Skip to main content
Log in

Importance of Identifying Novel Biomarkers of Microvascular Damage in Type 1 Diabetes

  • Leading Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Microvascular complications of type 1 diabetes, which primarily include diabetic kidney disease, retinopathy, and neuropathy, are characterized by damage to the microvasculature of the kidney, retina, and neurons. The pathogenesis of these complications is multifactorial, and several pathways are implicated. These complications are often silent during their early stages, and once symptoms develop, there might be little to be done to cure them. Thus, there is a strong need for novel biomarkers to identify individuals at risk of microvascular complications at an early stage and guide the implementation of new therapeutic options for preventing their development and progression. Recent advancements in proteomics, metabolomics, and other ‘omics’ have led to the identification of several potential biomarkers of microvascular complications. However, biomarker discovery has met several challenges and, up to now, there are no new biomarkers that have been implemented into clinical practice. This highlights the need for further work in this area to move towards better diagnostic and prognostic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Livingstone SJ, Levin D, Looker HC, Lindsay RS, Wild SH, Joss N, et al. Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008–2010. JAMA. 2015;313:37–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Rawshani A, Sattar N, Franzén S, Rawshani A, Hattersley AT, Svensson A-M, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018;392:477–86.

    PubMed  PubMed Central  Google Scholar 

  3. Svane J, Lynge TH, Pedersen-Bjergaard U, Jespersen T, Gislason GH, Risgaard B, et al. Cause-specific mortality in children and young adults with diabetes mellitus: a Danish nationwide cohort study. Eur J Prev Cardiol. 2019;2019:2047487319836550.

    Google Scholar 

  4. Forbes JM, Fotheringham AK. Vascular complications in diabetes: old messages, new thoughts. Diabetologia. 2017;60:2129–38.

    PubMed  Google Scholar 

  5. Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al. Diabetic microvascular disease: an endocrine society scientific statement. J Clin Endocrinol Metab. 2017;102:4343–410.

    PubMed  PubMed Central  Google Scholar 

  6. Donaghue KC, Marcovecchio ML, Wadwa RP, Chew EY, Wong TY, Calliari LE, et al. ISPAD clinical practice consensus guidelines 2018: microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes. 2018;19:262–74.

    PubMed  Google Scholar 

  7. Olivier M, Asmis R, Hawkins GA, Howard TD, Cox LA. The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci. 2019;20:4781.

    PubMed Central  CAS  Google Scholar 

  8. Gan WZ, Ramachandran V, Lim CSY, Koh RY. Omics-based biomarkers in the diagnosis of diabetes. J Basic Clin Physiol Pharmacol. 2019;31:2. https://doi.org/10.1515/jbcpp-2019-0120.

    Article  CAS  Google Scholar 

  9. Mauricio D, Alonso N, Gratacòs M. Chronic diabetes complications: the need to move beyond classical concepts. Trends Endocrinol Metab. 2020;31:287–95.

    PubMed  CAS  Google Scholar 

  10. Girach A, Vignati L. Diabetic microvascular complications: can the presence of one predict the development of another? J Diabetes Compl. 2006;20:228–37.

    Google Scholar 

  11. Girach A, Manner D, Porta M. Diabetic microvascular complications: can patients at risk be identified? A review. Int J Clin Pract. 2006;60:1471–83.

    PubMed  CAS  Google Scholar 

  12. Schalkwijk CG, Stehouwer CDA. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005;109:143–59.

    CAS  Google Scholar 

  13. Jha JC, Jandeleit-Dahm KAM, Cooper ME. New insights into the use of biomarkers of diabetic nephropathy. Adv Chronic Kidney Dis. 2014;21:318–26.

    PubMed  Google Scholar 

  14. Sharma H, Lencioni M, Narendran P. Cardiovascular disease in type 1 diabetes. Cardiovasc Endocrinol Metab. 2019;8:28–34.

    PubMed  PubMed Central  Google Scholar 

  15. Groop P-H, Thomas MC, Moran JL, Wadèn J, Thorn LM, Mäkinen V-P, et al. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58:1651–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care. 2006;29:798–804.

    PubMed  Google Scholar 

  17. Garofolo M, Gualdani E, Giannarelli R, Aragona M, Campi F, Lucchesi D, et al. Microvascular complications burden (nephropathy, retinopathy and peripheral polyneuropathy) affects risk of major vascular events and all-cause mortality in type 1 diabetes: a 10-year follow-up study. Cardiovasc Diabetol. 2019;18:159.

