Skip to main content
Log in

Ordinal response variation of the polytomous Rasch model

  • Published:
METRON Aims and scope Submit manuscript

Abstract

Polytomous Rasch model (PRM) is a general probabilistic measurement model widely used in psychometrics, social science and educational measurement. It describes the probability of certain ordinal response of an object under test as a function of its ability, given, so called thresholds, characterizing the specific test item. The model was also adapted to business and industry applications. In contrast to the behavior of the median PRM outcome value, monotonically increasing as the ability increases, the ordinal variation behavior, as shown in the article, can be very diverse and it is rather determined by the mutual position of the threshold values of the model. The article studies ordinal variation of the response vs. ability for different thresholds locations arrangements and different amounts of ordered response categories. It is shown under what circumstances this function becomes multimodal. If several objects are involved in the test, attention is paid to the possibility of the total variation decomposition into intra and inter components. Considering the intra object variation helps to avoid overestimation of the real variation between the tested objects as it is demonstrated by illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, R.J., Wu, M.L., Wilson, M.: The Rasch rating model and the disordered threshold controversy. Educ. Psychol. Meas. 72, 547–573 (2012)

    Article  Google Scholar 

  2. Andersen, E.: Sufficient statistics and latent trait models. Psychometrika 42, 69–81 (1977)

    Article  MathSciNet  Google Scholar 

  3. Andrich, D.: A rating formulation for ordered response categories. Psychometrika 43, 561–573 (1978)

    Article  Google Scholar 

  4. Andrich, D., Marais, I.: A Course in Rasch Measurement Theory. Springer, Singapore (2019)

    Book  Google Scholar 

  5. Bartolucci, F.: A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika 72, 141–157 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bartolucci, F., Bacci, S., Gnaldi, M.: Statistical Analysis of Questionnaires: A Unified Approach Based on R and Stata. Chapman & Hall/CRC, Boca Raton (2015)

    Book  Google Scholar 

  7. Bashkansky, E., Dror, S., Ravid, R., Grabov, P.: Effectiveness of a product quality classifier. Qual. Eng. 19, 235–244 (2007)

    Article  Google Scholar 

  8. Bashkansky, E., Gadrich, T.: Some metrological aspects of ordinal measurements. Accredit. Qual. Assur. 15, 331–336 (2010)

    Article  Google Scholar 

  9. Bashkansky, E., Gadrich, T.: Some metrological aspects of the comparison between two ordinal measuring systems. Accredit. Qual. Assur. 16, 63–72 (2011)

    Article  Google Scholar 

  10. Bashkansky, E., Gadrich, T.: Some statistical aspects of binary measuring systems. Measurement 46, 1922–1927 (2013)

    Article  Google Scholar 

  11. Bashkansky, E., Gadrich, T., Kuselman, I.: Interlaboratory comparison of measurement results of an ordinal property. Accredit. Qual. Assur. 17, 239–243 (2012)

    Article  Google Scholar 

  12. Bashkansky, E., Turetsky, V.: Proficiency testing: binary data analysis. Accredit. Qual. Assur. 21, 265–270 (2016)

    Article  Google Scholar 

  13. Blair, J., Lacy, M.: Statistics of ordinal variation. Sociol. Methods Res. 28, 251–280 (2000)

    Article  Google Scholar 

  14. Fisher, W.P., Jr., Stenner, A.J.: Towards an alignment of engineering and psychometric approaches to uncertainty in measurement: consequences for the future. In: Proceedings of the 18th International Congress of Metrology, Paris, p. 12004 (2017)

  15. Gadrich, T., Bashkansky, E.: ORDANOVA: analysis of ordinal variation. J. Stat. Plan. Inference 142, 3174–3188 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gadrich, T., Bashkansky, E.: A Bayesian approach to evaluating uncertainty of inaccurate categorical measurements. Measurement 91, 186–193 (2016)

    Article  Google Scholar 

  17. Gadrich, T., Bashkansky, E., Kuselman, I.: Comparison of biased and unbiased estimators of variances of qualitative and semi-quantitative results of testing. Accredit. Qual. Assur. 18, 85–90 (2013)

    Article  Google Scholar 

  18. Gadrich, T., Bashkansky, E., Zitikis, R.: Assessing variation: a unifying approach for all scales of measurement. Qual. Quant. 49, 1145–1167 (2015)

    Article  Google Scholar 

  19. Gadrich, T., Marmor, Y.: Two-way ORDANOVA: Analyzing ordinal variation in a cross-balanced design. J. Stat. Plan. Inference 215, 330–343 (2021)

    Article  MathSciNet  Google Scholar 

  20. ISO.: International Organization for Standardization: ISO/TS 20914:2019. Medical laboratories—Practical guidance for the estimation of measurement uncertainty. ISO, Geneva (2019)

  21. ISO/REMCO WG 13.: ISO/TR 79:2015, Reference materials—examples of reference materials for qualitative properties. ISO/REMCO, Brussels (2015)

  22. ISO/TC 69.: Applications of statistical methods, Subcommittee SC 6: ISO 21748:2017 Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty evaluation. ISO, Geneva (2017)

  23. Mari, L., Maul, A., Irribarra, D., Wilson, M.: Quantities, quantification, and the necessary and sufficient conditions for measurement. Measurement 100, 115–121 (2017)

    Article  Google Scholar 

  24. Marmor, Y.N., Bashkansky, E.: Processing new types of quality data. Qual. Reliab. Eng. Int. 36, 2621–2628 (2020)

    Article  Google Scholar 

  25. de Mast, J., van Wieringen, W.: Modeling and evaluating repeatability and reproducibility of ordinal classifications. Technometrics 5, 94–106 (2010)

