Skip to main content
Log in

Preeclampsia Emerging as a Risk Factor of Cardiovascular Disease in Women

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

The objective of this literature review was to explore the long-term cardiovascular effects of preeclampsia in women. The primary goal was to determine which organs were most commonly affected in this population. Although it was previously believed that preeclampsia is cured after the delivery of the fetus and the placenta current evidence supports an association between preeclampsia and cardiovascular disease later in life, many years after the manifestation of this hypertensive pregnancy related disorder. Therefore preeclampsia may be emerging as a novel cardiovascular risk factor for women, which requires long-term follow up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brown MA, Mangos G, Davis G, Homer C. The natural history of white coat hypertension during pregnancy. BJOG. 2005;112:601–6.

    Article  PubMed  Google Scholar 

  2. Hauth JC, Ewell MG, Levine RJ, et al. Pregnancy outcomes in healthy nulliparas who developed hypertension. Calcium for Preeclampsia Prevention Study Group. Obstet Gynecol. 2000;95:24–8.

    CAS  PubMed  Google Scholar 

  3. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122:1122–31.

  4. Jim B, Karumanchi SA. Preeclampsia: pathogenesis, prevention, and long-term complications. Semin Nephrol. 2017;37:386–97.

    Article  CAS  PubMed  Google Scholar 

  5. Amaral LM, Wallace K, Owens M, LaMarca B. Pathophysiology and current clinical management of preeclampsia. Curr Hypertens Rep. 2017;19:61.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goffin SM, Derraik JGB, Groom KM, Cutfield WS. Maternal pre-eclampsia and long-term offspring health: is there a shadow cast? Pregnancy Hypertens. 2018;12:11–5.

    Article  PubMed  Google Scholar 

  7. Lisonkova S, Sabr Y, Mayer C, Young C, Skoll A, Joseph KS. Maternal morbidity associated with early-onset and late-onset preeclampsia. Obstet Gynecol. 2014;124:771–81.

    Article  PubMed  Google Scholar 

  8. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol. 2016;11:1102–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saudan P, Brown MA, Buddle ML, Jones M. Does gestational hypertension become pre-eclampsia? Br J Obstet Gynaecol. 1998;105:1177–84.

    Article  CAS  PubMed  Google Scholar 

  10. Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Barton JR. Prediction and prevention of recurrent preeclampsia. Obstet Gynecol. 2008;112:359–72.

    Article  PubMed  Google Scholar 

  12. Ying W, Catov JM, Pamela Ouyang P. Hypertensive disorders of pregnancy and future maternal cardiovascular risk. J Am Heart Assoc. 2018;7:e009382.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. Circulation. 2011;123:1243–62.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Piepoli MF, Hoes AW, Agewall S, et al. ESC Scientific Document Group. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37:2315–81.

  15. Anderson NR, Undeberg M, Bastianelli KMS. Pregnancy-induced hypertension and preeclampsia: a review of current antihypertensive pharmacologic treatment options. Austin J Pharmacol Ther. 2013;1:8.

    Google Scholar 

  16. Brown CM, Vesna D, Garovic VD. Drug treatment of hypertension in pregnancy. Drugs. 2014;74:283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. James PR, Nelson-Piercy C. Management of hypertension before, during and after pregnancy. Heart. 2004;90:1499–504.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Phipps ΕΑ, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15:275–89.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scott G, Gillon TE, Pels A, von Dadelszen P, Magee LA. Guidelines-similarities and dissimilarities: a systematic review of international clinical practice guidelines for pregnancy hypertension. Am J Obstet Gynecol. 2020. pii:S0002-9378(20)30846-2.

  20. Yifu P, Lei Y, Yujin G, Xingwang Z, Shaoming L. Shortened postpartum magnesium sulfate treatment vs traditional 24 h for severe preeclampsia: a systematic review and meta-analysis of randomized trials. Hypertens Pregnancy. 2020;39:186–95.

    Article  PubMed  Google Scholar 

  21. van der Merwe JL, Hall DR, Wright C, Schubert P, Grové D. Are early and late preeclampsia distinct subclasses of the disease. What does the placenta reveal? Hypertens Pregnancy. 2010;29:457–67.

