Skip to main content
Log in

Prognostic and Clinical Significance of Human Leukocyte Antigen Class I Expression in Breast Cancer: A Meta-Analysis

  • Systematic Review
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

The value of human leukocyte antigen (HLA; also known as major histocompatibility complex) class I expression for the prediction of breast cancer survival outcomes remains unclear. We conducted a meta-analysis to explore the prognostic significance of this expression.

Materials and Methods

We searched electronic databases to identify reports on associations of HLA class I protein or mRNA expression with survival outcomes and clinicopathological factors in the breast cancer context. Pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were used to conduct a quantitative meta-analysis.

Results

The sample comprised eight studies involving 3590 patients. Only the classical HLA class Ia (HLA-ABC) molecules studies were included in this meta-analysis. Elevated HLA class I protein expression was found to be significantly related to better disease-free survival (DFS) (HR 0.58, 95% CI 0.35–0.95, P = 0.03), particularly among patients with triple-negative breast cancer (TNBC) (HR 0.31, 95% CI 0.18–0.52, P < 0.001), but not to overall survival. It was also associated with estrogen receptor (ER) negativity (OR 1.71, 95% CI 1.24–2.35, P = 0.001), progesterone receptor (PR) negativity (OR 1.49, 95% CI 1.22–1.81, P < 0.001), human epidermal growth factor receptor 2 (HER2) positivity (OR 1.51, 95% CI 1.18–1.94, P = 0.001), TNBC (OR 1.68, 95% CI 1.15–2.45, P < 0.01), high Ki-67 indices (OR 2.06, 95% CI 1.62–2.61, P < 0.001), and high nuclear grades (OR 2.67, 95% CI 2.17–3.29, P < 0.001).

Conclusion

This meta-analysis demonstrated that enhanced HLA class I protein expression is significantly associated with the better DFS of patients with breast cancer, especially TNBC, as well as with ER and PR negativity, HER2 positivity, TNBC, and high Ki-67 indices and nuclear grades. The immune target HLA class I may serve as a prognostic indicator for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72:409–36.

    Article  PubMed  Google Scholar 

  2. Park M, Kim D, Ko S, Kim A, Mo K, Yoon H. Breast cancer metastasis: mechanisms and therapeutic implications. Int J Mol Sci. 2022;23(12):6806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aptsiauri N, Garrido F. The challenges of HLA class I loss in cancer immunotherapy: facts and hopes. Clin Cancer Res. 2022;28:5021–9.

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen AT, Szeto C, Gras S. The pockets guide to HLA class I molecules. Biochem Soc Trans. 2021;49:2319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anderson P, Aptsiauri N, Ruiz-Cabello F, Garrido F. HLA class I loss in colorectal cancer: implications for immune escape and immunotherapy. Cell Mol Immunol. 2021;18:556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu B, Shao Y, Fu R. Current research status of HLA in immune-related diseases. Immun Inflamm Dis. 2021;9:340–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johansen LL, Lock-Andersen J, Hviid TV. The pathophysiological impact of HLA class Ia and HLA-G expression and regulatory T cells in malignant melanoma: a review. J Immunol Res. 2016;2016:6829283.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hviid TV. HLA-G in human reproduction: aspects of genetics, function and pregnancy complications. Hum Reprod Update. 2006;12:209–32.

    Article  CAS  PubMed  Google Scholar 

  9. Curigliano G, Criscitiello C, Gelao L, Goldhirsch A. Molecular pathways: human leukocyte antigen G (HLA-G). Clin Cancer Res. 2013;19:5564–71.

    Article  CAS  PubMed  Google Scholar 

  10. Maleno I, Aptsiauri N, Cabrera T, et al. Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics. 2011;63:65–71.

    Article  CAS  PubMed  Google Scholar 

  11. Cathro HP, Smolkin ME, Theodorescu D, Jo VY, Ferrone S, Frierson HJ. Relationship between HLA class I antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas. Cancer Immunol Immunother. 2010;59:465–72.

    Article  CAS  PubMed  Google Scholar 

  12. Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci. 2011;68:369–95.

    Article  CAS  PubMed  Google Scholar 

  13. de Kruijf EM, Sajet A, van Nes JG, et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol. 2010;185:7452–9.

