Skip to main content

Advertisement

Log in

Immuno-Oncolytic Viruses: Emerging Options in the Treatment of Colorectal Cancer

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Colorectal cancer is the third most common neoplasm in the world and the third leading cause of cancer-related deaths in the USA. A safer and more effective therapeutic intervention against this malignant carcinoma is called for given the limitations and toxicities associated with the currently available treatment modalities. Immuno-oncolytic or oncolytic virotherapy, the use of viruses to selectively or preferentially kill cancer cells, has emerged as a potential anticancer treatment modality. Oncolytic viruses act as double-edged swords against the tumors through the direct cytolysis of cancer cells and the induction of antitumor immunity. A number of such viruses have been tested against colorectal cancer, in both preclinical and clinical settings, and many have produced promising results. Oncolytic virotherapy has also shown synergistic antitumor efficacy in combination with conventional treatment regimens. In this review, we describe the status of this therapeutic approach against colorectal cancer at both preclinical and clinical levels. Successes with and the challenges of using oncolytic viruses, both as monotherapy and in combination therapy, are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American Cancer Society. Cancer facts and figures 2020. Atlanta: American Cancer Society; 2020.

    Google Scholar 

  2. PDQ Screening and Prevention Editorial Board. Colorectal cancer screening (PDQ®): health professional version. In: PDQ cancer information summaries [Internet]. Bethesda (MD): National Cancer Institute (US) 2002. 2020. https://www.ncbi.nlm.nih.gov/books/NBK65825/. Accessed 17 Mar 2020.

  3. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v.10, cancer incidence and mortality worldwide: IARC cancer base no. 11. Lyon: International Agency for Research on Cancer; 2012.

    Google Scholar 

  4. National Cancer Institute Surveillance, Epidemiology, and End Results program. Cancer fstat Facts: colorectal cancer. 2018. https://seer.cancer.gov/statfacts/html/colorect.html. Accessed 2018.

  5. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2016;14(9):642–62. https://doi.org/10.1038/nrd4663 (published correction appears in Nat Rev Drug Discov. 2016 Aug 30;15(9):660).

    Article  CAS  Google Scholar 

  6. Conrad SJ, El-Aswad M, Kurban E, Jeng D, Tripp BC, Nutting C, Eversole R, Mackenzie C, Essani K. Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice. J Exp Clin Cancer Res. 2015;34:19. https://doi.org/10.1186/s13046-015-0131-z (PubMed PMID: 25887490; PubMed Central PMCID: PMC4337313).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aurelian L, Bollino D, Colunga A. The oncolytic virus ΔPK has multimodal anti-tumor activity. Pathog Dis. 2016;74(5):ftw050. https://doi.org/10.1093/femspd/ftw050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang B, Ogata H, Takishima Y, Miyamoto S, Inoue H, Kuroda M, Yamada K, Hijikata Y, Murahashi M, Shimizu H, Okazaki T, Nakanishi Y, Tani K. A novel combination therapy for human oxaliplatin-resistant colorectal cancer using oxaliplatin and Coxsackievirus A11. Anticancer Res. 2018;38(11):6121–6. https://doi.org/10.21873/anticanres.12963.

    Article  CAS  PubMed  Google Scholar 

  9. Pokrovska TD, Jacobus EJ, Puliyadi R, Prevo R, Frost S, Dyer A, Baugh R, Rodriguez-Berriguete G, Fisher K, Granata G, Herbert K, Taverner WK, Champion BR, Higgins GS, Seymour LW, Lei-Rossmann J. External beam radiation therapy and enadenotucirev: inhibition of the DDR and mechanisms of radiation-mediated virus increase. Cancers (Basel). 2020;12(4):E798. https://doi.org/10.3390/cancers12040798.

    Article  CAS  PubMed  Google Scholar 

  10. Rojas JJ, Sampath P, Hou W, Thorne SH. Defining effective combinations of immune checkpoint blockade and oncolytic virotherapy. Clin Cancer Res. 2015;21(24):5543–51. https://doi.org/10.1158/1078-0432.CCR-14-2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuipers EJ, Grady WM, Lieberman D, et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065. https://doi.org/10.1038/nrdp.2015.65.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Matsuda T, Yamashita K, Hasegawa H, et al. Recent updates in the surgical treatment of colorectal cancer. Ann Gastroenterol Surg. 2018;2(2):129–36. https://doi.org/10.1002/ags3.12061.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Häfner MF, Debus J. Radiotherapy for colorectal cancer: current standards and future perspectives. Visc Med. 2016;32(3):172–7. https://doi.org/10.1159/000446486.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jhawar SR, Thandoni A, Bommareddy PK, et al. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol. 2017;7:202. https://doi.org/10.3389/fonc.2017.00202.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998;72(12):9706–13.