    Article  PubMed  Google Scholar 

  22. Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 2003;69:1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lyall F. Development of the utero-placental circulation: the role of carbon monoxide and nitric oxide in trophoblast invasion and spiral artery transformation. Microsc Res Tech. 2003;60:402–11.

    Article  CAS  PubMed  Google Scholar 

  24. Osol G, Mandala M. Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda). 2009;24:58–71.

    Google Scholar 

  25. Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension. 2005;46:1077–185.

    Article  CAS  PubMed  Google Scholar 

  26. Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123:2856–69.

    Article  PubMed  Google Scholar 

  27. Redman CW, Sargent IL. Placental stress and pre-eclampsia: a revised view. Placenta. 2009;30(Suppl A):S38–42.

    Article  PubMed  Google Scholar 

  28. Armaly Z, Jadaon JE, Jabbour A, Abassi ZA. Preeclampsia: novel mechanisms and potential therapeutic approaches. Front Physiol. 2018;9:973.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Matsubara K, Matsubara Y, Hyodo S, Katayama T, Ito M. Role of nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. J Obstet Gynaecol Res. 2010;36:239–47.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed A. New insights into the etiology of preeclampsia: identification of key elusive factors for the vascular complications. Thromb Res. 2011;127(Suppl 3):S72–5.

    Article  CAS  PubMed  Google Scholar 

  31. Fischer T, Schneider MP, Schobel HP, Heusser K, Langenfeld M, Schmieder RE. Vascular reactivity in patients with preeclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome. Am J Obstet Gynecol. 2000;183:1489–94.

    Article  CAS  PubMed  Google Scholar 

  32. Valensise H, Vasapollo B, Gagliardi G, Novelli GP. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension. 2008;52:873–80.

    Article  CAS  PubMed  Google Scholar 

  33. Osol G, Bernstein I. Preeclampsia and maternal cardiovascular disease: consequence or predisposition? J Vasc Res. 2014;51:290–304.

    Article  CAS  PubMed  Google Scholar 

  34. Sohlberg S, Mulic-Lutvica A, Lindgren P, Ortiz-Nieto F, Wikström AK, Wikström J. Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta. 2014;35:202–6.

    Article  CAS  PubMed  Google Scholar 

  35. Sohlberg S, Wikström AK, Olovsson M, et al. In vivo 31P-MR spectroscopy in normal pregnancy, early and late preeclampsia: a study of placental metabolism. Placenta. 2014;35:318–23.

    Article  CAS  PubMed  Google Scholar 

  36. Lisowska M, Pietrucha T, Sakowicz A. Preeclampsia and related cardiovascular risk: common genetic background. Curr Hypertens Rep. 2018;20:71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oudejans CB. Non-coding RNA and DNA as epigenetic biomarkers for pre-eclampsia. Expert Opin Med Diagn. 2008;2:81–9.

    Article  CAS  PubMed  Google Scholar 

  38. Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(Suppl 1):1–33.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nan Liu N, Guo Y-N, Gong L-K, Wang B-S. Advances in biomarker development and potential application for preeclampsia based on pathogenesis. Eur J Obstet Gynecol Reprod Biol X. 2020;9:100119.

    PubMed  PubMed Central  Google Scholar 

  40. Anderson UD, Gram M, Ranstam J, Thilaganathan B, Kerstrom B, Hansson SR. Fetal hemoglobin, alpha1-microglobulin and hemopexin are potential predictive first trimester biomarkers for preeclampsia. Pregnancy Hypertens. 2016;6:103–9.

    Article  PubMed  Google Scholar 

  41. Clausen T, Djurovic S, Henriksen T. Dyslipidemia in early second trimester is mainly a feature of women with early onset pre-eclampsia. Br J Obstet Gynaecol. 2001;108:1081–7.

    CAS  Google Scholar 

  42. Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374:13–22.

    Article  CAS  PubMed  Google Scholar 

  43. Weber T, Auer J, O’Rourke MF, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–96.

    Article  PubMed  Google Scholar 

  44. Safar ME, Blacher J, Pannier B, et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39:735–8.

    Article  CAS  PubMed  Google Scholar 

  45. Franz MB, Burgmann M, Neubauer A, et al. Augmentation index and pulse wave velocity in normotensive and pre-eclamptic pregnancies. Acta Obstet Gynecol Scand. 2013;92:960–6.