    Article  PubMed  Google Scholar 

  14. Schuren A, Boer I, Bouma EM, et al. The UFM1 pathway impacts HCMV US2-mediated degradation of HLA class I. Molecules. 2021;26:287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodems TS, Heninger E, Stahlfeld CN, et al. Reversible epigenetic alterations regulate class I HLA loss in prostate cancer. Commun Biol. 2022;5:897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Debebe BJ, Boelen L, Lee JC, et al. Identifying the immune interactions underlying HLA class I disease associations. Elife. 2020;9: e54558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Z, Derkach A, Yu KJ, et al. Patterns of human leukocyte antigen class I and class II associations and cancer. Cancer Res. 2021;81:1148–52.

    CAS  PubMed  Google Scholar 

  18. Boyne C, Lennox D, Beech O, Powis SJ, Kumar P. What is the role of HLA-I on cancer derived extracellular vesicles? Defining the challenges in characterisation and potential uses of this ligandome. Int J Mol Sci. 2021;22:13554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aparicio B, Repáraz D, Ruiz M, et al. Identification of HLA class I-restricted immunogenic neoantigens in triple negative breast cancer. Front Immunol. 2022;13: 985886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wieczorek E, Jablonowski Z, Lesicka M, et al. Genetic contributions of MHC class I antigen processing and presentation pathway to bladder cancer risk and recurrence. Neoplasma. 2022;69:443–55.

    Article  CAS  PubMed  Google Scholar 

  21. Datar IJ, Hauc SC, Desai S, et al. Spatial analysis and clinical significance of HLA class-I and class-II subunit expression in non-small cell lung cancer. Clin Cancer Res. 2021;27:2837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pei R, Zhang W, Wang S, Huang X, Zou Y, Wang G. Prognostic value of HLA class I in patients with hepatocellular carcinoma. Clin Lab. 2022;68.

  23. Wickenhauser C, Bethmann D, Kappler M, et al. Tumor microenvironment, HLA class I and APM expression in HPV-negative oral squamous cell carcinoma. Cancers (Basel). 2021;13:620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Groot AF, Blok EJ, Charehbili A, et al. Strong CD8+ lymphocyte infiltration in combination with expression of HLA class I is associated with better tumor control in breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2019;175:605–15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Kruijf EM, van Nes JG, Sajet A, et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res. 2010;16:1272–80.

    Article  PubMed  Google Scholar 

  26. Madjd Z, Spendlove I, Pinder SE, Ellis IO, Durrant LG. Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer. 2005;117:248–55.

    Article  CAS  PubMed  Google Scholar 

  27. Sinn BV, Weber KE, Schmitt WD, et al. Human leucocyte antigen class I in hormone receptor-positive, HER2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy. Breast Cancer Res. 2019;21:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8:336–41.

    Article  PubMed  Google Scholar 

  29. Park HS, Cho U, Im SY, et al. Loss of human leukocyte antigen class I expression is associated with poor prognosis in patients with advanced breast cancer. J Pathol Transl Med. 2019;53:75–85.

    Article  PubMed  Google Scholar 

  30. Vangangelt K, van Pelt GW, Engels CC, et al. Prognostic value of tumor-stroma ratio combined with the immune status of tumors in invasive breast carcinoma. Breast Cancer Res Treat. 2018;168:601–12.

    Article  CAS  PubMed  Google Scholar 

  31. Tsang JY, Ho CS, Ni YB, et al. Co-expression of HLA-I loci improved prognostication in HER2+ breast cancers. Cancer Immunol Immunother. 2020;69:799–811.

    Article  CAS  PubMed  Google Scholar 

  32. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  34. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  35. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45:139–45.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  37. Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wacholder S, Chanock S, Garcia-Closas M, El GL, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61:64–75.

