Skip to main content
Log in

Circulating Nucleic Acids in Maternal Plasma and Serum in Pregnancy Complications: Are They Really Useful in Clinical Practice? A Systematic Review

  • Systematic Review
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Objective

A systematic review was carried out to summarize the available evidence to assess whether circulating nucleic acids in maternal plasma and serum (CNAPS) have the potential to serve as extra and independent markers for the prediction and/or progression monitoring of the most common and severe complications of pregnancy, including preeclampsia, intrauterine growth restriction, preterm delivery, morbidly adherent placenta, gestational diabetes, antiphospholipid syndrome, threatened abortion, intrahepatic cholestasis of pregnancy, and hyperemesis gravidarum.

Method

A comprehensive literature search of the MEDLINE (PubMed), EMBASE, and ISI Web of Knowledge databases was conducted to identify relevant studies that included amounts of CNAPS in the abovementioned pregnancy complications.

Results

Eighty-three studies met the eligibility criteria. The vast majority of studies were conducted on the quantity of total circulating cell free DNA (cfDNA) and cell free fetal DNA (cffDNA), and some were conducted on messenger RNA (mRNA) species. A few studies have instead evaluated the cell free DNA fetal fraction (cfDNAff), but only in a limited number of pregnancy complications. Despite the growing interest and the abundance of the papers available, little information is available for other new CNAPS, including microRNA (miRNA), long noncoding RNA (lncRNA), mitochondrial DNA (mtDNA), and circular RNA.

Conclusion

Due to the heterogeneity of the populations enrolled, the scarcity of the studies that adjusted the CNAPS values for possible confounding factors, and the difficulty in interpreting the published data, no conclusion regarding the statistical robustness and clinical relevance of the data can be made at present. If assayed at the third trimester, the CNAPS have, however, shown better performance, and could be used in populations already at risk of developing complications as suggested by the presence of other clinical features. Other CNAPS, including miRNA, are under investigation, especially for the screening of gestational diabetes mellitus, but no data about their clinical utility are available. Circulating DNA (cfDNA, cffDNA, and cfDNAff) and mRNA have not been properly evaluated yet, especially in patients asymptomatic early in pregnancy but who developed complications later, perhaps because of the high cost of these techniques and the availability of other predictors of pregnancy complications (biochemical, biophysical, and ultrasound markers). Therefore, from the analysis of the data, the positive predictive value is not available. As regards the new CNAPS, including miRNA, there are still no sufficient data to understand if they can be promising markers for pregnancy complications monitoring and screening, since CNAPS are statistically weak and expensive. It is reasonable to currently conclude that the use of the CNAPS in clinical practice is not recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lo YMD, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.

    CAS  PubMed  Google Scholar 

  2. Lo YM, Lau TK, Zhang J, Leung TN, Chang AM, Hjelm NM, Elmes RS, Bianchi DW. Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clin Chem. 1999;45:1747–51.

    CAS  PubMed  Google Scholar 

  3. Lo YM, Hjelm NM, Fidler C, Sargent IL, Murphy MF, Chamberlain PF, Poon PM, Redman CW, Wainscoat JS. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med. 1998;339:1734–8.

    CAS  PubMed  Google Scholar 

  4. Farina A, LeShane ES, Lambert-Messerlian GM, Canick JA, Lee T, Neveux LM, Palomaki GE, Bianchi DW. Evaluation of cell-free fetal DNA as a second-trimester maternal serum marker of Down syndrome pregnancy. Clin Chem. 2003;49:239–42.

    CAS  PubMed  Google Scholar 

  5. Lim JH, Kim MH, Han YJ, Lee DE, Park SY, Han JY, Kim MY, Ryu HM. Cell-free fetal DNA and cell-free total DNA levels in spontaneous abortion with fetal chromosomal aneuploidy. PLoS One. 2013;8:e56787.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wataganara T, LeShane ES, Farina A, Messerlian GM, Lee T, Canick JA, Bianchi DW. Maternal serum cell-free fetal DNA levels are increased in cases of trisomy 13 but not trisomy 18. Hum Genet. 2003;112:204–8.

    CAS  PubMed  Google Scholar 

  7. Contro E, Bernabini D, Farina A. Cell-free fetal DNA for the prediction of pre-eclampsia at the first and second trimesters: a systematic review and meta-analysis. Mol Diagn Ther. 2017;21:125–35.

    CAS  PubMed  Google Scholar 

  8. Hahn S, Huppertz B, Holzgreve W. Fetal cells and cell free fetal nucleic acids in maternal blood: new tools to study abnormal placentation? Placenta. 2005;26:515–26.

    CAS  PubMed  Google Scholar 

  9. Sekizawa A, Jimbo M, Saito H, Iwasaki M, Matsuoka R, Okai T, Farina A. Cell-free fetal DNA in the plasma of pregnant women with severe fetal growth restriction. Am J Obstet Gynecol. 2003;188:480–4.

