Skip to main content
Log in

Minimum Uncertainty JPDA Filters and Coalescence Avoidance for Multiple Object Tracking

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Two variations of the joint probabilistic data association filter (JPDAF) are derived and simulated in various cases in this paper. First, an analytic solution for an optimal gain that minimizes posterior estimate uncertainty is derived, referred to as the minimum uncertainty JPDAF (M-JPDAF). Second, the coalescence-avoiding JPDAF (C-JPDAF) is derived, which removes coalescence by minimizing a weighted sum of the posterior uncertainty and a measure of similarity between estimated probability densities. Both novel algorithms are tested in much further depth than any prior work to show how the algorithms perform in various scenarios. In particular, the M-JPDAF more accurately tracks objects than the conventional JPDAF in all simulated cases. When coalescence degrades the estimates at too great of a level, and the C-JPDAF is often superior at removing coalescence when its parameters are properly tuned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bar-Shalom, Y.: Multitarget-Multisensor Tracking. Artech House, Inc., Norwood (1990)

    MATH  Google Scholar 

  2. Bar-Shalom, Y., Daum, F., Huang, J.: The probabilistic data association filter. IEEE Control. Syst. Mag. 29, 82–100 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Elsevier, Inc, San Diego (1988)

    MATH  Google Scholar 

  4. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. A Wiley-Interscience Publication, New York (2001)

    Book  Google Scholar 

  5. Blackman, S.S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 19(1), 5–18 (2004)

    Article  Google Scholar 

  6. Bloem, E.A., Blom, H.A.: Joint probabilistic data association methods avoiding track coalescence. In: Proceedings of the IEEE Conference on Decision and Control (1995)

  7. Blom, H.A., Bloem, E.A.: Combining IMM and JPDA for tracking multiple maneuvering targets in clutter. Tech. rep., National Aerospace Laboratory NLR (2002)

  8. Blom, H.A.P., Bloem, E.: Probabilistic data association avoiding track coalescence. IEEE Trans. Autom. Control 45(17), 247–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, S., Xu, Y.: A new joint probabilistic data association algorithm avoiding track coalescence. Int. J. Intell. Syst. Appl. 2, 45–51 (2011)

    Google Scholar 

  10. Fitzgerald, R.J.: Development of practical PDA logic for multitarget tracking by microprocessor. Tech. rep., Raytheon Company, Missile Systems Division (1986)

  11. Gelb, A.: Applied Optimal Estimation. The Analytic Sciences Corporation, Cambridge (1974)

    Google Scholar 

  12. Habtemariam, B., Tharmarasa, R., Thayaparan, T., Mallick, M., Kirubarajan, T.: A multiple-detection joint probabilistic data association filter. IEEE J. Sel. Top. Sign. Process. 7(3), 461–471 (2013)

    Article  Google Scholar 

  13. Kaufman, E., Lovell, T.A., Lee, T.: Optimal joint probabilistic data association filter avoiding coalescence in close proximity. In: Proceedings of the IEEE European Control Conference (2014)

  14. Kaufman, E., Lovell, T.A., Lee, T.: Minimum uncertainty jpda filter and coalescence avoidance performance evaluations. In: Proceedings of the AAS-AIAA Spaceflight Mechanics Meeting (2015)

  15. Kural, F., Arikan, F., Arikan, O., Efe, M.: Performance evaluation of track association and maintenance for a mfpar with doppler velocity measurements. Prog. Electromagn. Res. 108, 249–275 (2010)

    Article  Google Scholar 

  16. Li, X.R., Bar-Shalom, Y.: Tracking in clutter with nearest neighbor filters: analysis and performance. IEEE Trans. Aerosp. Electron. Syst. 32(3), 995–1010 (1996)

    Article  Google Scholar 

  17. Lin, L., Bar-Shalom, Y., Kirubarajan, T.: Track labeling and PHD filter for multitarget tracking. IEEE Trans. Aerosp. Electron. Syst. 42(3), 778–794 (2006)

    Article  Google Scholar 

  18. Matusita, K.: Decision rules, based on the distance, for problems of fit, two samples, and estimation. Ann. Math. Stat. 26(4), 631–640 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Minami, M., Shimizu, K.: Estimation of similarity measure for multivariate normal distributions. Environ. Ecol. Stat. 45(6), 229–248 (1999)

    Article  Google Scholar 

  20. Sidenbladh, H.: Development of practical PDA logic for multitarget tracking by microprocessor. In: Proceedings of the American Control Conference (1986)