    Article  MathSciNet  Google Scholar 

  26. Masters, G.: A Rasch model for partial credit scoring. Psychometrika 47, 149–174 (1982)

    Article  Google Scholar 

  27. Maul, A., Mari, L., Wilson, M.: Intersubjectivity of measurement across the sciences. Measurement 131, 764–770 (2019)

    Article  Google Scholar 

  28. Montgomery, D.: Introduction to Statistical Quality Control. Wiley, Hoboken (2007)

    MATH  Google Scholar 

  29. Pendrill, L.: Using measurement uncertainty in decision-making and conformity assessment. Metrologia 51, S206–S218 (2014)

    Article  Google Scholar 

  30. Pendrill, L.: Quality Assured Measurement: Unification across Social and Physical Science. Springer Series in Measurement Science and Technology. Springer, Cham (2019)

    Book  Google Scholar 

  31. Rasch, G.: On general laws and the meaning of measurement in psychology. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley (1961)

  32. The International Bureau of Weights and Measures (BIPM).: Joint Committee for Guides in Metrology: JCGM 100:2008 : Evaluation of measurement data—Guide to the expression of uncertainty in measurement (JCGM 100:2008). International Organization for Standardization, Geneva (2008)

  33. Turetsky, V., Bashkansky, E.: Testing and evaluating one-dimensional latent ability. Measurement 78, 348–357 (2016)

    Article  Google Scholar 

  34. Turetsky, V., Steinberg, D., Bashkansky, E.: Binary test design problem. Measurement 122, 20–26 (2018)

    Article  Google Scholar 

  35. Turetsky, V., Steinberg, D., Bashkansky, E.: Item response function in antagonistic situations. Appl. Stoch. Models Bus. Ind. 36, 917–931 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express the deepest gratitude for the mission the anonymous reviewers undertook to attentively study our article and their remarkable professional comments, that allowed, as we hope, to significantly improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Turetsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Singular case \(\tau_{i} = 0,\,\,i = 1,...,m - 1\)

In this appendix, we analyze the case where all thresholds are equal to zero.

Due to (10), the probabilities are

$$ p_{i} (a) = \frac{{e^{{ia - \sum\nolimits_{k = 0}^{i} {\tau_{i} } }} }}{{\sum\nolimits_{j = 0}^{m - 1} {e^{{ja - \sum\nolimits_{k = 0}^{i} {\tau_{i} } }} } }},{\mkern 1mu} {\mkern 1mu} i = 0,1,...,m - 1. $$

For \(\tau_{i} \to 0,\,\,\,i = 1,...,m - 1\):

$$ p_{i} (a) \to \frac{{e^{ia} }}{{\sum\limits_{j = 0}^{m - 1} {e^{ja} } }} = \frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }},\,\,\,\,i = 0,1,...,m - 1, $$

i.e., the probabilities form a geometric progression of common ratio \(e^{a}\).

In particular, for \(a = 0\) by L’Hôpital rule:

$$ \mathop {\lim }\limits_{a \to 0} \frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }} = \mathop {\lim }\limits_{a \to 0} \frac{{e^{ia} - e^{(i + 1)a} }}{{1 - e^{ma} }} = \mathop {\lim }\limits_{a \to 0} \frac{{ie^{ia} - (i + 1)e^{(i + 1)a} }}{{ - me^{ma} }} = \frac{1}{m}. $$

Due to (4), the ordinal variation is

$$ \begin{aligned} {\text{VAR}}(a) & = \frac{4}{m - 1}\left[ {p_{0} (p_{1} + p_{2} + \cdots + p_{m - 1} ) + (p_{0} + p_{1} )(p_{2} + \cdots + p_{m - 1} )} \right. \hfill \\ & + \left. {(p_{0} + p_{1} + p_{2} )(p_{3} + ... + p_{m - 1} ) + \cdots + (p_{0} + p_{2} + \cdots + p_{m - 2} )p_{m - 1} } \right]. \hfill \\ \end{aligned} $$

For \(\tau_{i} \to 0,\,\,\,\)

$$ \begin{gathered} {\text{VAR}}(a) \to \frac{4}{m - 1}\left[ {\sum\limits_{i = 0}^{0} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} \cdot \sum\limits_{i = 1}^{m - 1} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} + \sum\limits_{i = 0}^{1} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} \cdot \sum\limits_{i = 2}^{m - 1} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} } \right. \hfill \\ \left. { + \sum\limits_{i = 0}^{2} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} \cdot \sum\limits_{i = 3}^{m - 1} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} + ... + \sum\limits_{i = 0}^{m - 2} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} \cdot \sum\limits_{i = m - 1}^{m - 1} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} } \right] \hfill \\ = \frac{4}{ m - 1}\sum\limits_{j = 0}^{m - 2} {\left[ {\sum\limits_{i = 0}^{j} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} \cdot \sum\limits_{i = j + 1}^{m - 1} {\frac{{e^{ia} (1 - e^{a} )}}{{1 - e^{ma} }}} } \right]} = \frac{{4(1 - e^{a} )^{2} }}{{\left( {m - 1} \right)\left( {1 - e^{ma} } \right)^{2} }}\sum\limits_{j = 0}^{m - 2} {\left[ {\sum\limits_{i = 0}^{j} {e^{ia} } \cdot \sum\limits_{i = j + 1}^{m - 1} {e^{ia} } } \right]} \hfill \\ = \frac{{4(1 - e^{a} )^{2} }}{{\left( {m - 1} \right)\left( {1 - e^{ma} } \right)^{2} }}\sum\limits_{j = 0}^{m - 2} {\left[ {\frac{{1 - e^{(j + 1)a} }}{{1 - e^{a} }} \cdot \frac{{e^{(j + 1)a} \left( {1 - e^{(m - j - 1)a} } \right)}}{{1 - e^{a} }}} \right]} \hfill \\ = \frac{4}{{\left( {m - 1} \right)\left( {1 - e^{ma} } \right)^{2} }}\sum\limits_{j = 0}^{m - 2} {\left[ {\left( {1 - e^{(j + 1)a} } \right)e^{(j + 1)a} \left( {1 - e^{(m - j - 1)a} } \right)} \right]} \hfill \\ = \frac{4}{{\left( {m - 1} \right)\left( {1 - e^{ma} } \right)^{2} }}\sum\limits_{j = 0}^{m - 2} {\left[ {e^{(j + 1)a} - e^{2(j + 1)a} - e^{ma} + e^{(m + j + 1)a} } \right]} . \hfill \\ \end{gathered} $$