    Article  CAS  Google Scholar 

  16. O’Leary MP, Warner SG, Kim SI, Chaurasiya S, Lu J, Choi AH, Park AK, Woo Y, Fong Y, Chen NG. A novel oncolytic chimeric orthopoxvirus encoding luciferase enables real-time view of colorectal cancer cell infection. Mol Ther Oncolytics. 2018;9:13–21. https://doi.org/10.1016/j.omto.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Francis L, Guo ZS, Liu Z, Ravindranathan R, Urban JA, Sathaiah M, Magge D, Kalinski P, Bartlett DL. Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget. 2016;7(16):22174–85. https://doi.org/10.18632/oncotarget.7907.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yoo SY, Bang SY, Jeong SN, Kang DH, Heo J. A cancer-favoring oncolytic vaccinia virus shows enhanced suppression of stem-cell like colon cancer. Oncotarget. 2016;7(13):16479–89. https://doi.org/10.18632/oncotarget.7660.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haddad D, Chen N, Zhang Q, Chen CH, Yu YA, Gonzalez L, Aguilar J, Li P, Wong J, Szalay AA, Fong Y. A novel genetically modified oncolytic vaccinia virus in experimental models is effective against a wide range of human cancers. Ann Surg Oncol. 2012;19(Suppl 3):S665–74. https://doi.org/10.1245/s10434-011-2198-x.

    Article  PubMed  Google Scholar 

  20. Sathaiah M, Thirunavukkarasu P, O’Malley ME, Kavanagh MA, Ravindranathan R, Austin F, Guo ZS, Bartlett DL. Oncolytic poxvirus armed with Fas ligand leads to induction of cellular Fas receptor and selective viral replication in FasR-negative cancer. Cancer Gene Ther. 2011;19(3):192–201. https://doi.org/10.1038/cgt.2011.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo Q, Song H, Deng X, Li J, Jian W, Zhao J, Zheng X, Basnet S, Ge H, Daniel T, Xu B, Fang L. A triple-regulated oncolytic adenovirus exhibits potent antitumor efficacy in colorectal cancer. Mol Ther Oncolytics. 2020;16:219–29. https://doi.org/10.1016/j.omto.2020.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo Q, Liu H, Zhang Z, Basnet S, Dai Z, Li S, Wang Y, Xu B, Ge H. A dual-regulated oncolytic adenovirus carrying TAp63 gene exerts potent antitumor effect on colorectal cancer cells. Am J Transl Res. 2017;9(6):2966–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo Q, Basnet S, Dai Z, Li S, Zhang Z, Ge H. A novel E1B55kDa-deleted oncolytic adenovirus carrying microRNA-143 exerts specific antitumor efficacy on colorectal cancer cells. Am J Transl Res. 2016;8(9):3822–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Garijo R, Hernández-Alonso P, Rivas C, Diallo JS, Sanjuán R. Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells. PLoS ONE. 2014;9(7):e102365. https://doi.org/10.1371/journal.pone.0102365.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maitra R, Seetharam R, Tesfa L, Augustine TA, Klampfer L, Coffey MC, Mariadason JM, Goel S. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan. Oncotarget. 2014;5(9):2807–19.

    Article  Google Scholar 

  26. Nishiwada S, Sho M, Yasuda S, et al. Nectin-4 expression contributes to tumor proliferation, angiogenesis and patient prognosis in human pancreatic cancer. J Exp Clin Cancer Res. 2015;34(1):30. https://doi.org/10.1186/s13046-015-0144-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Delpeut S, Sisson G, Black KM, Richardson CD. Measles virus enters breast and colon cancer cell lines through a PVRL4-mediated macropinocytosis pathway. J Virol. 2017;91(10):e02191-e2216. https://doi.org/10.1128/JVI.02191-16.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Amagai Y, Fujiyuki T, Yoneda M, et al. Oncolytic activity of a recombinant measles virus, blind to signaling lymphocyte activation molecule against colorectal cancer cells. Sci Rep. 2016;6:24572. https://doi.org/10.1038/srep24572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Q, Wei D, Feng F, Wang XL, Li C, Chen ZN, Bian H. α2,6-Linked sialic acid serves as a high-affinity receptor for cancer oncolytic virotherapy with Newcastle disease virus. J Cancer Res Clin Oncol. 2017;143(11):2171–81. https://doi.org/10.1007/s00432-017-2470-y.