    Article  PubMed  Google Scholar 

  46. Oyama-Kato M, Ohmichi M, Takahashi K, et al. Change in pulse wave velocity throughout normal pregnancy and its value in predicting pregnancy-induced hypertension: a longitudinal study. Am J Obstet Gynecol. 2006;195:464–9.

    Article  PubMed  Google Scholar 

  47. Kim S, Lim HJ, Kim JR, Oh KJ, Hong JS, Suh JW. Longitudinal change in arterial stiffness after delivery in women with preeclampsia and normotension: a prospective cohort study. BMC Pregnancy Childbirth. 2020;20:685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garga P, Jaryalb AK, Kachhawac G, Kriplanic A, Deepak KK. Sequential profile of endothelial functions and arterial stiffness in preeclampsia during the course of pregnancy. Pregnancy Hypertens. 2019;18:88–95.

    Article  Google Scholar 

  49. Sibai BM. Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol. 2003;102:181–92.

    PubMed  Google Scholar 

  50. Hermes W, Tamsma JT, Grootendorst DC, et al. Cardiovascular risk estimation in women with a history of hypertensive pregnancy disorders at term: a longitudinal follow-up study. BMC Pregnancy Childbirth. 2013;13:126.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ. 2001;323:1213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. 2013;28:1–19.

    Article  PubMed  Google Scholar 

  53. Auger N, Fraser WD, Schnitzer M, Leduc L, Healy-Profitós J, Paradis G. Recurrent pre-eclampsia and subsequent cardiovascular risk. Heart. 2017;103:235–43.

    Article  PubMed  Google Scholar 

  54. Jarvie JL, Metz TD, Davis MB, Ehrig JC, Kao DP. Short-term risk of cardiovascular readmission following a hypertensive disorder of pregnancy. Heart. 2018;104:1187–94.

    Article  PubMed  Google Scholar 

  55. Kestenbaum B, Seliger SL, Easterling TR, et al. Cardiovascular and thromboembolic events following hypertensive pregnancy. Am J Kidney Dis. 2003;42:982–9.

    Article  PubMed  Google Scholar 

  56. Sliwa K, Böhm M. Incidence and prevalence of pregnancy-related heart disease. Cardiovasc Res. 2014;101:554–60.

    Article  CAS  PubMed  Google Scholar 

  57. José Drost J, Arpaci G, Ottervanger JP, et al. Cardiovascular risk factors in women 10 years post early preeclampsia: the Preeclampsia Risk EValuation in FEMales study (PREVFEM). Eur J Prev Cardiol. 2012;19:1138–44.

    Article  PubMed  Google Scholar 

  58. Marín R, Gorostidi M, Portal CG, Sánchez M, Sánchez E, Alvarez J. Long-term prognosis of hypertension in pregnancy. Hypertens Pregnancy. 2000;19:199–209.

    Article  PubMed  Google Scholar 

  59. Lazdam M, de la Horra A, Diesch J, et al. Unique blood pressure characteristics in mother and offspring after early onset preeclampsia. Hypertension. 2012;60:1338–45.

    Article  CAS  PubMed  Google Scholar 

  60. Bokslag A, Teunissen PW, Franssen C, et al. Effect of early-onset preeclampsia on cardiovascular risk in the fifth decade of life. Am J Obstet Gynecol. 2017;216:523.e1–7.

    Article  Google Scholar 

  61. Teefey CP, Durnwald CP, Srinivas SK, Levine LD. Adverse maternal outcomes differ between obese and nonobese women with severe preeclampsia. Am J Perinatol. 2019;36:74–8.

    Article  PubMed  Google Scholar 

  62. Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53:944–51.

    Article  CAS  PubMed  Google Scholar 

  63. Magnussen EB, Vatten LJ, Smith GD, Romundstad PR. Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol. 2009;114:961–70.

    Article  PubMed  Google Scholar 

  64. Benschop L, Duvekot JJ, Versmissen J, van Broekhoven V, Steegers EAP, Roeters van Lennep JE. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. Hypertension. 2018;71:491–8.