    PubMed  PubMed Central  Google Scholar 

  18. Bjerg L, Hulman A, Carstensen B, Charles M, Witte DR, Jørgensen ME. Effect of duration and burden of microvascular complications on mortality rate in type 1 diabetes: an observational clinical cohort study. Diabetologia. 2019;62:633–43.

    PubMed  Google Scholar 

  19. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Fu H, Liu S, Bastacky SI, Wang X, Tian XJ, Zhou D. Diabetic kidney diseases revisited: a new perspective for a new era. Mol Metab. 2019;30:250–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Warren AM, Knudsen ST, Cooper ME. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin Ther Targets. 2019;23:579–91.

    PubMed  Google Scholar 

  22. Stephen R, Jolly SE, Nally JV, Navaneethan SD. Albuminuria: when urine predicts kidney and cardiovascular disease. Cleve Clin J Med. 2014;81:41–50.

    PubMed  Google Scholar 

  23. American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl. 1):S135–S151151.

    Google Scholar 

  24. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366:1227–399.

    PubMed  CAS  Google Scholar 

  25. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376:124–36.

    PubMed  Google Scholar 

  26. Rasmussen ML, Broe R, Frydkjaer-Olsen U, Olsen BS, Mortensen HB, Peto T, et al. Retinal vascular geometry and its association to microvascular complications in patients with type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Graefe’s Arch Clin Exp Ophthalmol. 2017;255:293–9.

    CAS  Google Scholar 

  27. Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, Walker J, et al. Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019;7:938–48.

    PubMed  Google Scholar 

  28. Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr Rev. 2019;40:153–92.

    PubMed  Google Scholar 

  29. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40:136-154.  

    PubMed  Google Scholar 

  30. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93:137–88.

    PubMed  CAS  Google Scholar 

  31. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.

    PubMed  CAS  Google Scholar 

  32. Marcovecchio ML, Lucantoni M, Chiarelli F. Role of chronic and acute hyperglycemia in the development of diabetes complications. Diabetes Technol Ther. 2011;13:389–94.

    PubMed  CAS  Google Scholar 

  33. Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, Pennathur S, et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019;62:1539–49.

    PubMed  PubMed Central  Google Scholar 

  34. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Google Scholar 

  35. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–6.

    PubMed  PubMed Central  Google Scholar 

  36. Radcliffe NJ, Seah J-M, Clarke M, MacIsaac RJ, Jerums G, Ekinci EI. Clinical predictive factors in diabetic kidney disease progression. J Diabetes Investig. 2017;8:6–18.

    PubMed  CAS  Google Scholar 

  37. Colombo M, Valo E, McGurnaghan SJ, Sandholm N, Blackbourn LAK, Dalton RN, et al. Biomarker panels associated with progression of renal disease in type 1 diabetes. Diabetologia. 2019;62:1616–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Tofte N, Lindhardt M, Adamova K, Bakker SJL, Beige J, Beulens JWJ, et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020;8:301–12.

    PubMed  CAS  Google Scholar 

  39. Frangogiannis NG. Biomarkers: hopes and challenges in the path from discovery to clinical practice. Transl Res. 2012;159:197–204.

    PubMed  PubMed Central  Google Scholar 

  40. Karahalil B. Overview of systems biology and omics technologies. Curr Med Chem. 2016;23:4221–300.

    PubMed  CAS  Google Scholar 

  41. Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol. 2020. https://doi.org/10.1038/s41581-020-0286-5.

    Article  PubMed  Google Scholar 

  42. Colhoun HM, Marcovecchio ML. Biomarkers of diabetic kidney disease. Diabetologia. 2018;61:996–1011.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Ting DSW, Tan K-A, Phua V, Tan GSW, Wong CW, Wong TY. Biomarkers of diabetic retinopathy. Curr Diab Rep. 2016;16:125.

    PubMed  Google Scholar 

  44. Youngblood H, Robinson R, Sharma A, Sharma S. Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int J Mol Sci. 2019;20:4755.

    PubMed Central  CAS  Google Scholar 

  45. Shores DR, Everett AD. Children as biomarker orphans: progress in the field of pediatric biomarkers. J Pediatr. 2018;193(14–20):e31.

    Google Scholar 

  46. Lyons TJ, Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers. Transl Res. 2012;159:303–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Kraus VB. Biomarkers as drug development tools: discovery, validation, qualification and use. Nat Rev Rheumatol. 2018;14:354–62.

    PubMed  CAS  Google Scholar 

  48. Pena MJ, Mischak H, Heerspink HJL. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. Diabetologia. 2016;59:1819–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Looker HC, Mauer M, Nelson RG. Role of kidney biopsies for biomarker discovery in diabetic kidney disease. Adv Chronic Kidney Dis. 2018;25:192–201.