    Article  CAS  PubMed  Google Scholar 

  30. Xu C, Sun Y, Wang Y, Yan Y, Shi Z, Chen L, Lin H, Lü S, Zhu M, Su C, Li Z. CEA promoter-regulated oncolytic adenovirus-mediated Hsp70 expression in immune gene therapy for pancreatic cancer. Cancer Lett. 2012;319(2):154–63. https://doi.org/10.1016/j.canlet.2012.01.009.

    Article  CAS  PubMed  Google Scholar 

  31. Yang G, Meng X, Sun L, Hu N, Jiang S, Sheng Y, Chen Z, Zhou Y, Chen D, Li X, Jin N. Antitumor effects of a dual cancer-specific oncolytic adenovirus on colorectal cancer in vitro and in vivo. Exp Ther Med. 2015;9(2):327–34.

    Article  CAS  Google Scholar 

  32. Zhou X, Xie G, Wang S, Wang Y, Zhang K, Zheng S, Chu L, Xiao L, Yu Y, Zhang Y, Liu X. Potent and specific antitumor effect for colorectal cancer by CEA and Rb double regulated oncolytic adenovirus harboring ST13 gene. PLoS ONE. 2012;7(10):e47566. https://doi.org/10.1371/journal.pone.0047566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun H, Pan Y, He B, Deng Q, Li R, Xu Y, Chen J, Gao T, Ying H, Wang F, Liu X, Wang S. Gene therapy for human colorectal cancer cell lines with recombinant adenovirus 5 based on loss of the insulin-like growth factor 2 imprinting. Int J Oncol. 2015;46(4):1759–67. https://doi.org/10.3892/ijo.2015.2852.

    Article  CAS  PubMed  Google Scholar 

  34. Cui H, Cruz-Correa M, Giardiello FM, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 2003;299:1753–5.

    Article  CAS  Google Scholar 

  35. Nie ZL, Pan YQ, He BS, Gu L, Chen LP, Li R, Xu YQ, Gao TY, Song GQ, Hoffman AR, Wang SK, Hu JF. Gene therapy for colorectal cancer by an oncolytic adenovirus that targets loss of the insulin-like growth factor 2 imprinting system. Mol Cancer. 2012;11:86. https://doi.org/10.1186/1476-4598-11-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mimeault M, Hauke R, Mehta PP, Batra SK. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med. 2007;11(5):981–1011. https://doi.org/10.1111/j.1582-4934.2007.00088x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bach P, Abel T, Hoffmann C, Gal Z, Braun G, Voelker I, Ball CR, Johnston IC, Lauer UM, Herold-Mende C, Mühlebach MD, Glimm H, Buchholz CJ. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res. 2013;73(2):865–74. https://doi.org/10.1158/0008-5472.CAN-12-2221.

    Article  CAS  PubMed  Google Scholar 

  38. Sato-Dahlman M, Miura Y, Huang JL, Hajeri P, Jacobsen K, Davydova J, Yamamoto M. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget. 2017;8(44):76044–56. https://doi.org/10.18632/oncotarget.18340.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boisgerault N, Guillerme JB, Pouliquen D, Mesel-Lemoine M, Achard C, Combredet C, Fonteneau JF, Tangy F, Grégoire M. Natural oncolytic activity of live-attenuated measles virus against human lung and colorectal adenocarcinomas. Biomed Res Int. 2013;2013:387362. https://doi.org/10.1155/2013/387362.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Power AT, Bell JC. Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer. Mol Ther. 2007;15:660–5. https://doi.org/10.1038/sj.mt.6300098.

    Article  CAS  PubMed  Google Scholar 

  41. Kanzaki A, Kasuya H, Yamamura K, et al. Antitumor efficacy of oncolytic herpes simplex virus adsorbed onto antigen-specific lymphocytes. Cancer Gene Ther. 2012;19:292–8. https://doi.org/10.1038/cgt.2011.91.