  21. Svensson, D., Ulmke, M., Danielson, L.: Joint probabilistic data association filter for partially unresolved target groups. In: 13th Conference on Information Fusion (FUSION) (2010)

  22. Thacker, N.A., Aherne, F.J., Rockett, P.I.: The bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34(4), 363–368 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Vallado, D.A.: Fundamentals of Astrodynamics and Applications. Microcosm Press and Kluwer Academic Publishers, El Segundo (2001)

    MATH  Google Scholar 

  24. Vergez, P., Sauter, L., Dahlke, S.: An improved kalman filter for satellite orbit predictions. J. Astronaut. Sci. 52, 7 (2004)

    MathSciNet  Google Scholar 

  25. Wei, X., Jing-Wei, Z., You, H.: Multisensor multitarget tracking methods based on particle filter. In: Proceedings of Autonomous Decentralized Systems (2010)

Download references

Acknowledgments

This research has been supported in part by NSF under the grants CMMI-1243000 (transferred from 1029551), CMMI-1335008, and CNS-1337722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Kaufman.

Appendices

Appendix: A: M-JPDAF Proofs

Note that all object-related variables refer to the i-th object, so this subscript is omitted from indexing the object. Any subsequent usage in Appendix A is when i refers to matrix rows.

  • From Eqs. 16 and 18 the uncertainty cost for any gain K for each estimate is given by

    $$ J_{P}=\text{tr}[P^{-}-(1-\beta_{0})(KHP^{-}+P^{-}H^{T}K^{T})+KEK^{T}]. $$
    (41)

    It can be easily seen that the second derivative of J P is only a function of the third term

    $$ \text{tr}[KEK^{T}]=\sum\limits_{i=1}^{n}{k_{i}^{T}}Ek_{i} $$
    (42)

    where k i corresponds to the i-th row of K. Taking derivatives with respect to k i ,

    $$ {\frac{\partial ({k_{i}^{T}}Ek_{i})}{\partial k_{i}}}=2Ek_{i}, \quad \frac{\partial^{2}({k_{i}^{T}}Ek_{i})}{\partial {k_{i}^{2}}}=2E, $$
    (43)

    which is positive-definite from (ii). As the Hessian is positive-definite, the given optimal gain globally minimizes the cost. Using Eq. 21, the optimal cost is given by,

    $$ J^{*}_{P} = \text{tr}[P^{-}-KEK^{T}]. $$
    (44)
  • Suppose that an object is not measured. Let this portion of the innovation update be e 0=0 m×1 because no innovation exists where measurements are not available. The Total Probability Theorem holds true for object i:

    $$ \sum\limits_{j=0}^{n_{r}}\beta_{j}=1. $$
    (45)

    Consider the positive-semidefinite matrix \({\Sigma }\in \mathbb {R}^{m\times m}\) from [4, Eq. 1.4.16-(1-10)],

    $$ {\Sigma}=\sum\limits_{j=0}^{n_{r}}\beta_{j}(e_{j}-{\bar{e}})(e_{j}-{\bar{e}})^{T}, $$
    (46)

    which may be manipulated as follows,

    $$ {\Sigma}=\sum\limits_{j=0}^{n_{r}}\beta_{j}e_{j}{e_{j}^{T}} -\sum\limits_{j=0}^{n_{r}}\beta_{j}e_{j}{\bar{e}}^{T} -{\bar{e}}\sum\limits_{j=0}^{n_{r}}\beta_{j}{e_{j}^{T}} +{\bar{e}}{\bar{e}}^{T} =\sum\limits_{j=1}^{n_{r}}\beta_{j}e_{j}{e_{j}^{T}}-{\bar{e}}{\bar{e}}^{T}, $$
    (47)

    because e 0≡0. From Eq. 17,

    $$ E=(1-\beta_{0})S+{\Sigma}, $$
    (48)

    which yields a positive-definite E because S is positive-definite, Σ is positive-semidefinite, and 0≤β 0<1. Therefore, E is invertible.

