freedom helicopter/twin rotor control system. In Proceedings of IEEE, student conference on engineering, sciences and technology, SCEST, 45–50, December 30–31.

  • Kim, T. S., Yan, J. H., Lee, Y. S. and Kwo, O. K. (2006). Twin rotors system modeling and bumpless transfer implementation algorithm for LQ control. Proceedings of IEEE, international joint conference SICE-ICASE, 114–119.

  • Kwan, C., & Lewis, F. L. (2000). Robust backstepping control of nonlinear systems using neural networks. IEEE Transaction on Systems, Man, and Cybernetics, Part A, 30(6), 753–766.

    Article  Google Scholar 

  • Lee, T. T., & Jeng, J. T. (1998). The Chebyshev polynomial based unified model neural networks for function approximations. IEEE Transaction on Systems, Man, and Cybernetics, Part B, 28(6), 925–935.

    Article  Google Scholar 

  • Lee, C. Y., & Lee, J. J. (2004). Adaptive control for uncertain nonlinear systems based on multiple neural networks. IEEE Transaction on Systems, Man, and Cybernetics, Part B, 34(1), 325–333.

    Article  Google Scholar 

  • Leu, Y. G., Lee, T. T., & Wang, W. Y. (1999). Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems. IEEE Transaction on Systems, Man, and Cybernetics, Part B, 29(5), 583–591.

    Google Scholar 

  • Leu, Y. G., Wang, W. Y., & Lee, T. T. (2005). Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems. IEEE Transaction on Neural Networks, 16(4), 900–918.

    Article  Google Scholar 

  • Lewis, F. L., Jagannathan, S. and Yesildirek, A. (1999). Neural network control of robot manipulators and nonlinear systems. London: Taylor & Francis Ltd.

  • Mondal, S., & Mahanta, C. (2012). Adaptive second-order sliding mode controller for a twin rotor multi-input-multi-output system. IET Control Theory and Applications, 6(14), 2157–2167.

    Article  MathSciNet  Google Scholar 

  • Mustafa, G., & Iqbal, N. (2004). Controller design for a twin rotor helicopter model via exact state feedback linearization. In Proceedings of IEEE 8th international multitopic conference.

  • Namatame, A., & Ueda, N. (1992). Pattern classification with Chebyshev neural networks. International Journal of Neural Networks, 3, 23–31.

    Google Scholar 

  • Patra, J. C., & Kot, A. C. (2002). Nonlinear system identification using Chebyshev functional link artificial neural networks. IEEE Transaction on Systems, Man, and Cybernetics, Part B, 32(4), 505–511.

    Article  Google Scholar 

  • Pratap, B., & Purwar, S. (2013). Real-time implementation of state observers for twin rotor MIMO system: an experimental evaluation. International Journal of Modelling, Identification and Control, 19(1), 98–110.

    Article  Google Scholar 

  • Purwar, S., Kar, I. N., & Jha, A. N. (2007). On-line system identification of complex systems using Chebyshev neural network. Applied Soft Computing, 7(1), 364–372.

    Article  Google Scholar 

  • Purwar, S., Kar, I. N., & Jha, A. N. (2008). Adaptive output feedback tracking control of robot manipulators using position measurements only. Expert Systems with Applications, 34(4), 2789–2798.

    Article  Google Scholar 

  • Rahideh, A., Bajodah, A. H., & Shaheed, M. H. (2012). Real time adaptive nonlinear model inversion control of a twin rotor MIMO system using neural networks. Engineering Applications of Artificial Intelligence, 25(6), 1289–1297.

    Google Scholar 

  • Rotondo, D., Nejjari, F., & Puig, V. (2013). Quasi-LPV modeling, identification and control of a twin rotor MIMO system. Control Engineering Practice, 21(6), 829–846.

    Google Scholar 

  • Sacki, M., Imura, J. and Wada, Y. (1999). Flight control design of twin rotor helicopter model by 2 step exact linearization. In Proceedings of IEEE international conference on control applications.

  • Shaik, F. A., Purwar, S., & Pratap, B. (2011). Real-time implementation of Chebyshev neural network observer for twin rotor control system. Expert Systems with Applications, 38(10), 13043–13049.

    Article  Google Scholar 

  • Sun, F., Sun, Z., & Woo, P. Y. (2001). Neural network-based adaptive controller design of robotic manipulators with an observer. IEEE Transaction on Neural Networks, 12(1), 54–67.

    Google Scholar 

  • Tao, C. W., Taur, J. S., Chang, Y. H., & Chang, C. W. (2010). A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-input-multi-output system. IEEE Transaction on Fuzzy Systems, 18(5), 2010.

    Article  Google Scholar 

  • Tao, C. W., Taur, J. S., & Chen, Y. C. (2010). Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system. Fuzzy Sets and Systems, 161(15), 2081–2103.

    Article  MATH  MathSciNet  Google Scholar 

  • Tee, K. P., Ge, S. S., & Tay, F. E. H. (2008). Adaptive neural network control for helicopters in vertical flight. IEEE Transaction on Control Systems Technology, 16(4), 753–762.

    Article  Google Scholar 

  • TRMS 33–949S (2006). User Manual. East Sussex, U.K.: Feedback Instruments Ltd.

  • Wang, D., & Huang, J. (2005). Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Transaction on Neural Networks, 16(1), 195–202.

    Article  Google Scholar 

  • Wen, P., & Lu, T. W. (2008). Decoupling control of a twin rotor MIMO system using robust deadbeat control technique. IET Control Theory Application, 2(11), 999–1007.

    Article  Google Scholar 

  • Yao, B., & Tomizuka, M. (2001). Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms. Automatica, 37(9), 1305–1321.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, T., Ge, S. S., & Hang, C. C. (2000). Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica, 36(12), 1835–1846.

    MATH  MathSciNet  Google Scholar 

  • Zou, A. M., Kumar, K. D., & Hou, Z. G. (2010). Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks. IEEE Transaction on Neural Networks, 21(9), 1457–1471.

    Article  Google Scholar 

  • Zou, A. M., Kumar, K. D., Hou, Z. G., & Liu, X. (2011). Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Transaction on Systems, Man, and Cybernetics, Part B, 41(4), 950–963.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contribution of Department of Science and Technology, Government of India, New Delhi, India through Project SR/S3/EECE/004/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Pratap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratap, B., Purwar, S. Real-Time Implementation of Neuro Adaptive Observer-Based Robust Backstepping Controller for Twin Rotor Control System. J Control Autom Electr Syst 25, 137–150 (2014). https://doi.org/10.1007/s40313-013-0098-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0098-y

Keywords

Navigation