Skip to main content
Log in

Critical Solutions of Maximum Loadability Via Direct Methods

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work proposes a direct method for determination of the saddle-node bifurcation point corresponding to the maximum loadability of the power system. This problem is stated as a static optimization model, whose solution is obtained through an extended version of Newton’s method. The power flow equations are expressed in rectangular coordinates, which allows both to use second-order information (tensor calculation) as well as to handle directly the generated reactive power constraints. Sensitivity relationships between the power system variables at the maximum loadability point are computed as a by-product of the optimization process. Numerical results obtained with power systems of different sizes are used to illustrate the main features of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ajjarapu, V., & Christy, C. (1992). The continuation power flow: A tool for steady state voltage stability analysis. IEEE Transactions on Power Systems, 10, 416–423.

    Article  Google Scholar 

  • Alves, W. F. (2007). Proposição de sistemas-teste para a análise computacional de sistemas de potência. MSc Dissertation—Curso de Pós-Graduação em Computação da Universidade Federal Fluminense.

  • Ayasun, S., Nwankpa, C., & Kwatny, H. G. (2004). Computation of singular and singularity induced bifurcation points of differential-algebraic power system model. IEEE Transactions on Circuits and Systems—Regular Papers, 51(8), 1525–1538.

    Article  MathSciNet  Google Scholar 

  • Cañizares, C. A., & Alvarado, F. L. (1993). Point of collapse and continuation method for large ac/dc systems. IEEE Transactions on Power Systems, 8(1), 1–8.

    Article  Google Scholar 

  • Cañizares, C. (1998). Applications of optimization to voltage collapse analysis. IEEE Winter Power Meeting Panel Session on Challenges to OPF, 1–8.

  • de Souza, A. C. Z., Cañizares, C. A., & Quintana, V. H. (1997). New techniques to speed up voltage collapse computations using tangent vectors. IEEE Transactions on Power Systems, 12(3), 1380–1387.

    Article  Google Scholar 

  • Deufhard, P. (2005). Newton methods for nonlinear problems. Heildelberg: Springer.

    Google Scholar 

  • Dobson, I. (1994). Irrelevance of load dynamics for the loading margin to voltage collapse and its sensitivities. Bulk Power System Voltage Phenomena-III Voltage Stability, Security and Control (pp. 174–178). Davos, Switzerland.

  • Dobson, I., & Lu, L. (1992). Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems. IEEE Transactions on Automatic Control, 37(10), 1616–1620.

    Article  MathSciNet  Google Scholar 

  • Dobson, I., & Lu, L. (1993). New methods for computing a closest saddle node bifurcation and worst case load power margin for voltage collapse. IEEE Transactions on Power Systems, 8(3), 905–913.

    Article  Google Scholar 

  • Dobson, I., Lu, l, & Hu, Y. (1991). A direct method for computing a closest saddle node bifurcation in the load power parameter space of an electric power system. Proceedings of the IEEE International Symposium on Circuits and Systems, 5, 3019–3022.

    Google Scholar 

  • Feng, D., & Schnabel, R. B. (1996). Tensor methods for equality constrained optimization. SIAM Journal on Optimization, 6(3), 653–673.

    Article  MathSciNet  MATH  Google Scholar 

  • Flueck, A. J., Gonella, R., & Dondeti, R. (2002). A new power sensitivity method of ranking branch outage contingencies for voltage collapse. IEEE Transactions on Power Systems, 17(2), 265–270.

    Article  Google Scholar 

  • Greene, S., Dobson, I., & Alvarado, F. L. (2002). Sensitivity of transfer capability margins with a fast formula. IEEE Transactions on Power Systems, 17(1), 34–40.

    Google Scholar 

  • Griewank, A., & Reddien, W. (1984). Characterization and computation of generalized turning points. SIAM Journal on Numerical Analysis, 21(1), 176–185.

    Google Scholar 

  • Iwamoto, S., & Tamura, Y. (1981). A load flow calculation method for ill-conditioned power systems. IEEE Transactions on Power Apparatus and Systems, 100(4), 1736–1743.

    Article  Google Scholar 

  • Marcolini, A. M., Ramos, J. L. M., & Trigo, A. L. (2006). A new technique to compute control actions to prevent voltage collapse using optimization techniques and sensitivity analysis. Proceedings of the IEEE General Meeting. Montreal, Canada.

  • Milano, F., & Conejo, A. J. (2007). General sensitivity formulas for maximum loading conditions in power systems. Proceedings of the IEE—Generation, Transmission and Distribution, 17(2), 265–270.

    Google Scholar 

  • Moore, G., & Spence, A. (1980). The calculation of turning points of nonlinear equations. SIAM Journal on Numerical Analysis, 17(4), 567–576.

    Article  MathSciNet  MATH  Google Scholar 

  • Nocedal, J., & Wright, S. J. (1999). Numerical optimization. New York: Springer.

    Book  MATH  Google Scholar 

  • Salgado, R. S., & Zeitune, A. F. (2011). A framework to study critical loadability solutions.Proceedings of the IEEE Power Tech Conference. Trondheim, Norway.

  • Schnabel, R. B., & Frank, P. D. (1984). Tensor methods for nonlinear equations. SIAM Journal on Numerical Analysis, 21(5), 815–843.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, R., & Lasseter, R. H. (2000). Re-dispatching generation to increase power system security margin and support low voltage bus. IEEE Transactions on Power Systems, 15(2), 496–501.

    Article  Google Scholar 

  • Yan, Z., Wu, F., & Ni, Y. (2004). Method for direct calculation of quadratic turning points. Proceedings of the IET Generation, Transmission and Distribution, 151(1), 83–89.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Brazilian government funding agency Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Salgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, R.S., Zeitune, A.F. Critical Solutions of Maximum Loadability Via Direct Methods. J Control Autom Electr Syst 24, 349–360 (2013). https://doi.org/10.1007/s40313-013-0038-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-013-0038-x

Keywords

Navigation