    CAS  PubMed  Google Scholar 

  10. Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet. 1998;352:1904–5.

    CAS  PubMed  Google Scholar 

  11. Farina A, LeShane ES, Romero R, Gomez R, Chaiworapongsa T, Rizzo N, Bianchi DW. High levels of fetal cell-free DNA in maternal serum: a risk factor for spontaneous preterm delivery. Am J Obstet Gynecol. 2005;193:421–5.

    CAS  PubMed  Google Scholar 

  12. Illanes S, Gomez R, Fornes R, Figueroa-Diesel H, Schepeler M, Searovic P, Serra R, Perez A, Nien JK. Free fetal DNA levels in patients at risk of preterm labour. Prenat Diagn. 2011;31:1082–5.

    CAS  PubMed  Google Scholar 

  13. Jakobsen TR, Clausen FB, Rode L, Dziegiel MH, Tabor A. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery. Prenat Diagn. 2012;32:840–5.

    CAS  PubMed  Google Scholar 

  14. Sugito Y, Sekizawa A, Farina A, Yukimoto Y, Saito H, Iwasaki M, Rizzo N, Okai T. Relationship between severity of hyperemesis gravidarum and fetal DNA concentration in maternal plasma. Clin Chem. 2003;49:1667–9.

    CAS  PubMed  Google Scholar 

  15. Sekizawa A, Jimbo M, Saito H, Iwasaki M, Sugito Y, Yukimoto Y, Otsuka J, Okai T. Increased cell-free fetal DNA in plasma of two women with invasive placenta. Clin Chem. 2002;48:353–4.

    CAS  PubMed  Google Scholar 

  16. Cotter AM, Martin CM, O’Leary JJ, Daly SF. Increased fetal RhD gene in the maternal circulation in early pregnancy is associated with an increased risk of pre-eclampsia. BJOG. 2005;112(5):584–7.

    CAS  PubMed  Google Scholar 

  17. Ng EK, Tsui NB, Lau TK, Leung TN, Chiu RW, Panesar NS, Lit LC, Chan KW, Lo YM. mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci USA. 2003;100:4748–53.

    CAS  PubMed  Google Scholar 

  18. Ng EK, Leung TN, Tsui NB, Lau TK, Panesar NS, Chiu RW, Lo YM. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin Chem. 2003;49:727–31.

    CAS  PubMed  Google Scholar 

  19. Tsui NB, Chim SS, Chiu RW, Lau TK, Ng EK, Leung TN, Tong YK, Chan KC, Lo YM. Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J Med Genet. 2004;41:461–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Farina A, Zucchini C, Sekizawa A, Purwosunu Y, de Sanctis P, Santarsiero G, Rizzo N, Morano D, Okai T. Performance of messenger RNAs circulating in maternal blood in the prediction of preeclampsia at 10–14 weeks. Am J Obstet Gynecol. 2010;203(575):e1–7.

    Google Scholar 

  21. Zanello M, Sekizawa A, Purwosunu Y, Curti A, Farina A. Circulating mRNA for the PLAC1 gene as a second trimester marker (14–18 weeks’ gestation) in the screening for late preeclampsia. Fetal Diagn Ther. 2014;36:196–201.

    PubMed  Google Scholar 

  22. Zanello M, DeSanctis P, Pula G, Zucchini C, Pittalis MC, Rizzo N, Farina A. Circulating mRNA for epidermal growth factor-like domain 7 (EGFL7) in maternal blood and early intrauterine growth restriction. A preliminary analysis. Prenat Diagn. 2013;33:168–72.

    CAS  PubMed  Google Scholar 

  23. Quezada MS, Francisco C, Dumitrascu-Biris D, Nicolaides KH, Poon LC. Fetal fraction of cell-free DNA in maternal plasma in the prediction of spontaneous preterm delivery. Ultrasound Obstet Gynecol. 2015;45:101–5.

    CAS  PubMed  Google Scholar 

  24. Rolnik DL, da Silva Costa F, Lee TJ, Schmid M, McLennan AC. Association between fetal fraction on cell-free DNA testing and first-trimester markers for pre-eclampsia. Ultrasound Obstet Gynecol. 2018;52:722–7.

    CAS  PubMed  Google Scholar 

  25. Morano D, Rossi S, Lapucci C, Pittalis MC, Farina A. Cell-free DNA (cfDNA) fetal fraction in early- and late-onset fetal growth restriction. Mol Diagn Ther. 2018;22:613–9.

    CAS  PubMed  Google Scholar 

  26. Cai M, Kolluru GK, Ahmed A. Small molecule, big prospects: microRNA in pregnancy and its complications. J Pregnancy. 2017;2017:6972732.