    Article  CAS  PubMed  Google Scholar 

  42. Guo Y, Zhang Z, Xu X, Xu Z, Wang S, Huang D, Li Y, Mou X, Liu F, Xiang C. Menstrual blood-derived stem cells as delivery vehicles for oncolytic adenovirus virotherapy for colorectal cancer. Stem Cells Dev. 2019;28(13):882–96. https://doi.org/10.1089/scd.2018.0222.

    Article  CAS  PubMed  Google Scholar 

  43. Eisenstein S, Coakley BA, Briley-Saebo K, Ma G, Chen HM, Meseck M, Ward S, Divino C, Woo S, Chen SH, Pan PY. Myeloid-derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res. 2013;73(16):5003–15. https://doi.org/10.1158/0008-5472.CAN-12-1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adair RA, Scott KJ, Fraser S, Errington-Mais F, Pandha H, Coffey M, Selby P, Cook GP, Vile R, Harrington KJ, Toogood G, Melcher AA. Cytotoxic and immune-mediated killing of human colorectal cancer by reovirus-loaded blood and liver mononuclear cells. Int J Cancer. 2013;132(10):2327–38. https://doi.org/10.1002/ijc.27918.

    Article  CAS  PubMed  Google Scholar 

  45. Adair RA, Roulstone V, Scott KJ, Morgan R, Nuovo GJ, Fuller M, Beirne D, West EJ, Jennings VA, Rose A, Kyula J, Fraser S, Dave R, Anthoney DA, Merrick A, Prestwich R, Aldouri A, Donnelly O, Pandha H, Coffey M, Selby P, Vile R, Toogood G, Harrington K, Melcher AA. Cell carriage, delivery, and selective replication of an oncolytic virus in tumor in patients. Sci Transl Med. 2012;4(138):138ra77. https://doi.org/10.1126/scitranslmed.3003578.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Badrinath N, Jeong YI, Woo HY, Bang SY, Kim C, Heo J, Kang DH, Yoo SY. Local delivery of a cancer-favoring oncolytic vaccinia virus via poly (lactic-co-glycolic acid) nanofiber for theranostic purposes. Int J Pharm. 2018;552(1–2):437–42. https://doi.org/10.1016/j.ijpharm.2018.10.020.

    Article  CAS  PubMed  Google Scholar 

  47. Ferguson MS, Dunmall LSC, Gangeswaran R, Marelli G, Tysome JR, Burns E, Whitehead MA, Aksoy E, Alusi G, Hiley C, Ahmed J, Vanhaesebroeck B, Lemoine NR, Wang Y. Transient inhibition of PI3Kδ enhances the therapeutic effect of intravenous delivery of oncolytic Vaccinia Virus. Mol Ther. 2020. https://doi.org/10.1016/j.ymthe.2020.02.017.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Downie AW, Taylor-Robinson CH, Caunt AE, Nelson GS, Manson-Bahr PE, Matthews TC. Tanapox: a new disease caused by a pox virus. Br Med J. 1971;1(5745):363–8. https://doi.org/10.1136/bmj.1.5745.363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tedcastle A, Illingworth S, Brown A, Seymour LW, Fisher KD. Actin-resistant DNAse I expression from oncolytic adenovirus enadenotucirev enhances its intratumoral spread and reduces tumor growth. Mol Ther. 2016;24(4):796–804. https://doi.org/10.1038/mt.2015.233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lavilla-Alonso S, Bauer MM, Abo-Ramadan U, Ristimäki A, Halavaara J, Desmond RA, Wang D, Escutenaire S, Ahtiainen L, Saksela K, Tatlisumak T, Hemminki A, Pesonen S. Macrophage metalloelastase (MME) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Ther. 2012;19(2):126–34. https://doi.org/10.1038/cgt.2011.76.

    Article  CAS  PubMed  Google Scholar 

  51. Conner J, Braidwood L. Expression of inhibitor of growth 4 by HSV1716 improves oncolytic potency and enhances efficacy. Cancer Gene Ther. 2012;19(7):499–507. https://doi.org/10.1038/cgt.2012.24.

    Article  CAS  PubMed  Google Scholar 

  52. Ruotsalainen JJ, Kaikkonen MU, Niittykoski M, Martikainen MW, Lemay CG, Cox J, De Silva NS, Kus A, Falls TJ, Diallo JS, Le Boeuf F, Bell JC, Ylä-Herttuala S, Hinkkanen AE, Vähä-Koskela MJ. Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model. Gene Ther. 2015;22(1):65–75. https://doi.org/10.1038/gt.2014.83.