    PubMed  PubMed Central  Google Scholar 

  50. Dubin RF, Rhee EP. Proteomics and metabolomics in kidney disease, including insights into etiology, treatment, and prevention. Clin J Am Soc Nephrol. 2020;15:404–11.

    PubMed  Google Scholar 

  51. Matoba K, Takeda Y, Nagai Y, Kawanami D, Utsunomiya K, Nishimura R. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int J Mol Sci. 2019;20:3393.

    PubMed Central  CAS  Google Scholar 

  52. Cheng D, Fei Y, Saulnier PJ, Wang N. Circulating TNF receptors and risk of renal disease progression, cardiovascular disease events and mortality in patients with diabetes: a systematic review and meta-analysis. Endocrine. 2019;68:32–433.

    PubMed  Google Scholar 

  53. Niewczas MA, Pavkov ME, Skupien J, Smiles A, Md Dom ZI, Wilson JM, et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med. 2019;25:805–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Abbasi F, Moosaie F, Khaloo P, Dehghani Firouzabadi F, Fatemi Abhari SM, Atainia B, et al. Neutrophil gelatinase-associated lipocalin and retinol-binding protein-4 as biomarkers for diabetic kidney disease. Kidney Blood Press Res. 2020;45:222–32.

    PubMed  CAS  Google Scholar 

  55. Jenks SJ, Conway BR, McLachlan S, Teoh WL, Williamson RM, Webb DJ, et al. Cardiovascular disease biomarkers are associated with declining renal function in type 2 diabetes. Diabetologia. 2017;60:1400–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Bidadkosh A, Lambooy SPH, Heerspink HJ, Pena MJ, Henning RH, Buikema H, et al. Predictive properties of biomarkers GDF-15, NTproBNP, and hs-TnT for morbidity and mortality in patients with type 2 diabetes with nephropathy. Diabetes Care. 2017;40:784–92.

    PubMed  CAS  Google Scholar 

  57. Mischak H, Delles C, Vlahou A, Vanholder R. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol. 2015;11:221–32.

    PubMed  CAS  Google Scholar 

  58. Good DM, Zürbig P, Argilés À, Bauer HW, Behrens G, Coon JJ, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9:2424–37.

    PubMed  PubMed Central  Google Scholar 

  59. Tofte N, Persson F, Rossing P. Omics research in diabetic kidney disease: new biomarker dimensions and new understandings? J Nephrol. 2020. https://doi.org/10.1007/s40620-020-00759-4.

    Article  PubMed  Google Scholar 

  60. Wu T, Qiao S, Shi C, Wang S, Ji G. Metabolomics window into diabetic complications. J Diabetes Investig. 2018;9:244–55.

    PubMed  Google Scholar 

  61. Kwan CC, Fawzi AA. Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Curr Diab Rep. 2019;19:95.

    PubMed  Google Scholar 

  62. Mansour SE, Browning DJ, Wong K, Flynn HW, Bhavsar AR. The evolving treatment of diabetic retinopathy. Clin Ophthalmol. 2020;14:653–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Liew G, Lei Z, Tan G, Joachim N, Ho I-V, Wong TY, et al. Metabolomics of diabetic retinopathy. Curr Diab Rep. 2017;17:102.

    PubMed  Google Scholar 

  64. Jin HY, Park TS. Role of inflammatory biomarkers in diabetic peripheral neuropathy. J Diabetes Investig. 2018;9:1016–8.

    PubMed  PubMed Central  Google Scholar 

  65. Herder C, Kannenberg JM, Huth C, Carstensen-Kirberg M, Rathmann W, Koenig W, et al. Proinflammatory cytokines predict the incidence and progression of distal sensorimotor polyneuropathy: KORA F4/FF4 study. Diabetes Care. 2017;40:569–76.

    PubMed  CAS  Google Scholar 

  66. Kumar A, Mittal R. Nrf2: a potential therapeutic target for diabetic neuropathy. Inflammopharmacology. 2017;25:393–402.

    PubMed  CAS  Google Scholar 

  67. Tummanapalli SS, Willcox MDP, Issar T, Yan A, Pisarcikova J, Kwai N, et al. Tear film substance P: a potential biomarker for diabetic peripheral neuropathy. Ocul Surf. 2019;17:690–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Loredana Marcovecchio.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of interest

M. Loredana Marcovecchio has no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcovecchio, M.L. Importance of Identifying Novel Biomarkers of Microvascular Damage in Type 1 Diabetes. Mol Diagn Ther 24, 507–515 (2020). https://doi.org/10.1007/s40291-020-00483-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00483-6

Navigation