    PubMed  PubMed Central  Google Scholar 

  27. Jóźwik M, Lipka A. Recent progress in human placental transcriptomics. Dev Period Med. 2019;23:104–8.

    PubMed  Google Scholar 

  28. Myatt L, Muralimanoharan S, Maloyan A. Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA’s and mitochondria. Adv Exp Med Biol. 2014;814:133–46.

    CAS  PubMed  Google Scholar 

  29. Yan L, Feng J, Cheng F, Cui X, Gao L, Chen Y, Wang F, Zhong T, Li Y, Liu L. Circular RNA expression profiles in placental villi from women with gestational diabetes mellitus. Biochem Biophys Res Commun. 2018;498:743–50.

    CAS  PubMed  Google Scholar 

  30. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

    PubMed  PubMed Central  Google Scholar 

  31. Conn VS, Valentine JC, Cooper HM, Rantz MJ. Grey literature in meta-analyses. Nurs Res. 2003;52:256–61.

    PubMed  Google Scholar 

  32. Lo CK-L, Mertz D, Loeb M. Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol. 2014;14:45.

    PubMed  PubMed Central  Google Scholar 

  33. Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, Perruolo E, Parati G; ESH Working Group on CV Risk in Low Resource Settings. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS One. 2016;11(1):e0147601.

    PubMed  PubMed Central  Google Scholar 

  34. Cohen IT, Patel K. Peer review interrater reliability of scientific abstracts: a study of an anesthesia subspecialty society. J Educ Perioper Med JEPM. 2005;7:E035.

    PubMed  Google Scholar 

  35. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170:1–7.

    PubMed  Google Scholar 

  36. Steegers EAP, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet Lond Engl. 2010;376:631–44.

    Google Scholar 

  37. Jebbink J, Wolters A, Fernando F, Afink G, van der Post J, Ris-Stalpers C. Molecular genetics of preeclampsia and HELLP syndrome—a review. Biochim Biophys Acta. 2012:1960-9.

  38. ACOG Committee Opinion No. 743: Low-dose aspirin use during pregnancy. Obstet Gynecol. 2018;132(1):e44–52.

    Google Scholar 

  39. Rolnik DL, Wright D, Poon LC, O’Gorman N, Syngelaki A, de Paco Matallana C, Akolekar R, Cicero S, Janga D, Singh M, Molina FS, Persico N, Jani JC, Plasencia W, Papaioannou G, Tenenbaum-Gavish K, Meiri H, Gizurarson S, Maclagan K, Nicolaides KH. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–22. https://doi.org/10.1056/NEJMoa1704559 (Epub 2017 Jun 28).

    Article  CAS  PubMed  Google Scholar 

  40. Engel K, Tomasz P, Bilar M, Agnieszka O, Ewa B, Elzbieta R-W. Assessment of the female fetal DNA concentration in the plasma of the pregnant women as preeclampsia indicator–preliminary report. Eur J Obstet Gynecol Reprod Biol. 2009;146:165–8.

    Google Scholar 

  41. Muñoz-Hernández R, Medrano-Campillo P, Miranda ML, Macher HC, Praena-Fernández JM, Vallejo-Vaz AJ, Dominguez-Simeon MJ, Moreno-Luna R, Stiefel P. Total and fetal circulating cell-free DNA, angiogenic, and antiangiogenic factors in preeclampsia and HELLP syndrome. Am J Hypertens. 2017;30:673–82.

    PubMed  Google Scholar 

  42. Farina A, Sekizawa A, Rizzo N, Concu M, Banzola I, Carinci P, Simonazzi G, Okai T. Cell-free fetal DNA (SRY locus) concentration in maternal plasma is directly correlated to the time elapsed from the onset of preeclampsia to the collection of blood. Prenat Diagn. 2004;24:293–7.

    PubMed  Google Scholar 

  43. Zhong XY, Laivuori H, Livingston JC, Ylikorkala O, Sibai BM, Holzgreve W, Hahn S. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol. 2001;184:414–9.

    CAS  PubMed  Google Scholar 

  44. Thurik FF, Lamain-de Ruiter M, Javadi A, Kwee A, Woortmeijer H, Page-Christiaens GC, Franx A, van der Schoot CE, Koster MP. Absolute first trimester cell-free DNA levels and their associations with adverse pregnancy outcomes. Prenat Diagn. 2016;36:1104–11.

    CAS  PubMed  Google Scholar 

  45. Zamanpoor M, Rosli R, Yazid MN, Husain Z, Nordin N, Thilakavathy K. Quantitative analysis of fetal DNA in maternal plasma in gestational diabetes mellitus, iron deficiency anemia and gestational hypertension pregnancies. J Matern Fetal Neonatal Med. 2013;26:960–6.