    Article  CAS  PubMed  Google Scholar 

  53. Qian S, Fan W, Liu T, Wu M, Zhang H, Cui X, Zhou Y, Hu J, Wei S, Chen H, Li X, Qian P. Seneca valley virus suppresses host type I interferon production by targeting adaptor proteins MAVS, TRIF, and TANK for cleavage. J Virol. 2017;91(16):e00823-e917. https://doi.org/10.1128/JVI.00823-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson DB, Puzanov I, Kelley MC. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy. 2015;7(6):611–9. https://doi.org/10.2217/imt.15.35 (Epub 2015 Jun 22. PMID: 26098919; PMCID: PMC4519012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu Z, Yang Y, Zhang X, Wang H, Xu W, Wang H, Xiao F, Bai Z, Yao H, Ma X, Jin L, Wu C, Seth P, Zhang Z, Wang L. An oncolytic adenovirus encoding decorin and granulocyte macrophage colony stimulating factor inhibits tumor growth in a colorectal tumor model by targeting pro-tumorigenic signals and via immune activation. Hum Gene Ther. 2017;28(8):667–80. https://doi.org/10.1089/hum.2017.033.

    Article  CAS  PubMed  Google Scholar 

  56. Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, Springfeld C, Jaeger D, von Kalle C, Ungerechts G. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther. 2013;24(7):644–54. https://doi.org/10.1089/hum.2012.205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yin L, Zhao C, Han J, Li Z, Zhen Y, Xiao R, Xu Z, Sun Y. Antitumor effects of oncolytic herpes simplex virus type 2 against colorectal cancer in vitro and in vivo. Ther Clin Risk Manag. 2017;13:117–30. https://doi.org/10.2147/TCRM.S128575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stephenson KB, Barra NG, Davies E, Ashkar AA, Lichty BD. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther. 2012;19(4):238–46. https://doi.org/10.1038/cgt.2011.81.

    Article  CAS  PubMed  Google Scholar 

  59. Li J, O’Malley M, Sampath P, Kalinski P, Bartlett DL, Thorne SH. Expression of CCL19 from oncolytic vaccinia enhances immunotherapeutic potential while maintaining oncolytic activity. Neoplasia. 2012;14(12):1115–21.

    Article  CAS  Google Scholar 

  60. Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9:271–85. https://doi.org/10.1038/nri2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou W, Zhu H, Chen W, Hu X, Pang X, Zhang J, Huang X, Fang B, He C. Treatment of patient tumor-derived colon cancer xenografts by a TRAIL gene-armed oncolytic adenovirus. Cancer Gene Ther. 2011;18(5):336–45. https://doi.org/10.1038/cgt.2010.83.

    Article  CAS  PubMed  Google Scholar 

  62. Blachere NE, Srivastava PK. Heat shock protein-based cancer vaccines and related thoughts on immunogenicity of human tumors. Semin Cancer Biol. 1995;6:349–55.

    Article  CAS  Google Scholar 

  63. Wang XY, Yi H, Yu X, Zuo D, Subjeck JR. Enhancing antigen cross- presentation and T-cell priming by complexing protein antigen to recombinant large heat-shock protein. Methods Mol Biol. 2011;787:277–87.

    Article  CAS  Google Scholar 

  64. Fan R, Wang C, Wang Y, Ren P, Gan P, Ji H, Xia Z, Hu S, Zeng Q, Huang W, Jiang Y, Huang X. Enhanced antitumoral efficacy and immune response following conditionally replicative adenovirus containing constitutive HSF1 delivery to rodent tumors. J Transl Med. 2012;10:101. https://doi.org/10.1186/1479-5876-10-101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamano T, Kubo S, Fukumoto M, Yano A, Mawatari-Furukawa Y, Okamura H, Tomita N. Whole cell vaccination using immunogenic cell death by an oncolytic adenovirus is effective against a colorectal cancer model. Mol Ther Oncolytics. 2016;3:16031. https://doi.org/10.1038/mto.2016.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chia SL, Lei J, Ferguson DJP, Dyer A, Fisher KD, Seymour LW. Group B adenovirus enadenotucirev infects polarised colorectal cancer cells efficiently from the basolateral surface expected to be encountered during intravenous delivery to treat disseminated cancer. Virology. 2017;505:162–71. https://doi.org/10.1016/j.virol.2017.02.011.