    Article  CAS  PubMed  Google Scholar 

  65. Martillotti G, Ditisheim A, Burnier M, Wagner G, Boulvain B, Irion O, Pechère-Bertschi A. Increased salt sensitivity of ambulatory blood pressure in women with a history of severe preeclampsia. Hypertension. 2013;62:802–8.

    Article  CAS  PubMed  Google Scholar 

  66. Samad F, Agarwal A, Samad Z. Stable ischemic heart disease in women: current perspectives. Int J Womens Health. 2017;9:701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lakoski SG, Greenland P, Wong ND, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: the multi-ethnic study of atherosclerosis (MESA). Arch Intern Med. 2007;167:2437–42.

    Article  PubMed  Google Scholar 

  68. Shaw LJ, Giambrone AE, Blaha MJ, et al. Long-term prognosis after coronary artery calcification testing in asymptomatic patients: a cohort study. Ann Intern Med. 2015;163:14–21.

    Article  PubMed  Google Scholar 

  69. White WM, Mielke MM, Araoz PA, et al. A history of preeclampsia is associated with a risk for coronary artery calcification three decades later. Am J Obstet Gynecol. 2016;214:519.e1–8.

    Article  Google Scholar 

  70. Zoet GA, Benschop L, Boersma E, Budde RPJ. Prevalence of subclinical coronary artery disease assessed by coronary computed tomography angiography in 45- to 55-year-old women with a history of preeclampsia. Circulation. 2018;137:877–9.

    Article  PubMed  Google Scholar 

  71. Cassidy-Bushrow AE, Bielak LF, Rule AD, et al. Hypertension during pregnancy is associated with coronary artery calcium independent of renal function. J Womens Health (Larchmt). 2009;18:1709–16.

    Article  Google Scholar 

  72. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335:974–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:3147–97.

    Article  PubMed  Google Scholar 

  74. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–6.

    Article  CAS  PubMed  Google Scholar 

  75. Riise HK, Sulo G, Tell GS, et al. Incident coronary heart disease after preeclampsia: role of reduced fetal growth, preterm delivery, and parity. J Am Heart Assoc. 2017;6:e004158.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Roth A, Elkayam U. Acute myocardial infarction associated with pregnancy. Am J Coll Cardiol. 2008;52:171–80.

    Article  Google Scholar 

  77. Ladner HE, Danielson B, Gilbert WM. Acute myocardial infarction in pregnancy and the puerperium: a population-based study. Obstet Gynecol. 2005;105:480–4.

    Article  PubMed  Google Scholar 

  78. James AH, Jamison MG, Biswas MS, Brancazio LR, Swamy GK, Myers ER. Acute myocardial infarction in pregnancy. A United States population-based study. Circulation. 2006;113:1564–71.

    Article  PubMed  Google Scholar 

  79. Wuntaka R, Shetty N, Ioannou E, Sharma S, John Kurian J. Myocardial infarction and pregnancy. TOG. 2013;15:247–55.

    Article  Google Scholar 

  80. Tweet MS, Hayes SN, Codsi E, Gulati R, Rose CH, Best PJM. Spontaneous coronary artery dissection associated with pregnancy. J Am Coll Cardiol. 2017;70:426–35.

    Article  PubMed  Google Scholar 

  81. de Jager SCA, Meeuwsen JAL, van Pijpen FM, et al. Preeclampsia and coronary plaque erosion: manifestations of endothelial dysfunction resulting in cardiovascular events in women. Eur J Pharmacol. 2017;816:129–37.

    Article  PubMed  Google Scholar 

  82. Ramsay JE, Stewart F, Greer IA, Sattar N. Microvascular dysfunction: a link between pre-eclampsia and maternal coronary heart disease. BJOG. 2003;110:1029–31.

    Article  PubMed  Google Scholar 

  83. Clemmensen TS, Christensen M, Løgstrup BB, Kronborg CJS, Knudsen UB. Reduced coronary flow velocity reserve in women with previous pre-eclampsia: the link to increased cardiovascular disease risk? Ultrasound Obstet Gynecol. 2019. https://doi.org/10.1002/uog.20407(Epub ahead of print).

  84. Park Y, Cho GJ, Kim LY, et al. Preeclampsia increases the incidence of postpartum cerebrovascular disease in Korean population. J Korean Med Sci. 2018;33:e35.