    CAS  PubMed  Google Scholar 

  46. Swinkels DW, de Kok JB, Hendriks JC, Wiegerinck E, Zusterzeel PL, Steegers EA. Hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome as a complication of preeclampsia in pregnant women increases the amount of cell-free fetal and maternal DNA in maternal plasma and serum. Clin Chem. 2002;48:650–3.

    CAS  PubMed  Google Scholar 

  47. Engel K, Płonka T, Bilar M, Orzinska A, Brojer E, Ronin-Walknowska E. The correlation between clinical characteristics of preeclampsia and the concentration of fetal DNA in maternal circulation. Eur J Obstet Gynecol Reprod Biol. 2008;139(2):256–7.

    CAS  PubMed  Google Scholar 

  48. Smid M, Vassallo A, Lagona F, Valsecchi L, Maniscalco L, Danti L, et al. Quantitative analysis of fetal DNA in maternal plasma in pathological conditions associated with placental abnormalities. Ann N Y Acad Sci. 2001;945:132–7.

    CAS  PubMed  Google Scholar 

  49. Sur Chowdhury C, Hahn S, Hasler P, Hoesli I, Lapaire O, Giaglis S. Elevated levels of total cell-free DNA in maternal serum samples arise from the generation of neutrophil extracellular traps. Fetal Diagn Ther. 2016;40:263–7.

    PubMed  Google Scholar 

  50. Rafaeli-Yehudai T, Imterat M, Douvdevani A, Tirosh D, Benshalom-Tirosh N, Mastrolia SA, Beer-Weisel R, Klaitman V, Riff R, Greenbaum S, Alioshin A, Rodavsky Hanegbi G, Loverro G, Catalano MR, Erez O. Maternal total cell-free DNA in preeclampsia and fetal growth restriction: evidence of differences in maternal response to abnormal implantation. PLoS One. 2018;12(13):e0200360.

    Google Scholar 

  51. Sekizawa A, Farina A, Koide K, Iwasaki M, Honma S, Ichizuka K, Saito H, Okai T. Beta-globin DNA in maternal plasma as a molecular marker of pre-eclampsia. Prenat Diagn. 2004;24:697–700.

    CAS  PubMed  Google Scholar 

  52. AbdelHalim RM, Ramadan DI, Zeyada R, Nasr AS, Mandour IA. Circulating maternal total cell-free DNA, cell-free fetal DNA and soluble endoglin levels in preeclampsia: predictors of adverse fetal outcome? A cohort study. Mol Diagn Ther. 2016;20:135–49.

    CAS  PubMed  Google Scholar 

  53. Lázár L, Nagy B, Molvarec A, Rigó J Jr. Quantity of total cell free and cell free fetal DNA in pregnancies with no complications and with preeclampsia. Orv Hetil. 2010;151:784–7.

    PubMed  Google Scholar 

  54. Farina A, Sekizawa A, Iwasaki M, Matsuoka R, Ichizuka K, Okai T. Total cell-free DNA (beta-globin gene) distribution in maternal plasma at the second trimester: a new prospective for preeclampsia screening. Prenat Diagn. 2004;24:722–6.

    CAS  PubMed  Google Scholar 

  55. Zhong XY, Holzgreve W, Hahn S. Circulatory fetal and maternal DNA in pregnancies at risk and those affected by preeclampsia. Ann N Y Acad Sci. 2001;945:138–40.

    CAS  PubMed  Google Scholar 

  56. Poon LC, Musci T, Song K, Syngelaki A, Nicolaides KH. Maternal plasma cell-free fetal and maternal DNA at 11-13 weeks’ gestation: relation to fetal and maternal characteristics and pregnancy outcomes. Fetal Diagn Ther. 2013;33:215–23.

    CAS  PubMed  Google Scholar 

  57. Silver RM, Myatt L, Hauth JC, Leveno KJ, Peaceman AM, Ramin SM, Samuels P, Saade G, Sorokin Y, Clifton RG, Reddy UM. Cell-free total and fetal DNA in first trimester maternal serum and subsequent development of preeclampsia. Am J Perinatol. 2017;34:191–8.

    PubMed  Google Scholar 

  58. Suzumori N, Sekizawa A, Ebara T, Samura O, Sasaki A, Akaishi R, Wada S, Hamanoue H, Hirahara F, Izumi H, Sawai H, Nakamura H, Yamada T, Miura K, Masuzaki H, Yamashita T, Okai T, Kamei Y, Namba A, Murotsuki J, Tanemoto T, Fukushima A, Haino K, Tairaku S, Matsubara K, Maeda K, Kaji T, Ogawa M, Osada H, Nishizawa H, Okamoto Y, Kanagawa T, Kakigano A, Kitagawa M, Ogawa M, Izumi S, Katagiri Y, Takeshita N, Kasai Y, Naruse K, Neki R, Masuyama H, Hyodo M, Kawano Y, Ohba T, Ichizuka K, Nagamatsu T, Watanabe A, Shirato N, Yotsumoto J, Nishiyama M, Hirose T, Sago H. Fetal cell-free DNA fraction in maternal plasma for the prediction of hypertensive disorders of pregnancy. Eur J Obstet Gynecol Reprod Biol. 2018;224:165–9.