    Article  CAS  PubMed  Google Scholar 

  67. Yamaki M, Shinozaki K, Sakaguchi T, Meseck M, Ebert O, Ohdan H, Woo SL. The potential of recombinant vesicular stomatitis virus-mediated virotherapy against metastatic colon cancer. Int J Mol Med. 2013;31(2):299–306. https://doi.org/10.3892/ijmm.2012.1205.

    Article  PubMed  Google Scholar 

  68. Ehrig K, Kilinc MO, Chen NG, Stritzker J, Buckel L, Zhang Q, Szalay AA. Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med. 2013;11:79. https://doi.org/10.1186/1479-5876-11-79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang W, Wang F, Hu X, Liang J, Liu B, Guan Q, Liu S. Inhibition of colorectal cancer liver metastasis in BALB/c mice following intratumoral injection of oncolytic herpes simplex virus type 2 for the induction of specific antitumor immunity. Oncol Lett. 2019;17(1):815–22. https://doi.org/10.3892/ol.2018.9720.

    Article  CAS  PubMed  Google Scholar 

  70. Shiozawa Y, Nie B, Pienta KJ, Morgan TM, Taichman RS. Cancer stem cells and their role in metastasis. Pharmacol Ther. 2013;138(2):285–93. https://doi.org/10.1016/j.pharmthera.2013.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Terai K, Bi D, Liu Z, Kimura K, Sanaat Z, Dolatkhah R, Soleimani M, Jones C, Bright A, Esfandyari T, Farassati F. A novel oncolytic Herpes capable of cell-specific transcriptional targeting of CD133± cancer cells induces significant tumor regression. Stem Cells. 2018;36(8):1154–69. https://doi.org/10.1002/stem.2835.

    Article  CAS  PubMed  Google Scholar 

  72. Yang H, Peng T, Li J, Wang Y, Zhang W, Zhang P, Peng S, Du T, Li Y, Yan Q, Liu B. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models. Gene Ther. 2016;23(5):450–9. https://doi.org/10.1038/gt.2016.15.

    Article  CAS  PubMed  Google Scholar 

  73. Eveno C, Mojica K, Ady JW, Thorek DL, Longo V, Belin LJ, Gholami S, Johnsen C, Zanzonico P, Chen N, Yu T, Szalay AA, Fong Y. Gene therapy using therapeutic and diagnostic recombinant oncolytic vaccinia virus GLV-1h153 for management of colorectal peritoneal carcinomatosis. Surgery. 2015;157(2):331–7. https://doi.org/10.1016/j.surg.2014.09.008.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shen W, Tu JK, Wang XH, Fu ZX. Oncolytic adenovirus mediated Survivin RNA interference and 5-fluorouracil synergistically suppress the lymphatic metastasis of colorectal cancer. Oncol Rep. 2010;24(5):1285–90.

    CAS  PubMed  Google Scholar 

  75. Peng W, Li J, Yin XG, Xu JF, Cheng LZ. Adenovirus KH901 promotes 5-FU antitumor efficacy and S phase in LoVo cells. Front Biosci (Elite Ed). 2012;4:2389–95.

    PubMed  Google Scholar 

  76. Wu Z, Ichinose T, Naoe Y, Matsumura S, Villalobos IB, Eissa IR, Yamada S, Miyajima N, Morimoto D, Mukoyama N, Nishikawa Y, Koide Y, Kodera Y, Tanaka M, Kasuya H. Combination of cetuximab and oncolytic virus canerpaturev synergistically inhibits human colorectal cancer growth. Mol Ther Oncolytics. 2019;13:107–15. https://doi.org/10.1016/j.omto.2019.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiao B, Qin Y, Ying C, Ma B, Wang B, Long F, Wang R, Fang L, Wang Y. Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model. Mol Med Rep. 2017;16(6):9375–82. https://doi.org/10.3892/mmr.2017.7784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ottolino-Perry K, Acuna SA, Angarita FA, Sellers C, Zerhouni S, Tang N, McCart JA. Oncolytic vaccinia virus synergizes with irinotecan in colorectal cancer. Mol Oncol. 2015;9(8):1539–52. https://doi.org/10.1016/j.molonc.2015.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Esaki S, Goshima F, Kimura H, Murakami S, Nishiyama Y. Enhanced antitumoral activity of oncolytic herpes simplex virus with gemcitabine using colorectal tumor models. Int J Cancer. 2013;132(7):1592–601. https://doi.org/10.1002/ijc.27823.