  • Let \(K_{K}=P^{-}H^{T}S^{-1}\in \mathbb {R}^{n\times m}\) [3]. Suppose that these gains are identical, i.e., K = K K . Multiplying both sides by E and using Eq. 17,

    $$\begin{array}{@{}rcl@{}} KE&=&K_{K}E \\ (1-\beta_{0})P^{-}H^{T}&=& (1-\beta_{0})P^{-}H^{T}+K_{K}{\Sigma}. \end{array} $$
    (49)

    Therefore if Eq. 49 is true, then K K Σ=0, which may only occur if the probabilities that each measurement belongs to an object are exactly 0 or 1 or K K ⊥Σ. None of these conditions are satisfied in general, so it follows that the Kalman gain is different in general from the optimal gain proposed in this paper.

  • From Eq. 41, the uncertainty cost with the Kalman gain \(J_{P_{K}}\in \mathbb {R}\) can be written as

    $$\begin{array}{@{}rcl@{}} J_{P_{K}} &=& \text{tr}[P^{-}-2(1-\beta_{0})P^{-}H^{T}S^{-1}HP^{-}+P^{-}H^{T}S^{-1}ES^{-1}HP^{-1}] \\ &=& \text{tr}\left[P^{-}-(1-\beta_{0})^{2}P^{-}H^{T}\left( \frac{2}{1-\beta_{0}}S^{-1}-\frac{1}{(1-\beta_{0})^{2}}S^{-1}ES^{-1}\right)HP^{-}\right].\\ \end{array} $$
    (50)

    Similarly, the optimal cost \(J^{*}_{P}\) may be rewritten as

    $$ J^{*}_{P} = \text{tr}[P^{-}-(1-\beta_{0})^{2}P^{-}H^{T}E^{-1}HP^{-}]. $$
    (51)

    From Eqs. 50 and 51 and using variations of the definition of E from Eq. 17 repeatedly, the difference \(J_{P_{K}}-J^{*}_{P}\)can be written as

    $$\begin{array}{@{}rcl@{}} J_{P_{K}}-J^{*}_{P} &=& (1-\beta_{0})^{2}\text{tr}\left[P^{-}H^{T}\left( E^{-1}-\frac{2}{1-\beta_{0}}S^{-1}\right.\right.\\ &&\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+\left.\left.\frac{1}{(1-\beta_{0})^{2}}S^{-1}ES^{-1}\right)HP^{-}\right] \\ &=& \text{tr}\left[P^{-}H^{T}S^{-1}{\Sigma} E^{-1}{\Sigma} S^{-1}HP^{-}\right] \\ &= &\text{tr}\left[K_{K}{\Sigma} E^{-1}{\Sigma} {K_{K}^{T}}\right] =\sum\limits_{i=1}^{n}{\nu_{i}^{T}}E^{-1}\nu_{i}\geq0, \end{array} $$
    (52)

    where ν i corresponds to the i-th row of K K Σ and E −1 is positive-definite because E is positive-definite from (ii). This implies the inequality \(J_{P_{K}}\geq J^{*}_{P}\). The only times when K K becomes optimal are if there exists no measurement origin uncertainty, i.e., Σ=0, or K K ⊥Σ, and neither scenario is satisfied in general. These results are consistent with those obtained from Eq. 49.

Appendix: B: Derivatives to Obtain the C-JPDAF

The derivative of the similarity cost is obtained as follows. Let \({\mathbf {1}_{bd}}\in \mathbb {R}^{n\times m}\) be defined such that its (b,d)-th element is one and other elements are zero, and let \([K_{p}]_{bd}\in \mathbb {R}\) be the (b,d)-th element of K p . Then we have

$$ {\frac{\partial (S^{+}_{pq})^{-1}}{\partial [K_{p}]_{bd}}} =-(S^{+}_{pq})^{-1} H_{p} {\frac{\partial P^{+}_{p}}{\partial [K_{p}]_{bd}}} {H_{p}^{T}} (S^{+}_{pq})^{-1} , $$
(53)

where \({\frac {\partial P^{+}_{p}}{\partial [K_{p}]_{bd}}}\in \mathbb {R}^{n\times n}\) is

$$ {\frac{\partial P^{+}_{p}}{\partial [K_{p}]_{bd}}} = \left[(1-\beta_{0,p})({\mathbf{1}_{bd}} H_{p}P_{p}^{-}+P_{p}^{-}{H_{p}^{T}}{\mathbf{1}_{bd}^{T}})-{\mathbf{1}_{bd}} E_{p}{K_{p}^{T}} -K_{p}E_{p}{\mathbf{1}_{bd}^{T}}\right]. $$
(54)