    CAS  PubMed  Google Scholar 

  59. Gerson KD, Truong S, Haviland MJ, O’Brien BM, Hacker MR, Spiel MH. Low fetal fraction of cell-free DNA predicts placental dysfunction and hypertensive disease in pregnancy. Pregnancy Hypertens. 2019;16:148–53.

    PubMed  Google Scholar 

  60. Yuan X, Zhou L, Zhang B, Wang H, Jiang J, Yu B. Early second-trimester plasma cell free DNA levels with subsequent risk of pregnancy complications. Clin Biochem. 2019;71:46–51.

    CAS  PubMed  Google Scholar 

  61. Bender WR, Koelper NC, Sammel MD, Dugoff L. Association of fetal fraction of cell-free DNA and hypertensive disorders of pregnancy. Am J Perinatol. 2019;36:311–6.

    PubMed  Google Scholar 

  62. Wataganara T, Metzenbauer M, Peter I, Johnson KL, Bianchi DW. Placental volume, as measured by 3-dimensional sonography and levels of maternal plasma cell-free fetal DNA. Am J Obstet Gynecol. 2005;193:496–500.

    CAS  PubMed  Google Scholar 

  63. Chan N, Smet ME, Sandow R, da Silva Costa F, McLennan A. Implications of failure to achieve a result from prenatal maternal serum cell-free DNA testing: a historical cohort study. BJOG. 2018;125:848–55.

    CAS  PubMed  Google Scholar 

  64. Farina A, Chan CW, Chiu RW, Tsui NB, Carinci P, Concu M, Banzola I, Rizzo N, Lo YM. Circulating corticotropin-releasing hormone mRNA in maternal plasma: relationship with gestational age and severity of preeclampsia. Clin Chem. 2004;50:1851–4.

    CAS  PubMed  Google Scholar 

  65. Galbiati S, Causarano V, Pinzani P, Francesca S, Orlando C, Smid M, Pasi F, Castiglioni MT, Cavoretto P, Rovere-Querini P, Pedroni S, Calza S, Ferrari M, Cremonesi L. Evaluation of a panel of circulating DNA, RNA and protein potential markers for pathologies of pregnancy. Clin Chem Lab Med. 2010;48:791–4.

    CAS  PubMed  Google Scholar 

  66. Farina A, Sekizawa A, De Sanctis P, Purwosunu Y, Okai T, Cha DH, Kang JH, Vicenzi C, Tempesta A, Wibowo N, Valvassori L, Rizzo N. Gene expression in chorionic villous samples at 11 weeks’ gestation from women destined to develop preeclampsia. Prenat Diagn. 2008;28:956–61.

    PubMed  Google Scholar 

  67. Tsui NB, Lo YM. A microarray approach for systematic identification of placental-derived RNA markers in maternal plasma. Methods Mol Biol. 2008;444:275–89.

    CAS  PubMed  Google Scholar 

  68. Paiva P, Whitehead C, Saglam B, Palmer K, Tong S. Measurement of mRNA transcripts of very high placental expression in maternal blood as biomarkers of preeclampsia. J Clin Endocrinol Metab. 2011;96:E1807–15.

    CAS  PubMed  Google Scholar 

  69. Farina A. The role of RNAs and microRNAs in non-invasive prenatal diagnosis. J Clin Med. 2014;6(3):440–52.

    Google Scholar 

  70. Sekizawa A, Purwosunu Y, Farina A, Shimizu H, Nakamura M, Wibowo N, Rizzo N, Okai T. Prediction of pre-eclampsia by an analysis of placenta-derived cellular mRNA in the blood of pregnant women at 15–20 weeks of gestation. BJOG. 2010;117(5):557–64.

    CAS  PubMed  Google Scholar 

  71. Wright D, Wright A, Nicolaides KH. The competing risk approach for prediction of preeclampsia. Am J Obstet Gynecol. 2019 [Epub ahead of print].

  72. Hu Y, Li P, Hao S, Liu L, Zhao J, Hou Y. Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clin Chem Lab Med. 2009;47:923–9.

    CAS  PubMed  Google Scholar 

  73. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, Hassan SS, Kim CJ. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196(261):e1–6.

    Google Scholar 

  74. Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(178):e12–21.

    Google Scholar 

  75. Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci. 2011;18:46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang Q, Lu J, Wang S, Li H, Ge Q, Lu Z. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta. 2011;412:2167–73.