By using the formula of geometric sequence,

$$ \begin{gathered} \sum\limits_{j = 0}^{m - 2} {e^{(j + 1)a} } = \frac{{e^{a} (1 - e^{(m - 1)a} )}}{{1 - e^{a} }};\;\sum\limits_{j = 0}^{m - 2} {e^{2(j + 1)a} } = \frac{{e^{2a} (1 - e^{2(m - 1)a} )}}{{1 - e^{2a} }}; \hfill \\ \sum\limits_{j = 0}^{m - 2} {e^{ma} = (m - 1)} e^{ma} ;\;\sum\limits_{j = 0}^{m - 2} {e^{(m + j + 1)a} } = \frac{{e^{(m + 1)a} (1 - e^{(m - 1)a} )}}{{1 - e^{a} }}. \hfill \\ \end{gathered} $$

Consequently,

$$ \begin{gathered} \sum\limits_{j = 0}^{m - 2} {\left[ {e^{(j + 1)a} - e^{2(j + 1)a} - e^{ma} + e^{(m + j + 1)a} } \right]} \hfill \\ = \frac{{e^{a} (1 - e^{(m - 1)a} )}}{{1 - e^{a} }} - \frac{{e^{2a} (1 - e^{2(m - 1)a} )}}{{1 - e^{2a} }} - (m - 1)e^{ma} + \frac{{e^{(m + 1)a} (1 - e^{(m - 1)a} )}}{{1 - e^{a} }} \hfill \\ = \frac{{e^{a} - e^{2a} - e^{(2m + 1)a} + e^{(2m + 2)a} - me^{ma} + me^{(m + 1)a} + me^{(m + 2)a} - me^{(m + 3)a} }}{{\left( {1 - e^{a} } \right)\left( {1 - e^{2a} } \right)}}. \hfill \\ \end{gathered} $$

Thus,

$$ {\text{VAR}}(a) \to 4\frac{{e^{a} - e^{2a} - e^{(2m + 1)a} + e^{(2m + 2)a} - me^{ma} + me^{(m + 1)a} + me^{(m + 2)a} - me^{(m + 3)a} }}{{\left( {m - 1} \right)\left( {1 - e^{ma} } \right)^{2} \left( {1 - e^{a} } \right)\left( {1 - e^{2a} } \right)}}. $$

For \(a \to 0\), by by L’Hôpital rule:

$$ \mathop {\lim }\limits_{a \to 0} 4\frac{{e^{a} - e^{2a} - e^{(2m + 1)a} + e^{(2m + 2)a} - me^{ma} + me^{(m + 1)a} + me^{(m + 2)a} - me^{(m + 3)a} }}{{\left( {m - 1} \right)\left( {1 - e^{ma} } \right)^{2} \left( {1 - e^{a} } \right)\left( {1 - e^{2a} } \right)}} = \frac{2(m + 1)}{{3m}}. $$

For \(a \ne 0\),

$$ \mathop {\lim }\limits_{m \to \infty } 4\frac{{e^{a} - e^{2a} - e^{(2m + 1)a} + e^{(2m + 2)a} - me^{ma} + me^{(m + 1)a} + me^{(m + 2)a} - me^{(m + 3)a} }}{{\left( {m - 1} \right)\left( {1 - e^{ma} } \right)^{2} \left( {1 - e^{a} } \right)\left( {1 - e^{2a} } \right)}} = 0. $$

In the Fig. 8, \({\text{VAR}}(a)\) is shown as a function of \(a\) for \(m = 200\).

Fig. 8
figure 8

Ordinal variation for \(m = 200\)

Appendix 2: Complete analysis of the case \(m = 3\)

In this appendix, the case of the ternary response is analyzed.

For \(m = 3\) and symmetric thresholds \(\tau_{1} = - \,\tau\) and \(\tau_{2} = + \,\tau\),

$$ p_{0} (a) = \frac{1}{{1 + e^{\tau + a} + e^{2a} }}, $$
$$ p_{1} (a) = \frac{{e^{\tau + a} }}{{1 + e^{\tau + a} + e^{2a} }}, $$

and, consequently

$$ p_{2} (a) = 1 - \left( {p_{0} (a) + p_{1} (a)} \right) = \frac{{e^{2a} }}{{1 + e^{\tau + a} + e^{2a} }}. $$

Negative values of \(\tau\) ("disordered thresholds") are allowed.

Thus,

$$ \begin{gathered} F_{0} = p_{0} = \frac{1}{{1 + e^{\tau + a} + e^{2a} }},\;1 - F_{0} = \frac{{e^{\tau + a} + e^{2a} }}{{1 + e^{\tau + a} + e^{2a} }}, \hfill \\ F_{1} = p_{0} + p_{1} = \frac{{1 + e^{\tau + a} }}{{1 + e^{\tau + a} + e^{2a} }},\;1 - F_{1} = \frac{{e^{2a} }}{{1 + e^{\tau + a} + e^{2a} }}. \hfill \\ \end{gathered} $$

Therefore, the ordinal variation is

$$ {\text{VAR}}\left( {a,\tau } \right) = 2\left[ {F_{0} \left( {1 - F_{0} } \right) + F_{1} \left( {1 - F_{1} } \right)} \right] = \frac{{2\left( {e^{\tau + a} + 2e^{2a} + e^{\tau + 3a} } \right)}}{{\left( {1 + e^{\tau + a} + e^{2a} } \right)^{2} }}. $$
(16)

Proposition A.1

Let \(\tau^{*} = \ln \;(\sqrt 5 + 1) \approx 1.174\). Then for \(\tau \le \tau^{*}\) the function \({\text{VAR}}\left( {\tau ,a} \right)\) has a single local maximum at \(a = a_{1} = 0\), whereas for \(\tau > \tau^{*}\) it has one local minimum at \(a = a_{1} = 0\) and two local maxima at \(a = a_{2,3}\),

\(a_{2} < 0,\,a_{3} > 0,\,\,a_{2} = - \,a_{3}\).