    Article  PubMed  Google Scholar 

  40. Han SH, Kim M, Chung YR, Woo JW, Choi HY, Park SY. Expression of HLA class I is associated with immune cell infiltration and patient outcome in breast cancer. Sci Rep. 2022;12:20367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ren Y, Cherukuri Y, Wickland DP, et al. HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer. Oncoimmunology. 2020;9:1744947.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Noblejas-López M, Nieto-Jiménez C, Morcillo GS, et al. Expression of MHC class I, HLA-A and HLA-B identifies immune-activated breast tumors with favorable outcome. Oncoimmunology. 2019;8: e1629780.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou YF, Xiao Y, Jin X, Di GH, Jiang YZ, Shao ZM. Integrated analysis reveals prognostic value of HLA-I LOH in triple-negative breast cancer. J Immunother Cancer. 2021;9.

  44. Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18:479–89.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu Y, Zhu X, Tang C, Guan X, Zhang W. Progress and challenges of immunotherapy in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer. 2021;1876: 188593.

    Article  CAS  PubMed  Google Scholar 

  46. Koukourakis IM, Giatromanolaki A, Mitrakas A, Koukourakis MI. Loss of HLA-class-I expression in non-small-cell lung cancer: association with prognosis and anaerobic metabolism. Cell Immunol. 2022;373: 104495.

    Article  CAS  PubMed  Google Scholar 

  47. Han YB, Kwon HJ, Park SY, Kim ES, Kim H, Chung JH. Human leukocyte antigen class I and programmed death-ligand 1 coexpression is an independent poor prognostic factor in adenocarcinoma of the lung. J Pathol Transl Med. 2019;53:86–93.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nazemalhosseini-Mojarad E, Asadzadeh-Aghdaei H, Mohammadpour S, et al. Downregulation of human leukocyte antigen Class I expression: an independent prognostic factor in colorectal cancer. J Cancer Res Ther. 2020;16:S165–71.

    Article  CAS  PubMed  Google Scholar 

  49. Matsushita H, Hasegawa K, Oda K, et al. Neoantigen load and HLA-class I expression identify a subgroup of tumors with a T-cell-inflamed phenotype and favorable prognosis in homologous recombination-proficient high-grade serous ovarian carcinoma. J Immunother Cancer. 2020;8.

  50. Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest. 1998;101:2720–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Melsted WN, Johansen LL, Lock-Andersen J, et al. HLA class Ia and Ib molecules and FOXP3+ TILs in relation to the prognosis of malignant melanoma patients. Clin Immunol. 2017;183:191–7.

    Article  CAS  PubMed  Google Scholar 

  52. Carretero R, Romero JM, Ruiz-Cabello F, et al. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics. 2008;60:439–47.

    Article  CAS  PubMed  Google Scholar 

  53. Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol. 2005;174:1462–71.

    Article  CAS  PubMed  Google Scholar 

  54. Kochan G, Escors D, Breckpot K, Guerrero-Setas D. Role of non-classical MHC class I molecules in cancer immunosuppression. Oncoimmunology. 2013;2: e26491.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang Y, Wang W, Weng J, et al. Advances in the study of HLA class Ib in maternal-fetal immune tolerance. Front Immunol. 2022;13: 976289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin A, Yan WH. HLA-G/ILTs targeted solid cancer immunotherapy: opportunities and challenges. Front Immunol. 2021;12: 698677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin A, Yan WH. HLA-G as an inhibitor of immune responses. Methods Mol Biol. 2016;1371:3–9.

    Article  CAS  PubMed  Google Scholar 

  58. Gilead Buys into Tizona's Anti-HLA-G Strategy. Cancer Discov. 2020; 10:1433.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Deng.

Ethics declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors, M.D., W.Q., Z.J., W.G., Q.L., and X.G. declare that there is no conflict of interest.

Author contributions

Miao Deng: conceptualization, methodology. Weiqiang Qiao: data curation, writing—original draft preparation. Zhiqiang Jia: visualization, investigation. Wanying Guo: supervision, software. Qipeng Liu: validation. Xiao Guo: writing—reviewing and editing.

Ethics approval

Not applicable.

Consent for publication and participation

Not applicable.

Data availability

All data generated or analyzed during this study are included in this published article and supplementary information files, which are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 216 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, W., Jia, Z., Guo, W. et al. Prognostic and Clinical Significance of Human Leukocyte Antigen Class I Expression in Breast Cancer: A Meta-Analysis. Mol Diagn Ther 27, 573–582 (2023). https://doi.org/10.1007/s40291-023-00664-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-023-00664-z

Navigation