    CAS  PubMed  Google Scholar 

  77. Wu L, Zhou H, Lin H, Qi J, Zhu C, Gao Z, Wang H. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143:389–97.

    CAS  PubMed  Google Scholar 

  78. Zhao Z, Moley KH, Gronowski AM. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin Biochem. 2013;46:953–60.

    CAS  PubMed  Google Scholar 

  79. Luque A, Farwati A, Crovetto F, Crispi F, Figueras F, Gratacós E. Aran Usefulness of circulating microRNAs for the prediction of early preeclampsia at first-trimester of pregnancy. JM Sci Rep. 2014;4:4882.

    CAS  Google Scholar 

  80. Gunel T, Zeybek YG, Akçakaya P, Kalelioğlu I, Benian A, Ermis H, Aydınlı K. Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res. 2011;10(4):4034–40.

    CAS  PubMed  Google Scholar 

  81. Li H, Ge Q, Guo L, Lu Z. Maternal plasma miRNAs expression in preeclamptic pregnancies. Biomed Res Int. 2013;970265.

  82. Hromadnikova I, Dvorakova L, Kotlabova K, Krofta L. The prediction of gestational hypertension, preeclampsia and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAs. Int J Mol Sci. 2019;20:E2972.

    PubMed  Google Scholar 

  83. Smid M, Galbiati S, Lojacono A, Valsecchi L, Platto C, Cavoretto P, Calza S, Ferrari A, Ferrari M, Cremonesi L. Correlation of fetal DNA levels in maternal plasma with Doppler status in pathological pregnancies. Prenat Diagn. 2006;26:785–90.

    CAS  PubMed  Google Scholar 

  84. Alberry MS, Illanis S, Maddocks DG, Fattah SA, Zimmermann BG, Avent ND, et al. Maternal levels of free fetal DNA are elevated in pregnancies with growth restriction due to placental dysfunction: a preliminary study. South Afr J Obstet Gynaecol. 2007;13:60–3.

    Google Scholar 

  85. Alberry MS, Maddocks DG, Hadi MA, Metawi H, Hunt LP, Abdel-Fattah SA, et al. Quantification of cell free fetal DNA in maternal plasma in normal pregnancies and in pregnancies with placental dysfunction. Am J Obstet Gynecol. 2009;200(98):e1–6.

    Google Scholar 

  86. Al Nakib M, Desbrière R, Bonello N, Bretelle F, Boubli L, Gabert J, et al. Total and fetal cell-free DNA analysis in maternal blood as markers of placental insufficiency in intrauterine growth restriction. Fetal Diagn Ther. 2009;26:24–8.

    CAS  PubMed  Google Scholar 

  87. Hromadnikova I, Zejskova L, Kotlabova K, Cuskova T, Doucha J, Dlouha K, et al. Quantification of extracellular DNA using hypermethylated RASSF1A, SRY, and GLO sequences–evaluation of diagnostic possibilities for predicting placental insufficiency. DNA Cell Biol. 2010;29:295–301.

    CAS  PubMed  Google Scholar 

  88. Crowley A, Martin C, Fitzpatrick P, Sheils O, O’Herlihy C, O’Leary JJ, et al. Free fetal DNA is not increased before 20 weeks in intrauterine growth restriction or pre-eclampsia. Prenat Diagn. 2007;27:174–9.

    CAS  PubMed  Google Scholar 

  89. Ershova E, Sergeeva V, Klimenko M, Avetisova K, Klimenko P, Kostyuk E, et al. Circulating cell-free DNA concentration and DNase I activity of peripheral blood plasma change in case of pregnancy with intrauterine growth restriction compared to normal pregnancy. Biomed Rep. 2017;7:319–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Caramelli E, Rizzo N, Concu M, Simonazzi G, Carinci P, Bondavalli C, et al. Cell-free fetal DNA concentration in plasma of patients with abnormal uterine artery Doppler waveform and intrauterine growth restriction–a pilot study. Prenat Diagn. 2003;23:367–71.

    PubMed  Google Scholar 

  91. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, Silver RM, Wynia K, Ganzevoort W. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9.

    CAS  PubMed  Google Scholar 

  92. Shook LL, Clapp MA, Roberts PS, Bernstein SN, Goldfarb IT. High Fetal fraction on first trimester cell-free DNA aneuploidy screening and adverse pregnancy outcomes. Am J Perinatol. 2020;37:8–13.

    PubMed  Google Scholar 

  93. Whitehead CL, Walker SP, Ye L, Mendis S, Kaitu’u-Lino TJ, Lappas M, Tong S. Placental specific mRNA in the maternal circulation are globally dysregulated in pregnancies complicated by fetal growth restriction. J Clin Endocrinol Metab. 2013;98:E429–36.

