Skip to main content
Log in

Subclinical HMOD in Hypertension: Brain Imaging and Cognitive Function

  • Review article (invited)
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Latest European Societies of Hypertension and Cardiology (ESH/ESC) have acknowledged that brain represent a relevant target for hypertension mediated organ damage (HMOD). In fact, brain damage can be the only HMOD in more than 30% of hypertensive subjects, evolving undetected for several years if not appropriately screened. However, no clear position has been indicated on how to evaluate brain HMOD. The present manuscript would contribute to briefly summarize structural and functional brain HMOD for the medical community dealing with older hypertensive patients. Arterial aging is proposed as possible “common soil” underlying structural and functional brain HMOD. Finally, a simple algothythm to screen older hypertensive subjects for cognitive function is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Williams B, Mancia G, Spiering W, AgabitiRosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36:1953–2041. https://doi.org/10.1097/HJH.0000000000001940.

    Article  PubMed  CAS  Google Scholar 

  2. Scuteri A, Najjar SS, Orru’ M, Albai G, Strai J, Tarasov KV, Piras MG, Cao A, Schlessinger D, Uda M, Lakatta EG. Age- and gender-specific awareness, treatment, and control of cardiovascular risk factors and subclinical vascular lesions in a founder population: the SardiNIA Study. Nutr Metab Cardiovasc Dis. 2009;19:532–4. https://doi.org/10.1016/j.numecd.2008.11.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, et al. On behalf of the American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; Council on Functional Genomics and Translational Biology. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke. 2014;45:315–53. https://doi.org/10.1161/01.str.0000437068.30550.cf.

    Article  PubMed  Google Scholar 

  4. Forman DE, Rich MW, Alexander KP, Zieman S, Maurer MS, Najjar SS, et al. Cardiac care for older adults. Time for a new paradigm. J Am Coll Cardiol. 2011;57:1801–10. https://doi.org/10.1016/j.jacc.2011.02.014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nilsson PN, Laurent S, Cunha PG, Olsen MH, Rietzschel E, Franco OH, Ryliskyte L, Strazhesko I, Vlachopoulos C, Chen CHM, Boutouyrie P, Cucca F, Lakatta EG, Scuteri A. Characteristics of Healthy Vascular Ageing (HVA) in pooled population-based cohort studies: the global MARE consortium. J Hypertens. 2018;36:2340–9. https://doi.org/10.1097/HJH.0000000000002246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Collaborators GBDD. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:88–106. https://doi.org/10.1016/S1474-4422(18)30403-4.

    Article  Google Scholar 

  7. - MetLife Foundation. What America thinks: MetLife Foundation Alzheimer’s survey. MetLife website. https://www.metlife.com/content/dam/microsites/about/corporate-profile/alzheimers-2011.pdf.

  8. Scuteri A, Benetos A, Sierra C, Coca A, Chicherio C, Frisoni GB, et al. Routine assessment of cognitive function in older patients with hypertension seen by primary care physicians: why and how-a decision-making support from the working group on “hypertension and the brain” of the European Society of Hypertension and from the European Geriatric Medicine Society. J Hypertens. 2021;39:90–100. https://doi.org/10.1097/HJH.0000000000002621.

    Article  PubMed  CAS  Google Scholar 

  9. Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, Torp-Pedersen C, et al. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur Heart J. 2010;31:883–91. https://doi.org/10.1093/eurheartj/ehp546.

    Article  PubMed  Google Scholar 

  10. Scuteri A, Lakatta EG. Bringing prevention in geriatrics: evidence from cardiovascular medicine supporting the new challenge. Exp Gerontol. 2013;48:64–8. https://doi.org/10.1016/j.exger.2012.02.009.

    Article  PubMed  Google Scholar 

  11. Scuteri A. Brain injury as end-organ damage in hypertension. Lancet Neurol. 2012;11:1015–7. https://doi.org/10.1016/S1474-4422(12)70265-X.

    Article  PubMed  Google Scholar 

  12. Forman DE, Maurer MS, Boyd C, Brindis R, Salive ME, Horne FM, Bell SP, Fulmer T, Reuben DB, Zieman S, Rich MW. Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol. 2018;71:2149–61. https://doi.org/10.1016/j.jacc.2018.03.022.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Viggiano D, et al. Mechanisms of cognitive dysfunction in CKD. Nat Rev Nephrol. 2020;16:452–69. https://doi.org/10.1038/s41581-020-0266-9.