Proof.

Denote \(z \triangleq e^{a} > 0,\)\(b \triangleq e^{\tau } ,\) and introduce the functions

$$ g_{1} \left( z \right) = bz + 2z^{2} + bz^{3} , $$
$$ g_{2} \left( z \right) = 1 + bz + z^{2} . $$

Then,

$$ {\text{VAR = VAR}}(z) = \frac{{2g_{1} \left( z \right)}}{{g_{2}^{2} \left( z \right)}}. $$
(17)

Let us search for real positive critical points of (13) by setting to zero the first derivative:

$$ \frac{{d{\text{VAR}}(z)}}{dz} = \frac{{2\left( {g^{\prime}_{1} g_{2}^{2} - 2g_{2} g^{\prime}_{2} g_{1} } \right)}}{{g_{2}^{4} }} = \frac{{2\left( {g^{\prime}_{1} g_{2} - 2g_{1} g^{\prime}_{2} } \right)}}{{g_{2}^{3} }}. $$

Consider the equation

$$ g^{\prime}_{1} (z)g_{2} (z) - 2g_{1} (z)g^{\prime}(z) = 0, $$
(18)

which, by simple algebra is rewritten as

$$ - \left( {z^{2} - 1} \right)\left[ {bz^{2} - \left( {b^{2} - 4} \right)z + b} \right] = 0. $$

For any \(\tau > 0\), this equation admits the root \(z_{1} = 1\). Subject to the condition

$$ (b^{2} - 4)^{2} - 4b^{2} \ge 0, $$
(19)

it admits two additional real roots

$$ z_{2,3} = \frac{{b^{2} - 4 \pm \sqrt {(b^{2} - 4)^{2} - 4b^{2} } }}{2b}. $$

By some algebra, these roots are

$$ z_{2,3} = \frac{1}{2}e^{\tau } - 2e^{ - \tau } \pm \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} . $$
(20)

The condition (19) becomes

$$ e^{2\tau } + 16e^{ - 2\tau } - 12 \ge 0, $$

or

$$ e^{2\tau } \le 6 - \sqrt {20} , e^{2\tau } \ge 6 + \sqrt {20} . $$

Thus, the Eq. (18) admits three real roots w.r.t. \(z\) if

$$ \tau \le \hat{\tau }, \tau \ge \tau^{*} , $$
(21)

where

$$ \hat{\tau } = \frac{1}{2}{\text{ln}}\left( {6 - \sqrt {20} } \right) = 0.2119, \tau^{*} = \frac{1}{2}{\text{ln}}\left( {6 + \sqrt {20} } \right) = 1.1744. $$

Note that \(\sqrt {\left( {6 \pm \sqrt {20} } \right)} = \sqrt 5 \pm 1.\) This is directly derived by squaring: for example,

$$ (\sqrt 5 + 1)^{2} = 5 + 2\sqrt 5 + 1 = 6 + \sqrt {20} . $$

This means that the critical values of \(\tau\) can be written as

$$ \hat{\tau } = {\text{ln}}\left( {\sqrt 5 - 1} \right), \tau^{*} = {\text{ln}}\left( {\sqrt 5 + 1} \right). $$
(22)

Let us show that for \(0 \le \tau \le \hat{\tau }\),

$$ z_{2,3} < 0. $$
(23)

Since \(z_{2} > z_{3}\), it is sufficient to prove the inequality (23) for \(z_{2}\) with the sign "\(+\)" before the square root. Due to (20),

$$ z_{2} < g\left( \tau \right) = \frac{1}{2}e^{\tau } - 2e^{ - \tau } . $$

Note that

$$ g^{\prime}\left( \tau \right) = \frac{1}{2}e^{\tau } + 2e^{ - \tau } > 0, $$

i.e., the function \(g\left( \tau \right)\) increases. By direct calculation,

$$ g\left( {\hat{\tau }} \right) = \frac{\sqrt 5 - 1}{2} - \frac{2}{\sqrt 5 - 1} = \frac{{(\sqrt 5 - 1)^{2} - 4}}{{2\left( {\sqrt 5 - 1} \right)}} = \frac{5 - 2\sqrt 5 + 1 - 4}{{2\left( {\sqrt 5 - 1} \right)}} = - 1. $$

Therefore, \(g\left( \tau \right) < 0\) for \(\tau \le \hat{\tau }\), and the inequality (23) is proved.

Similarly, we show that for \(\tau \ge \tau^{*}\),

$$ z_{2,3} > 0. $$
(24)

Since \(z_{2} > z_{3}\), it is sufficient to prove the inequality (24) for \(z_{3}\) with the sign "\(-\)" before the square root. Note that

$$ e^{2\tau } + 16e^{ - 2\tau } - 12 < e^{2\tau } + 16e^{ - 2\tau } - 8 = (e^{\tau } - 4e^{ - \tau } )^{2} . $$

Denote

$$ h\left( \tau \right) \triangleq e^{\tau } - 4e^{ - \tau } . $$

Note that \(h^{\prime}\left( \tau \right) = e^{\tau } + 4e^{ - \tau } > 0\), and by direct calculations \(h\left( {\tau^{*} } \right) = 2\). Therefore, \(h\left( \tau \right) > 0\) for \(\tau \ge \tau^{*}\), and,

$$ \sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} < e^{\tau } - 4e^{ - \tau } . $$

Then,

$$ z_{3} = \frac{1}{2}e^{\tau } - 2e^{ - \tau } - \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} > \frac{1}{2}e^{\tau } - 2e^{ - \tau } - \frac{1}{2}\left( {e^{\tau } - 4e^{ - \tau } } \right) = 0, $$

which justifies the inequality (24). Figure 9 illustrates the inequalities (23) and (24).