Using Eqs. 53 and 54, we have

$$\begin{array}{@{}rcl@{}} {\frac{\partial (S^{+}_{pq})^{-1}}{\partial [K_{p}]_{bd}}}&=&-{S^{+}_{pq}}^{-1} H_{p} [(1-\beta_{0,p})({\mathbf{1}_{bd}} H_{p}P_{p}^{-}+P_{p}^{-}{H_{p}^{T}}{\mathbf{1}_{bd}^{T}})-{\mathbf{1}_{bd}} E_{p}{K_{p}^{T}} \\ && -K_{p}E_{p}{\mathbf{1}_{bd}^{T}}] {H_{p}^{T}} {S^{+}_{pq}}^{-1}. \end{array} $$
(55)

From Eqs. 33 and 55, \({\frac {\partial u_{pq}}{\partial [K_{p}]_{bd}}}\in \mathbb {R}\) is obtained as

$$\begin{array}{@{}rcl@{}} {\frac{\partial u_{pq}}{\partial [K_{p}]_{bd}}} &=& (H_{p}{\mathbf{1}_{bd}}{\bar{e}}_{p})^{T} {S_{pq}^{+}}^{-1} (H_{p}K_{p}{\bar{e}}_{p}-\hat{z}^{+}_{q}) \\ && +(H_{p}K_{p}{\bar{e}}_{p}-\hat{z}^{+}_{q})^{T} {\frac{\partial (S^{+}_{pq})^{-1}}{\partial [K_{p}]_{bd}}} (H_{p}K_{p}{\bar{e}}_{p}-\hat{z}^{+}_{q}) \\ &&+(H_{p}K_{p}{\bar{e}}_{p}-\hat{z}^{+}_{q})^{T} {S_{pq}^{+}}^{-1} (H_{p}{\mathbf{1}_{bd}}{\bar{e}}_{p}) \\ &=& \left\{ 2(H_{p}{\mathbf{1}_{bd}}{\bar{e}}_{p})^{T} {S_{pq}^{+}}^{-1} -(H_{p}K_{p}{\bar{e}}_{p}-\hat{z}^{+}_{q})^{T} {S^{+}_{pq}}^{-1} H_{p} [(1-\beta_{0,p})\right.\\ &&\left.\times({\mathbf{1}_{bd}} H_{p}P_{p}^{-} +P_{p}^{-}{H_{p}^{T}}{\mathbf{1}_{bd}^{T}})-{\mathbf{1}_{bd}} E_{p}{K_{p}^{T}}-K_{p}E_{p}{\mathbf{1}_{bd}^{T}}] {H_{p}^{T}} {S^{+}_{pq}}^{-1}\right\}\\ &&\times(H_{p}K_{p}{\bar{e}}_{p}-\hat{z}^{+}_{q}), \end{array} $$
(56)

Then from Eqs. 32 and 56, we obtain \({\frac {\partial J_{S}}{\partial [K_{p}]_{bd}}}\in \mathbb {R}\) as

$$\begin{array}{@{}rcl@{}} {\frac{\partial J_{S}}{\partial [K_{p}]_{bd}}}&=& -a\sum\limits_{q,q\neq p}\exp (-au_{pq}){\frac{\partial u_{pq}}{\partial [K_{p}]_{bd}}} \\ &=& -a\sum\limits_{q,q\neq p}\exp (-au_{pq}) \{ 2(H_{p}{\mathbf{1}_{bd}}{\bar{e}}_{p})^{T} {S_{pq}^{+}}^{-1} \\ && -(H_{p}K_{p}{\bar{e}}_{p}-\hat{z}^{+}_{q})^{T} {S^{+}_{pq}}^{-1} H_{p} [(1-\beta_{0,p})({\mathbf{1}_{bd}} H_{p}P_{p}^{-} +P_{p}^{-}{H_{p}^{T}}{\mathbf{1}_{bd}^{T}}) \\ && -{\mathbf{1}_{bd}} E_{p}{K_{p}^{T}} -K_{p}E_{p}{\mathbf{1}_{bd}^{T}}] {H_{p}^{T}} {S^{+}_{pq}}^{-1} \}(H_{p}K_{p}{\bar{e}}_{p}-\hat{z}^{+}_{q}). \end{array} $$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufman, E., Lovell, T.A. & Lee, T. Minimum Uncertainty JPDA Filters and Coalescence Avoidance for Multiple Object Tracking. J of Astronaut Sci 63, 308–334 (2016). https://doi.org/10.1007/s40295-016-0092-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-016-0092-2

Keywords

Navigation