    Article  PubMed  Google Scholar 

  14. Hooghiemstra AM, et al. Frequent cognitive impairment in patients with disorders along the heart-brain axis. Stroke. 2019;50:3369–75. https://doi.org/10.1161/STROKEAHA.119.026031.

    Article  PubMed  Google Scholar 

  15. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc. 2015;4: 001140. https://doi.org/10.1161/JAHA.114.001140.

    Article  PubMed  Google Scholar 

  16. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HB. Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet. 2000;356:628–34. https://doi.org/10.1016/S0140-6736(00)02604-0.

    Article  PubMed  CAS  Google Scholar 

  17. Moroni F, Ammirati E, Rocca MA, Filippi M, Magnoni M, Camici PG. Cardiovascular disease and brain health: focus on white matter hyperintensities. Int J Cardiol Heart Vasc. 2018;19:63–9. https://doi.org/10.1016/j.ijcha.2018.04.006 (eCollection 2018 Jun).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Makin SDJ, Cook FAB, Dennis MS, Wardlaw JM. Cerebral small vessel disease and renal function: systematic review and meta-analysis. Cerebrovasc Dis. 2015;39:39–52. https://doi.org/10.1159/000369777.

    Article  PubMed  Google Scholar 

  19. Herrmann LL, Le Masurier M, Ebmeier KP. White matter hyperintensities in late life depression: a systematic review. J Neurol Neurosurg Psychiatry. 2008;79:619–24. https://doi.org/10.1136/jnnp.2007.124651.

    Article  PubMed  CAS  Google Scholar 

  20. Shen DC, Wu SL, Shi YZ, Wang S, Zhang YM, Wang CX. The correlation between white matter hyperintensity and balance disorder and fall risk: An observational, prospective cohort study. Chronic Dis Transl Med. 2016;2:173–80. https://doi.org/10.1016/j.cdtm.2016.11.008 (eCollection 2016 Sep).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Callisaya ML, Beare R, Phan T, Blizzard L, Thrift AG, Chen J, Srikanth VK. Progression of white matter hyperintensities of presumed vascular origin increases the risk of falls in older people. J Gerontol A Biol Sci Med Sci. 2015;70:360–6. https://doi.org/10.1093/gerona/glu148.

    Article  PubMed  Google Scholar 

  22. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341: c3666. https://doi.org/10.1136/bmj.c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Verdelho A, Madureira S, Moleiro C, Ferro JM, Santos CO, Erkinjuntti T, Pantoni L, Fazekas F, Visser M, Waldemar G, et al. LADIS Study. White matter changes and diabetes predict cognitive decline in the elderly: the LADIS study. Neurology. 2010;75:160–7. https://doi.org/10.1212/WNL.0b013e3181e7ca05.

    Article  PubMed  CAS  Google Scholar 

  24. Debette S, Seshadri S, Beiser A, Au R, Himali JJ, Palumbo C, Wolf PA, DeCarli C. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77:461–8. https://doi.org/10.1212/WNL.0b013e318227b227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Scuteri A, Palmieri L, Lo Noce C, Giampaoli S. Age-related changes in brain functions: cognition, executive process, and motor speed. A population-based study. Aging Clin Exp Res. 2005;17:367–73. https://doi.org/10.1007/BF03324624.

    Article  PubMed  Google Scholar 

  26. Iadecola C, Yaffe K, Biller J, Bratzke LC, Faraci FM, Gorelick PB, et al. Impact of hypertension on cognitive function: a scientific statement from the American heart association. Hypertension. 2016;68(6):e67–94. https://doi.org/10.1161/HYP.0000000000000053.

    Article  PubMed  CAS  Google Scholar 

  27. van Dalen JW, Brayne C, Crane PK, Fratiglioni L, Larson EB, Lobo A, et al. Association of systolic blood pressure with dementia risk and the role of age, U-shaped associations, and mortality. JAMA Intern Med. 2022;182:142–52. https://doi.org/10.1001/jamainternmed.2021.7009.

    Article  PubMed  Google Scholar 

  28. Hughes D, Judge C, Murphy R, Loughlin E, Costello M, Whiteley W, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis. JAMA. 2020;323:1934–44. https://doi.org/10.1001/jama.2020.4249.

    Article  PubMed  Google Scholar 

  29. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

    Article  PubMed  Google Scholar 

  30. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  PubMed  CAS  Google Scholar 

  31. Samieri C, Perier MC, Gaye B, Proust-Lima C, Helmer C, Dartigues JF, Berr C, Tzourio C, Empana JP. Association of cardiovascular health level in older age with cognitive decline and incident dementia. JAMA. 2018;320(7):657–64. https://doi.org/10.1001/jama.2018.11499.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46:454–62. https://doi.org/10.1161/01.HYP.0000177474.06749.98.