Fig. 9
figure 9

Roots \(z_{2,3}\) for \(\tau \le \hat{\tau }\) and for \(\tau \ge \tau^{*}\)

Thus, for \(\tau \le \tau^{*}\), the Eq. (18) admits a single real positive root \(z_{1} = 1\), whereas for \(\tau > \tau^{*}\), it admits three real positive roots. Therefore, the critical points of \({\text{VAR}}\left( {a,\tau } \right)\) are \(a_{1} = {\text{ln}}z_{1} = 0\) for any \(\tau > 0\), and

$$ a_{2,3} = {\text{ln}}z_{3,2} = {\text{ln}}\left[ {\frac{1}{2}e^{\tau } - 2e^{ - \tau } \mp \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} } \right],\,\,\,\tau > \tau^{*} . $$
(25)

It can be directly shown that the critical points \(a_{2}\) and \(a_{3}\) are symmetric with respect to \(a = 0\). Indeed,

$$ \begin{gathered} a_{2} + a_{3} \hfill \\ = {\text{ln}}\left[ {\frac{1}{2}e^{\tau } - 2e^{ - \tau } - \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} } \right] + {\text{ln}}\left[ {\frac{1}{2}e^{\tau } - 2e^{ - \tau } + \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} } \right] \hfill \\ = {\text{ln}}\left[ {\left( {\frac{1}{2}e^{\tau } - 2e^{ - \tau } - \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} } \right)\left( {\frac{1}{2}e^{\tau } - 2e^{ - \tau } + \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} } \right)} \right] \hfill \\ = {\text{ln}}\left[ {\left( {\frac{1}{2}e^{\tau } - 2e^{ - \tau } } \right)^{2} - \frac{1}{4}\left( {e^{2\tau } + 16e^{ - 2\tau } - 12} \right)} \right] \hfill \\ = {\text{ln}}\left[ {\frac{1}{4}e^{2\tau } - 2 + 4e^{ - 2\tau } - \frac{1}{4}e^{2\tau } - 4e^{ - 2\tau } + 3} \right] = {\text{ln}}1 = 0. \hfill \\ \end{gathered} $$

Let us show that the critical point \(a_{1} = 0\) is local maximum for \(\tau \in \left[ {0,\tau^{*} } \right]\) and local minimum for \(\tau > \tau^{*}\). To this end, substitute \(a = 0\) into the second derivative of \({\text{VAR}}(a,\tau )\) w.r.t. \(a\):

$$ G_{1} \left( \tau \right) \triangleq \left. {\frac{{\partial^{2} VAR\left( {a,\tau } \right)}}{{\partial a^{2} }}} \right|_{a = 0} = \frac{{4\left( {e^{2\tau } - 2e^{\tau } - 4} \right)}}{{\left( {e^{\tau } + 2} \right)^{3} }}. $$

By solving the quadratic equation \(\left( {e^{\tau } } \right)^{2} - 2e^{\tau } - 4 = 0\), we readily obtain \(e^{\tau } = \sqrt 5 + 1\), i.e., the function \(G_{1} \left( \tau \right)\) has a single real zero \(\tau = {\text{ln}}\left( {\sqrt 5 + 1} \right) = \tau^{*}\). Moreover, by solving the equation

$$ G^{\prime}_{1} \left( \tau \right) = - \frac{{4e^{\tau } \left( {e^{2\tau } - 8e^{\tau } - 8} \right)}}{{\left( {e^{\tau } + 2} \right)^{4} }} = 0, $$

we obtain that the function \(G_{1} \left( \tau \right)\) has the single critical point \(\overline{\tau } = {\text{ln}}\left( {2\sqrt 6 + 4} \right) = 2.1859 > \tau^{*}\). Since \(G^{\prime\prime}_{1} \left( {\overline{\tau }} \right) < 0\), \(\tau = \overline{\tau }\) is the local maximum of \(G_{1} \left( \tau \right)\). Thus, \(G_{1} \left( \tau \right) < 0\) for \(\tau < \tau^{*}\), \(G_{1} \left( {\tau^{*} } \right) = 0\), and \(G_{1} \left( \tau \right) > 0\) for \(\tau > \tau^{*}\) (the function \(G_{1} \left( \tau \right)\) is depicted in Fig. 10). This proves that \(a = 0\) is the local maximum for \(\tau \le \tau^{*}\) and local minimum for \(\tau > \tau^{*}\).

Fig. 10
figure 10

The function \(G_{1} \left( \tau \right)\)

It can be shown that

$$ G_{2} \left( \tau \right) \triangleq \left. {\frac{{\partial^{2} {\text{VAR}}\left( {a,\tau } \right)}}{{\partial a^{2} }}} \right|_{{a = a_{2} }} = \left. {\frac{{\partial^{2} {\text{VAR}}\left( {a,\tau } \right)}}{{\partial a^{2} }}} \right|_{{a = a_{3} }} . $$

Numerically, we can show that \(G_{2} \left( \tau \right) < 0\) for \(\tau > \tau^{*}\) (see Fig. 11).

Fig. 11
figure 11

The function \(G_{2} \left( \tau \right)\)

This means that the critical points \(a_{2,3}\) are local maximums of \({\text{VAR}}(a,\tau )\) for \(\tau > \tau^{*}\).

