Skip to main content
Log in

The Continuous Knapsack Problem with Capacities

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

We address a variant of the continuous knapsack problem, where capacities regarding costs of items are given into account. We prove that the problem is NP-complete although the classical continuous knapsack problem is solvable in linear time. For the case that there exists exactly one capacity for all items, we solve the corresponding problem in \(O(n\log n)\) time, where n is the number of items.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skiena, S.: The Stony Brook Algorithm Repository. Springer, Berlin (1997)

    Google Scholar 

  2. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990)

    MATH  Google Scholar 

  3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problem. Springer, Berlin (2004)

    Book  Google Scholar 

  4. Csirik, J., Frenk, H., Labbé, M., Zhang, S.: Heuristics for the 0–1 min-knapsack problem. Acta Cybern. 10, 15–20 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Malaguti, E., Monaci, M., Paronuzzi, P., Pferschy, U.: Integer optimization with penalized fractional values: the knapsack case. Eur. J. Oper. Res. 273, 874–888 (2019)

    Article  MathSciNet  Google Scholar 

  6. Burkard, R.E., Pleschiutschnig, C., Zhang, J.Z.: Inverse median problems. Discrete Optim. 1, 23–39 (2004)

    Article  MathSciNet  Google Scholar 

  7. Nguyen, K.T., Chi, N.T.L.: A model for the inverse 1-median problem on trees under uncertain costs. Opusc. Math. 36, 513–523 (2016)

    Article  MathSciNet  Google Scholar 

  8. Brickell, E.F.: Breaking iterated knapsacks. Adv. Cryptol. Proc. CRYPTO 84, 342–358 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Lenstra, H.W.: Lattices. In: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography. Mathematical Sciences Research Institute Publications, vol 44, pp 127–181. Cambridge University Press, Cambridge (2008)

  10. Drezner, Z., Mehrez, A., Wesolowsky, G.O.: The facility location problem with limited distances. Transp. Sci. 25, 183–187 (1991)

    Article  Google Scholar 

  11. Liu, T.Y., Jiang, H.: Minimizing sum of truncated convex functions and its applications. J. Comput. Graph. Stat. 28, 1–10 (2019)

    Article  MathSciNet  Google Scholar 

  12. Balas, E., Zemel, E.: An algorithm for large zero-one knapsack problems. Oper. Res. 28, 1130–1154 (1980)

    Article  MathSciNet  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., Sanfrancisco (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge anonymous referees for valuable comments which help to improve the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Chi Tam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quoc, H.D., Tam, N.C. & Nhan, T.H.N. The Continuous Knapsack Problem with Capacities. J. Oper. Res. Soc. China 9, 713–721 (2021). https://doi.org/10.1007/s40305-020-00298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-020-00298-6

Keywords

Mathematics Subject Classification

Navigation