    CAS  PubMed  Google Scholar 

  94. Whitehead CL, McNamara H, Walker SP, Alexiadis M, Fuller PJ, Vickers DK, Hannan NJ, Hastie R, Tuohey L, Kaitu’u-Lino TJ, Tong S. Identifying late-onset fetal growth restriction by measuring circulating placental RNA in the maternal blood at 28 weeks’ gestation. Am J Obstet Gynecol. 2016;214:521.e1–8.

    Google Scholar 

  95. Ayala Ramírez P, García Robles R, Rojas JD, Bermúdez M, Bernal J. Identification of messenger RNA of fetoplacental source in maternal plasma of women with normal pregnancies and pregnancies with intrauterine growth restriction. Colomb Medica Cali Colomb. 2012;43:184–8.

    Google Scholar 

  96. Luo SS, Ishibashi O, Ishikawa G, Ishakawa T, Katayama A, Mishima MR, et al. Human villous trophoblasts express and secrete placenta-specific MicroRNAs into maternal circulation via Exosomes1. Biol Reprod. 2009;81:717–29.

    CAS  PubMed  Google Scholar 

  97. Awamleh Z, Gloor GB, Han VKM. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: potential impact on gene expression and pathophysiology. BMC Med Genomics. 2019;12:91.

    PubMed  PubMed Central  Google Scholar 

  98. Mouillet JF, Chu T, Hubel CA, Nelson DM, Parks WT, Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010;31:781–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hromadnikova I, Kotlabova K, Ondrackova M, Kestlerova A, Novotna V, Hympanova L, Doucha J, Krofta L. Circulating C19MC microRNAs in preeclampsia, gestational hypertension, and fetal growth restriction. Mediators Inflamm. 2013;2013:186041.

    PubMed  PubMed Central  Google Scholar 

  100. Hromadnikova I, Kotlabova K, Ivankova K, Krofta L. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS One. 2017;12:e0171756.

    PubMed  PubMed Central  Google Scholar 

  101. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.

    PubMed  PubMed Central  Google Scholar 

  102. Fűri I, Kalmár A, Wichmann B, Spisák S, Schöller A, Barták B, Tulassay Z, Molnár B. Cell free DNA of tumor origin induces a ‘metastatic’ expression profile in HT-29 cancer cell line. PLoS One. 2015;10:e0131699.

    PubMed  PubMed Central  Google Scholar 

  103. Krieg AM. Therapeutic potential of toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5:471–84.

    CAS  PubMed  Google Scholar 

  104. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15:760–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. van Boeckel SR, Davidson DJ, Norman JE, Stock SJ. Cell-free fetal DNA and spontaneous preterm birth. Reproduction. 2018;155:R137–45.

    PubMed  Google Scholar 

  106. Darghahi R, Mobaraki-Asl N, Ghavami Z, Pourfarzi F, Hosseini-Asl S, Jalilvand F. Effect of cell-free fetal DNA on spontaneous preterm labor. J Adv Pharm Technol Res. 2019;10:117–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Stein W, Müller S, Gutensohn K, Emons G, Legler T. Cell-free fetal DNA and adverse outcome in low risk pregnancies. Eur J Obstet Gynecol Reprod Biol. 2013;166:10–3.

    CAS  PubMed  Google Scholar 

  108. Guo FF, Yang JX, Huang YL, Qi YM, Hou YP, Peng HS, Wang DM, Wang YX, Luo XH, Li Y, Yin AH. Association between fetal fraction at the second trimester and subsequent spontaneous preterm birth. Prenat Diagn. 2019;39:1191–7.

    CAS  PubMed  Google Scholar 

  109. Dugoff L, Barberio A, Whittaker PG, Schwartz N, Sehdev H, Bastek JA. Cell-free DNA fetal fraction and preterm birth. Am J Obstet Gynecol. 2016;215(231):e1–7.

    Google Scholar 

  110. Krishna I, Badell M, Loucks TL, Lindsay M, Samuel A. Adverse perinatal outcomes are more frequent in pregnancies with a low fetal fraction result on noninvasive prenatal testing. Prenat Diagn. 2016;36:210–5.

    PubMed  Google Scholar 

  111. Ngo TTM, Moufarrej MN, Rasmussen MH, Camunas-Soler J, Pan W, Okamoto J, Neff NF, Liu K, Wong RJ, Downes K, Tibshirani R, Shaw GM, Skotte L, Stevenson DK, Biggio JR, Elovitz MA, Melbye M, Quake SR. Noninvasive blood tests for fetal development predict gestational age and preterm delivery. Science. 2018;360:1133–6.

    CAS  PubMed  Google Scholar 

  112. Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal PK, Sheller-Miller S, Salomon C, Garbhini Study Team. Circulating exosomal miRNA profile during term and preterm birth pregnancies: a longitudinal study. Endocrinology. 2019;160:249–75.