This completes the proof of the proposition.

In Fig. 12, the local extrema \(a_{1} ,a_{2}\) and \(a_{3}\) of \({\text{VAR}}(a,\tau )\) are shown as functions of \(\tau\).

Fig. 12
figure 12

Critical points of \({\text{VAR}}(a,\tau )\) for ternary response

Proposition A.2.

The following limiting properties are valid:

$$ \mathop {{\text{lim}}}\limits_{\tau \to \infty } \left( {a_{2} (\tau ) + \tau } \right) = \mathop {{\text{lim}}}\limits_{\tau \to \infty } \left( {a_{3} (\tau ) - \tau } \right) = 0, $$
(26)
$$ \mathop {{\text{lim}}}\limits_{\tau \to \infty } {\text{VAR(0,}}\tau {)} = 0, $$
(27)
$$ \mathop {{\text{lim}}}\limits_{\tau \to 0} {\text{VAR(0,}}\tau {)} = \frac{8}{9}, $$
(28)
$$ \mathop {{\text{lim}}}\limits_{\tau \to \infty } {\text{VAR(}}a_{2} {(}\tau {),}\tau {)} = \mathop {{\text{lim}}}\limits_{\tau \to \infty } {\text{VAR(}}a_{3} {(}\tau {),}\tau {)} = \frac{1}{2}. $$
(29)

Proof

Straightforwardly,

$$ \begin{gathered} \mathop {{\text{lim}}}\limits_{\tau \to \infty } \left[ {{\text{ln}}\left( {\frac{1}{2}e^{\tau } - 2e^{ - \tau } - \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} } \right) + \tau } \right] \hfill \\ = \mathop {{\text{lim}}}\limits_{\tau \to \infty } \left[ {{\text{ln}}\left( {\frac{1}{2}e^{\tau } - 2e^{ - \tau } - \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} } \right) + {\text{ln}}e^{\tau } } \right] \hfill \\ = \mathop {{\text{lim}}}\limits_{\tau \to \infty } {\text{ln}}\left( {\frac{1}{2}e^{\tau } - 2e^{ - \tau } - \frac{1}{2}\sqrt {e^{2\tau } + 16e^{ - 2\tau } - 12} } \right)e^{\tau } \hfill \\ = \mathop {{\text{lim}}}\limits_{\tau \to \infty } {\text{ln}}\left[ {\frac{1}{2}e^{2\tau } - 2 - \frac{1}{2}\sqrt {e^{4\tau } + 16 - 12e^{2\tau } } } \right]. \hfill \\ \end{gathered} $$

Note that

$$ \begin{gathered} \mathop {{\text{lim}}}\limits_{\tau \to \infty } \left( {e^{2\tau } - \sqrt {e^{4\tau } + 16 - 12e^{2\tau } } } \right) = \mathop {{\text{lim}}}\limits_{\tau \to \infty } \frac{{\left( {e^{2\tau } - \sqrt {e^{4\tau } + 16 - 12e^{2\tau } } } \right)\left( {e^{2\tau } + \sqrt {e^{4\tau } + 16 - 12e^{2\tau } } } \right)}}{{e^{2\tau } + \sqrt {e^{4\tau } + 16 - 12e^{2\tau } } }} \hfill \\ = \mathop {{\text{lim}}}\limits_{\tau \to \infty } \frac{{e^{4\tau } - e^{4\tau } - 16 + 12e^{2\tau } }}{{e^{2\tau } + \sqrt {e^{4\tau } + 16 - 12e^{2\tau } } }} = \mathop {{\text{lim}}}\limits_{\tau \to \infty } \frac{{12 - 16e^{ - 2\tau } }}{{1 + \sqrt {1 + 16e^{ - 4\tau } - 12e^{ - 2\tau } } }} = \frac{12}{2} = 6, \hfill \\ \end{gathered} $$

yielding \({\text{lim}}_{\tau \to \infty } {\text{ln}}\left[ {\frac{1}{2}e^{2\tau } - 2 - \frac{1}{2}\sqrt {e^{4\tau } + 16 - 12e^{2\tau } } } \right] = {\text{lim}}_{\tau \to \infty } {\text{ln}}\left( {\frac{6}{2} - 2} \right) = {0}{\text{.}}\).

The second limiting expression in (26) is proved in the same manner.

Due to (16),

$$ {\text{VAR}}(0,\tau ) = \frac{{4e^{\tau } + 4}}{{(2 + e^{\tau } )^{2} }}, $$

which leads to (27) and (28). Note that (28) is a particular case of (7) for \(m = 3\): the distance between the thresholds is \(T = 2\tau\), and \(T \to 0\) for \(\tau \to 0\).

The limiting Eq. (29) are readily obtained by MATLAB R2015a symbolic calculations (see Fig. 13).

Fig. 13
figure 13

MATLAB symbolic calculations for \(a = a_{3}\)

Appendix 3: Ordinal variation for equidistant thresholds

In this appendix, the ordinal variation is calculated explicitly in the case of equidistant thresholds.