    Article  PubMed  CAS  Google Scholar 

  33. Scuteri A, Modestino A, Frattari A, et al. Occurrence of hypotension in older participants. Which 24-hour ABPM parameter better correlate with? J Gerontol A Biol Sci Med Sci. 2012;67:804–10. https://doi.org/10.1093/gerona/glr232.

    Article  PubMed  CAS  Google Scholar 

  34. Scuteri A, Rovella V, AlunniFegatelli D, Tesauro M, Gabriele M, Di Daniele N. An operational definition of SHATS (Systemic Hemodynamic Atherosclerotic Syndrome): role of arterial stiffness and blood pressure variability in elderly hypertensive subjects. Int J Cardiol. 2018;15(263):132–7. https://doi.org/10.1016/j.ijcard.2018.03.117.

    Article  Google Scholar 

  35. Wharton SB, Simpson JE, Brayne C, Ince PG. Age-associated white matter lesions: the MRC cognitive function and ageing study. Brain Pathol. 2015;25:35–43. https://doi.org/10.1111/bpa.12219.

    Article  PubMed  Google Scholar 

  36. Sharman JE, O’Brien E, Alpert B, Schutte AE, Delles C, Hecht Olsen M, et al. on behalf of the Lancet Commission on Hypertension Group. Lancet commission on hypertension group position statement on the global improvement of accuracy standards for devices that measure blood pressure. J Hypertens. 2020;38:21–9. https://doi.org/10.1097/HJH.0000000000002246.

    Article  PubMed  CAS  Google Scholar 

  37. Lakatta EG, AlunniFegatelli D, Morrell CH, Fiorillo E, Orru M, Delitala A, Marongiu M, Schlessinger D, Cucca F, Scuteri A. Impact of stiffer arteries on the response to antihypertensive treatment: a longitudinal study of the SardiNIA cohort. J Am Med Dir Assoc. 2020;21:720–5. https://doi.org/10.1016/j.jamda.2019.11.014.

    Article  PubMed  Google Scholar 

  38. Scuteri A, Coluccia R, Castello L, Nevola E, Brancati AM, Volpe M. Left ventricular mass increase is associated with cognitive decline and dementia in the elderly independently of blood pressure. Eur Heart J. 2009;30:1525–9. https://doi.org/10.1093/eurheartj/ehp133.

    Article  PubMed  Google Scholar 

  39. Antonelli-Incalzi R, Corsonello A, Trojano L, Acanfora D, Spada A, Izzo O, Rengo F. Correlation between cognitive impairment and dependence in hypoxemic COPD. J Clin Exp Neuropsychol. 2008;30:141–50. https://doi.org/10.1080/13803390701287390.

    Article  PubMed  Google Scholar 

  40. AntonelliIncalzi R, Marra C, Salvigni BL, Petrone A, Gemma A, Selvaggio D, Mormile F. Does cognitive dysfunction conform to a distinctive pattern in obstructive sleep apnea syndrome? J Sleep Res. 2004;13:79–86. https://doi.org/10.1111/j.1365-2869.2004.00389.x.

    Article  Google Scholar 

  41. AntonelliIncalzi R, Marra C, Giordano A, Calcagni ML, Cappa A, Basso S, Pagliari G, Fuso L. Cognitive impairment in chronic obstructive pulmonary disease–a neuropsychological and spect study. J Neurol. 2003;250:325–32. https://doi.org/10.1007/s00415-003-1005-4.

    Article  Google Scholar 

  42. de Menezes ST, Giatti L, Brant LCC, Griep RH, Schmidt MI, Duncan BB, Suemoto CK, Ribeiro ALP, Barreto SM. Hypertension, prehypertension, and hypertension control: association with decline in cognitive performance in the ELSA-Brasil Cohort. Hypertension. 2021;77:672–81. https://doi.org/10.1161/HYPERTENSIONAHA.120.16080.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Scuteri.

Ethics declarations

Funding

The Authors declare that they have no financial interests to disclose.

Conflicts of interest/Competing interest

No Author has any conflict of interest to disclose.

Research involving human participants

Not applicable.

Informed consent

Not applicable.

Support

None.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scuteri, A., Antonelli Incalzi, R. Subclinical HMOD in Hypertension: Brain Imaging and Cognitive Function. High Blood Press Cardiovasc Prev 29, 577–583 (2022). https://doi.org/10.1007/s40292-022-00546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-022-00546-1

Keywords

Navigation