    Article  CAS  PubMed  Google Scholar 

  80. Skelding KA, Barry RD, Shafren DR. Enhanced oncolysis mediated by Coxsackievirus A21 in combination with doxorubicin hydrochloride. Invest New Drugs. 2010;30(2):568–81. https://doi.org/10.1007/s10637-010-9614-0.

    Article  CAS  PubMed  Google Scholar 

  81. Moehler M, Sieben M, Roth S, Springsguth F, Leuchs B, Zeidler M, Dinsart C, Rommelaere J, Galle PR. Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1. BMC Cancer. 2011;11:464. https://doi.org/10.1186/1471-2407-11-464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Garofalo M, Iovine B, Kuryk L, Capasso C, Hirvinen M, Vitale A, Yliperttula M, Bevilacqua MA, Cerullo V. Oncolytic adenovirus loaded with l-carnosine as novel strategy to enhance the antitumor activity. Mol Cancer Ther. 2016;15(4):651–60. https://doi.org/10.1158/1535-7163.MCT-15-0559.

    Article  CAS  PubMed  Google Scholar 

  83. Xiao X, Liang J, Huang C, Li K, Xing F, Zhu W, Lin Z, Xu W, Wu G, Zhang J, Lin X, Tan Y, Cai J, Hu J, Chen X, Huang Y, Qin Z, Qiu P, Su X, Chen L, Lin Y, Zhang H, Yan G. DNA-PK inhibition synergizes with oncolytic virus M1 by inhibiting antiviral response and potentiating DNA damage. Nat Commun. 2018;9(1):4342. https://doi.org/10.1038/s41467-018-06771-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boyer J, Rohleder K, Ketner G. Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology. 1999;263:307–12.

    Article  CAS  Google Scholar 

  85. Gao H, Zhang X, Ding Y, Qiu R, Hong Y, Chen W. Synergistic suppression effect on tumor growth of colorectal cancer by combining radiotherapy with a TRAIL-armed oncolytic adenovirus. Technol Cancer Res Treat. 2019;18:1533033819853290. https://doi.org/10.1177/1533033819853290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Touchefeu Y, Khan AA, Borst G, Zaidi SH, McLaughlin M, Roulstone V, Mansfield D, Kyula J, Pencavel T, Karapanagiotou EM, Clayton J, Federspiel MJ, Russell SJ, Garrett M, Collins I, Harrington KJ. Optimising measles virus-guided radiovirotherapy with external beam radiotherapy and specific checkpoint kinase 1 inhibition. Radiother Oncol. 2013;108(1):24–31. https://doi.org/10.1016/j.radonc.2013.05.036.

    Article  CAS  PubMed  Google Scholar 

  87. Martin NT, Bell JC. Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther. 2018;26(6):1414–22. https://doi.org/10.1016/j.ymthe.2018.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pardoll DM. (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  Google Scholar 

  89. Heinrich B, Goepfert K, Delic M, Galle PR, Moehler M. Influence of the oncolytic parvovirus H-1, CTLA-4 antibody tremelimumab and cytostatic drugs on the human immune system in a human in vitro model of colorectal cancer cells. Onco Targets Ther. 2013;6:1119–27. https://doi.org/10.2147/OTT.S49371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shi G, Yang Q, Zhang Y, Jiang Q, Lin Y, Yang S, Wang H, Cheng L, Zhang X, Li Y, Wang Q, Liu Y, Wang Q, Zhang H, Su X, Dai L, Liu L, Zhang S, Li J, Li Z, Yang Y, Yu D, Wei Y, Deng H. Modulating the tumor microenvironment via oncolytic viruses and CSF-1R inhibition synergistically enhances anti-PD-1 immunotherapy. Mol Ther. 2019;27(1):244–60. https://doi.org/10.1016/j.ymthe.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  91. Yan Y, Li S, Jia T, Du X, Xu Y, Zhao Y, Li L, Liang K, Liang W, Sun H, Li R. Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity. Tumour Biol. 2015;36(6):4535–43. https://doi.org/10.1007/s13277-015-3098-7.

    Article  CAS  PubMed  Google Scholar 

  92. Yan Y, Xu Y, Zhao Y, Li L, Sun P, Liu H, Fan Q, Liang K, Liang W, Sun H, Du X, Li R. Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model. Tumour Biol. 2014;35(2):1113–22. https://doi.org/10.1007/s13277-013-1149-5.

    Article  CAS  PubMed  Google Scholar 

  93. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017;3(6):841–9. https://doi.org/10.1001/jamaoncol.2016.2064.