Consider the set of symmetric equidistant thresholds \(\tau_{1} ,\tau_{2} ,...,\tau_{m - 1}\) satisfying

$$ \tau_{i + 1} - \tau_{i} = T,\,\,\,\,i = 1,...,m - 2, $$
(30)
$$ \tau_{1} + \tau_{2} + \cdots + \tau_{m - 1} = 0. $$
(31)

We obtain from (30)–(31) that

$$ \begin{gathered} \tau_{1} + \tau_{2} + ... + \tau_{m - 1} = \tau_{1} + \tau_{1} + T + \tau_{1} + 2T + ... + \tau_{1} + (m - 2)T = \hfill \\ (m - 1)\tau_{1} + (m - 2)\frac{T + (m - 2)T}{2} = (m - 1)\tau_{1} + \frac{(m - 1)(m - 2)T}{2} = 0, \hfill \\ \end{gathered} $$

yielding \(\tau_{1} = - \frac{m - 2}{2}T,\tau_{2} = - \frac{m - 4}{2}T,...,\tau_{m - 1} = - \frac{m - 2(m - 1)}{2}T\), or, generally

$$ \tau_{i} = - \frac{m - 2i}{2}T,\,\,i = 1,...,m - 1 $$
(32)

For example:

For \(m = 4\),\(\tau_{1} = - T,\tau_{2} = 0,\tau_{3} = T\);

For \(m = 5\),\(\tau_{1} = - \frac{3T}{2},\tau_{2} = - \frac{T}{2},\tau_{3} = \frac{T}{2},\tau_{4} = \frac{3T}{2}\);

For \(m = 6\), \(\tau_{1} = - 2T,\tau_{2} = - T,\tau_{3} = 0,\tau_{4} = T,\tau_{5} = 2T\), etc.

In order to calculate the ordinal variation, let us write down the expressions for the sums of the thresholds:

$$ \begin{aligned} S_{i} & = \tau_{1} + \tau_{2} + \cdots + \tau_{i} = \sum\limits_{k = 1}^{i} {\tau_{i} } = \sum\limits_{k = 1}^{i} {\left( { - \frac{m - 2k}{2}T} \right)} \hfill \\ & = - \frac{i}{2}T \cdot \frac{m - 2 + m - 2i}{2} \hfill \\ & = - \frac{i(m - i - 1)T}{2},\,\,i = 1, \ldots ,m - 1. \hfill \\ \end{aligned} $$

By adding a “fictitious” threshold \(\tau_{0} = 0\),

$$ S_{i} = - \frac{i(m - i - 1)T}{2},\,\,i = 0,1,...,m - 1. $$
(33)

Thus,

$$ S_{i} = S_{m - i + 1} ,\,\,i = 0,1, \ldots ,M - 1, $$
(34)

where \(M = \frac{m}{2}\), if \(m\) is even, and \(M = \frac{m - 1}{2}\) otherwise. Note that the sums (33) are located symmetrically on the parabola \(S = - \frac{x(m - x - 1)T}{2},\,x \in [0,m - 1]\)(see an example in Fig. 14).

Fig. 14
figure 14

Sums \(S_{i}\) for \(m = 9,T = 0.5\)

Due to (33), the probabilities are

$$ p_{i} (a,T) = \frac{{e^{{ia - \sum\nolimits_{k = 0}^{i} {\tau_{i} } }} }}{{\sum\nolimits_{i = 0}^{m - 1} {e^{{ia - \sum\nolimits_{k = 0}^{i} {\tau_{i} } }} } }} = \frac{{e^{{ia}{ - S_{i} }} }}{{\sum\limits_{i = 0}^{m - 1} {e^{{ia}{ - S_{i} }} } }} = \frac{{e^{{ia + \frac{i(m - i - 1)T}{2}}} }}{{\sum\nolimits_{i = 0}^{m - 1} {e^{{ia + \frac{i(m - i - 1)T}{2}}} } }} = \frac{{e^{{i\left( {a - \frac{(i + 1 - m)T}{2}} \right)}} }}{{\sum\nolimits_{i = 0}^{m - 1} {e^{{i\left( {a - \frac{(i + 1 - m)T}{2}} \right)}} } }},{\mkern 1mu} {\mkern 1mu} i = 0,1, \ldots ,m - 1. $$

The ordinal variation is

$$ \begin{gathered} {\text{VAR}}(a,T) \hfill \\ \quad{ = }\frac{4}{m - 1}\left[ {p_{0} (a,T)\left( {p_{1} (a,T) + p_{2} (a,T) + \cdots + p_{m - 1} (a,T)} \right)} \right. \hfill \\ \qquad+ \left( {p_{0} (a,T) + p_{1} (a,T)} \right)\left( {p_{2} (a,T) + \cdots + p_{m - 1} (a,T)} \right) + \cdots \hfill \\ \qquad\left. { + \left( {p_{0} (a,T) + p_{1} (a,T) + \cdots + p_{m - 2} (a,T)} \right)p_{m - 1} (a,T)} \right]. \hfill \\ \end{gathered} $$

In particular, for \(m = 4\),

$$ {\text{VAR}}(a,T) \, { = } \, \frac{4}{3} \cdot \frac{{ \, e^{a + T} { + 2}e^{2a + T} + \left( {3 + e^{2T} } \right)e^{3a} { + 2}e^{4a + T} { + }e^{5a + T} }}{{\left( {1 + e^{a + T} + e^{2a + T} + e^{3a} } \right)^{2} }}. $$

Appendix 4: Maximum likelihood for \(m = 3\)

In this appendix, maximum likelihood estimates of abilities are calculated for three quality categories.

Assume that a classifier’s responses are distributed as follows: \(n_{0}\) times—"0", \(n_{1}\) times—"1" and \(n_{2}\) times—"2", and \(n_{0} + n_{1} + n_{2} = N\). Then, the likelihood function for \(m = 3\) is

$$ \ell \left( a \right) = p_{0}^{{n_{0} }} p_{1}^{{n_{1} }} p_{2}^{{n_{2} }} = \left[ {\frac{1}{{1 + e^{\tau + a} + e^{2a} }}} \right]^{{n_{0} }} \left[ {\frac{{e^{\tau + a} }}{{1 + e^{\tau + a} + e^{2a} }}} \right]^{{n_{1} }} \left[ {\frac{{e^{2a} }}{{1 + e^{\tau + a} + e^{2a} }}} \right]^{{n_{2} }} . $$
(35)