    Article  PubMed  Google Scholar 

  85. Wilson BJ, Watson MS, Prescott GJ, et al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ. 2003;326:845.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Brown DW, Dueker N, Jamieson DJ, et al. Preeclampsia and the risk of ischemic stroke in young women: results from the stroke prevention in young women study. Stroke. 2006;37:1055–9.

    Article  PubMed  Google Scholar 

  87. Dayan N, Kaur A, Elharram M, Rossi AM, Pilote L. Impact of preeclampsia on long-term cognitive function. Hypertension. 2018;72:1374–80.

    Article  CAS  PubMed  Google Scholar 

  88. Chen SN, Cheng CC, Tsui KH, et al. Hypertensive disorders of pregnancy and future heart failure risk: a nationwide population-based retrospective cohort study. Pregnancy Hypertens. 2018;13:110–5.

    Article  PubMed  Google Scholar 

  89. Behrens I, Basit S, Lykke JA, et al. Association between hypertensive disorders of pregnancy and later risk of cardiomyopathy. JAMA. 2016;315:1026–33.

    Article  CAS  PubMed  Google Scholar 

  90. Ntobeko B, Ntusi NB, Badri M, Gumedze F, Sliwa K, Mayosi BM. Pregnancy associated heart failure: a comparison of clinical presentation between hypertensive heart failure of pregnancy and idiopathic peripartum cardiomyopathy. PLoS One. 2015;10:e0133466.

    Article  Google Scholar 

  91. Bello N, Rendon ISH, Arany Z. The relationship between pre-eclampsia and peripartum cardiomyopathy: a systematic review and meta-analysis. J Am Coll Cardiol. 2013;62:1715–23.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Conner SN, Cahill AG, Novak E, Mann DL. Impact of preeclampsia on clinical and functional outcomes in women with peripartum cardiomyopathy. Circ Heart Fail. 2017;10:e003797.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ghossein-Doha C, van Neer J, Wissink B, et al. Preeclampsia: an important risk factor for asymptomatic heart failure. Ultrasound Obstet Gynecol. 2017;49:143–9.

    Article  CAS  PubMed  Google Scholar 

  94. Breetveld NM, Ghossein-Doha C, van Kuijk SM, et al. Prevalence of asymptomatic heart failure in formerly preeclamptic women: a cohort study. Ultrasound Obstet Gynecol. 2017;49:134–42.

    Article  CAS  PubMed  Google Scholar 

  95. Bokslag A, Franssen C, Alma LJ, et al. Early-onset preeclampsia predisposes to preclinical diastolic left ventricular dysfunction in the fifth decade of life: an observational study. PLoS One. 2018;13:e0198908.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Clemmensen TS, Christensen M, Kronborg CJS, Knudsen UB, Løgstrup BB. Long-term follow-up of women with early onset pre-eclampsia shows subclinical impairment of the left ventricular function by two-dimensional speckle tracking echocardiography. Pregnancy Hypertens. 2018;14:9–14.

    Article  PubMed  Google Scholar 

  97. Ersbøll AS, Bojer AS, Hauge MG, et al. Long-term cardiac function after peripartum cardiomyopathy and preeclampsia: a Danish nationwide, clinical follow-up study using maximal exercise testing and cardiac magnetic resonance imaging. J Am Heart Assoc. 2018;7:e008991.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Haghikia A, Röntgen P, Vogel-Claussen J, et al. Prognostic implication of right ventricular involvement in peripartum cardiomyopathy: a cardiovascular magnetic resonance study. ESC Heart Fail. 2015;2:139–49.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ageliki A. Karatza.

Ethics declarations

Conflict of interest

None to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Financial support

Nothing to declare.

Author contributions

Conceptualization: AAK; literature search and data analysis: EC; writing-original draft preparation: EC and NO; writing-critically revised the work: AAK and SF; supervision: GH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chourdakis, E., Oikonomou, N., Fouzas, S. et al. Preeclampsia Emerging as a Risk Factor of Cardiovascular Disease in Women. High Blood Press Cardiovasc Prev 28, 103–114 (2021). https://doi.org/10.1007/s40292-020-00425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-020-00425-7

Keywords

Navigation