    Article  PubMed  Google Scholar 

  94. Zeh HJ, Downs-Canner S, McCart JA, Guo ZS, Rao UN, Ramalingam L, Thorne SH, Jones HL, Kalinski P, Wieckowski E, O’Malley ME, Daneshmand M, Hu K, Bell JC, Hwang TH, Moon A, Breitbach CJ, Kirn DH, Bartlett DL. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther. 2015;23(1):202–14. https://doi.org/10.1038/mt.2014.194.

    Article  CAS  PubMed  Google Scholar 

  95. Downs-Canner S, Guo ZS, Ravindranathan R, Breitbach CJ, O’Malley ME, Jones HL, Moon A, McCart JA, Shuai Y, Zeh HJ, Bartlett DL. Phase 1 study of intravenous oncolytic Poxvirus (vvDD) in patients with advanced solid cancers. Mol Ther. 2016;24(8):1492–501. https://doi.org/10.1038/mt.2016.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jonker DJ, Tang PA, Kennecke H, Welch SA, Cripps MC, Asmis T, Chalchal H, Tomiak A, Lim H, Ko YJ, Chen EX, Alcindor T, Goffin JR, Korpanty GJ, Feilotter H, Tsao MS, Theis A, Tu D, Seymour L. A randomized phase II study of FOLFOX6/Bevacizumab with or without Pelareorep in patients with metastatic colorectal cancer: IND.210, a Canadian cancer trials group trial. Clin Colorectal Cancer. 2018;17(3):231–9. https://doi.org/10.1016/j.clcc.2018.03.001.

    Article  PubMed  Google Scholar 

  97. Tilgase A, Olmane E, Nazarovs J, Brokāne L, Erdmanis R, Rasa A, Alberts P. Multimodality treatment of a colorectal cancer stage IV patient with FOLFOX-4, Bevacizumab, Rigvir oncolytic virus, and surgery. Case Rep Gastroenterol. 2018;12(2):457–65. https://doi.org/10.1159/000492210.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bouvet M, Reid TR, Larson C, Oronsky B, Carter C, Morris JC. Extended treatment with MY-NEOVAX, personalized neoantigen-enhanced oncolytic viruses, for two end-stage cancer patients. Oxf Med Case Rep. 2019;11:461–3. https://doi.org/10.1093/omcr/omz105.

    Article  Google Scholar 

  99. Garcia-Carbonero R, Salazar R, Duran I, Osman-Garcia I, Paz-Ares L, Bozada JM, Boni V, Blanc C, Seymour L, Beadle J, Alvis S, Champion B, Calvo E, Fisher K. Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J Immunother Cancer. 2017;5(1):71. https://doi.org/10.1186/s40425-017-0277-7.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, Moon A, Mun JH, Sommermann EM, Maruri Avidal L, Patt R, Pelusio A, Burke J, Hwang TH, Kirn D, Park YS. Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer. Mol Ther. 2015;23(9):1532–40. https://doi.org/10.1038/mt.2015.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Geevarghese SK, Geller DA, de Haan HA, Hörer M, Knoll AE, Mescheder A, Nemunaitis J, Reid TR, Sze DY, Tanabe KK, Tawfik H. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther. 2010;21(9):1119–28. https://doi.org/10.1089/hum.2010.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang L, Lo CH, He X, et al. Risk factor profiles differ for cancers of different regions of the colorectum. Gastroenterology. 2020;159(1):241-256.e13. https://doi.org/10.1053/j.gastro.2020.03.054.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Essani.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflicts of interest

Sadia Islam Kana and Karim Essani have no conflicts of interest that are directly relevant to the content of this article.

Availability of data and material

The articles surveyed to write this review were obtained from PUBMED by searching under the terms colorectal cancer, colorectal cancer biomarkers, current treatment modalities of colorectal cancer, and OV of colorectal cancer.

Author contributions

Sadia Islam Kana is a graduate student in Dr. Karim Essani’s laboratory and wrote the review. Dr. Essani provided necessary guidance and editorial comments.

Acknowledgements

The authors thank Professor Rob Eversole for his editorial comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kana, S.I., Essani, K. Immuno-Oncolytic Viruses: Emerging Options in the Treatment of Colorectal Cancer. Mol Diagn Ther 25, 301–313 (2021). https://doi.org/10.1007/s40291-021-00517-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00517-7

Navigation