Logarithm of likelihood function is

$$ \begin{gathered} L\left( {a;\tau ,N,n_{1} ,n_{2} } \right) = \ln \ell (a) \hfill \\ \quad= n_{0} {\text{ln}}\left[ {\frac{1}{{1 + e^{\tau + a} + e^{2a} }}} \right] + n_{1} {\text{ln}}\left[ {\frac{{e^{\tau + a} }}{{1 + e^{\tau + a} + e^{2a} }}} \right] + n_{2} {\text{ln}}\left[ {\frac{{e^{2a} }}{{1 + e^{\tau + a} + e^{2a} }}} \right] \hfill \\ \quad= n_{0} \left[ {{\text{ln}}1 - {\text{ln}}\left( {1 + e^{\tau + a} + e^{2a} } \right)} \right] + n_{1} \left[ {{\text{ln}}e^{\tau + a} - {\text{ln}}\left( {1 + e^{\tau + a} + e^{2a} } \right)} \right] \hfill \\ \qquad + n_{2} \left[ {{\text{ln}}e^{2a} - {\text{ln}}\left( {1 + e^{\tau + a} + e^{2a} } \right)} \right] \hfill \\ \quad= n_{1} \left( {\tau + a} \right) + 2n_{2} a - N{\kern 1pt} {\text{ln}}\left( {1 + e^{\tau + a} + e^{2a} } \right). \hfill \\ \end{gathered} $$
(36)

In Fig. 15, the graphs of the function (36) are shown for \(N = 10\), \(\tau = 0.1\) and two pairs of \(\left( {n_{1} ,n_{2} } \right)\). It is seen that the function has a unique maximum.

Fig. 15
figure 15

Function \(L\left( {a\,;\tau ,N,n_{1} ,n_{2} } \right)\)

The necessary condition for the maximum of (36) w.r.t. \(a\) is

$$ \frac{\partial L}{{\partial a}} = n_{1} + 2n_{2} - N\frac{{e^{\tau + a} + 2e^{2a} }}{{1 + e^{\tau + a} + e^{2a} }} = 0, $$
(37)

yielding the equation

$$ f\left( {a\,;\tau } \right) \triangleq \frac{{e^{\tau + a} + 2e^{2a} }}{{1 + e^{\tau + a} + e^{2a} }} = n, $$
(38)

where

$$ n \triangleq \frac{{n_{1} + 2n_{2} }}{N}. $$
(39)

See, e.g., the graphs of \(f\left( {a\,;\tau } \right)\) for \(\tau = 0.1\) and \(\tau = 1\) in Fig. 16.

Fig. 16
figure 16

Function \(f\left( {a\,;\tau } \right)\)

Proposition A.3

There exists a unique maximum of the log-likelihood function (36) w.r.t. a.

Proof.

By differentiating \(f\left( {a\,;\tau } \right)\) w.r.t.\(a\)

$$ \frac{\partial f}{{\partial a}} = \frac{{e^{\tau + a} + e^{\tau + 3a} + 4e^{2a} }}{{\left( {1 + e^{\tau + a} + e^{2a} } \right)^{2} }} > 0, $$
(40)

meaning that the function \(f\left( {a\,;\tau } \right)\) increases monotonically for any \(\tau \in R\). Moreover,

$$ \mathop {\lim }\limits_{a \to - \infty } f\left( {a\,;\tau } \right) = 0,\,\mathop {\lim }\limits_{a \to \infty } f\left( {a\,;\tau } \right) = 2. $$
(41)

Thus, for all \(a,\tau \in R\), \(f\left( {a;\tau } \right) \in \left( {0,2} \right).\)

Due to (39),

\(n = \frac{{n_{1} + n_{2} }}{N} + \frac{{n_{2} }}{N} \in (0,2)\).

Therefore, the Eq. (38) has a unique real root. By (36),

$$ \frac{{\partial^{2} L}}{{\partial a^{2} }} = - N\frac{{\partial {\kern 1pt} f}}{\partial a} < 0, $$
(42)

yielding the strict concavity of the function \(L\left( {a\,;\tau ,N,n_{1} ,n_{2} } \right)\) w.r.t. a. Thus, the unique zero of the Eq. (38) is the maximum of (36) w.r.t. a.

By denoting \(e^{a} = z\) (\(a = {\text{ln}}z\)), the Eq. (38) becomes

$$ \left( {2 - n} \right)z^{2} + \left( {1 - n} \right)e^{\tau } z - n = 0, $$
(43)

yielding the roots

$$ z_{1,2} = \frac{{\left( {n - 1} \right)e^{\tau } \pm \sqrt {(n - 1)^{2} e^{2\tau } + 4n\left( {2 - n} \right)} }}{{2\left( {2 - n} \right)}}. $$
(44)

Note that \(\left( {n - 1} \right)e^{2\tau } + 4n\left( {2 - n} \right) > 0\) for \(n \in \left( {0,2} \right)\), and the roots (44) are real, one of which is negative (with “−”) and the other positive (with “+”). Since \(a = {\text{ln}}z\), only a positive root with “\(+\)” provides the root of the Eq. (38) w.r.t. a.

$$ a^{0} = {\text{ln}}\left[ {\frac{{\left( {n - 1} \right)e^{\tau } + \sqrt {(n - 1)^{2} e^{2\tau } + 4n\left( {2 - n} \right)} }}{{2\left( {2 - n} \right)}}} \right]. $$
(45)

For example, for \(\tau = 0.1\), \(N = 10\), \(n_{\,1} = 2\), \(n_{2} = 3\): \(a^{0} = - 0.3153\) (the first curve in Fig. 15); for \(\tau = 0.1\), \(N = 10\), \(n_{\,1} = 3\), \(n_{2} = 5\):\(a^{0} = 0.4824\) (the second curve in Fig. 15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turetsky, V., Bashkansky, E. Ordinal response variation of the polytomous Rasch model. METRON 80, 305–330 (2022). https://doi.org/10.1007/s40300-022-00229-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-022-00229-w

Keywords

Navigation