    CAS  PubMed  Google Scholar 

  113. Wommack JC, Trzeciakowski JP, Miranda RC, Stowe RP, Ruiz RJ. Micro RNA clusters in maternal plasma are associated with preterm birth and infant outcomes. PLoS One. 2018;13:e0199029.

    PubMed  PubMed Central  Google Scholar 

  114. Cook J, Bennett PR, Kim SH, Teoh TG, Sykes L, Kindinger LM, Garrett A, Binkhamis R, MacIntyre DA, Terzidou V. First trimester circulating microRNA biomarkers predictive of subsequent preterm delivery and cervical shortening. Sci Rep. 2019;9:5861.

    PubMed  PubMed Central  Google Scholar 

  115. Elovitz MA, Anton L, Bastek J, Brown AG. Can microRNA profiling in maternal blood identify women at risk for preterm birth? Am J Obstet Gynecol. 2015;212(782):e1–5.

    Google Scholar 

  116. Bhide A, Sebire N, Abuhamad A, Acharya G, Silver R. Morbidly adherent placenta: the need for standardization. Ultrasound Obstet Gynecol. 2017;49:559–63.

    CAS  PubMed  Google Scholar 

  117. Wertaschnigg D, Lucovnik M, Klieser E, Huber-Kata J, Moertl MG. Increased cell-free fetal DNA fraction in the first trimester: a sign of abnormally invasive placenta? Ultraschall Med. 2018 [Epub ahead of print].

  118. Samuel A, Bonanno C, Oliphant A, Batey A, Wright JD. Fraction of cell-free fetal DNA in the maternal serum as a predictor of abnormal placental invasion-a pilot study. Prenat Diagn. 2013;33:1050–3.

    CAS  PubMed  Google Scholar 

  119. El Behery MM, Rasha LE, El Alfy Y. Cell-free placental mRNA in maternal plasma to predict placental invasion in patients with placenta accreta. Int J Gynaecol Obstet. 2010;109:30–3.

    PubMed  Google Scholar 

  120. Masuzaki H, Miura K, Yoshiura K, Yamasaki K, Miura S, Yoshimura S, Nakayama D, Mapendano CK, Niikawa N, Ishimaru T. Placental mRNA in maternal plasma and its clinical application to the evaluation of placental status in a pregnant woman with placenta previa-percreta. Clin Chem. 2005;51:923–5.

    CAS  PubMed  Google Scholar 

  121. Miura K, Miura S, Yamasaki K, Yoshida A, Yoshiura K, Nakayama D, Niikawa N, Masuzaki H. Increased level of cell-free placental mRNA in a subgroup of placenta previa that needs hysterectomy. Prenat Diagn. 2008;28:805–9.

    PubMed  Google Scholar 

  122. Li J, Zhang N, Zhang Y, Hu X, Gao G, Ye Y, Peng W, Zhou J. Human placental lactogen mRNA in maternal plasma play a role in prenatal diagnosis of abnormally invasive placenta: yes or no? Gynecol Endocrinol. 2019;35:631–4.

    CAS  PubMed  Google Scholar 

  123. Zhou J, Li J, Yan P, Ye YH, Peng W, Wang S, Wang XT. Maternal plasma levels of cell-free β-HCG mRNA as a prenatal diagnostic indicator of placenta accrete. Placenta. 2014;35:691–5.

    CAS  PubMed  Google Scholar 

  124. Naghshineh E, Khorvash E, Kamali S. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta. Adv Biomed Res. 2015;4:31.

    PubMed  PubMed Central  Google Scholar 

  125. Simonazzi G, Farina A, Curti A, Pilu G, Santini D, Zucchini C, Sekizawa A, Rizzo N. Higher circulating mRNA levels of placental specific genes in a patient with placenta accreta. Prenat Diagn. 2011;31:827–9.

    CAS  PubMed  Google Scholar 

  126. Long Y, Chen Y, Fu XQ, Yang F, Chen ZW, Mo GL, Lao DY, Li MJ. Research on the expression of MRNA-518b in the pathogenesis of placenta accreta. Eur Rev Med Pharmacol Sci. 2019;23:23–8.

    CAS  PubMed  Google Scholar 

  127. Jayawardena L, McNamara E. Diagnosis and management of pregnancies complicated by haemolysis, elevated liver enzymes and low platelets syndrome in the tertiary setting. Intern Med J. 2019;50(3):342–9.

    Google Scholar 

  128. Guarino E, Delli Poggi C, Grieco GE, Cenci V, Ceccarelli E, Crisci I, Sebastiani G, Dotta F. Circulating microRNAs as biomarkers of gestational diabetes mellitus: updates and perspectives. Int J Endocrinol. 2018;2018(12):6380463.

    PubMed  PubMed Central  Google Scholar 

  129. Dias S, Pheiffer C, Abrahams Y, Rheeder P, Adam S. Molecular biomarkers for gestational diabetes mellitus. Int J Mol Sci. 2018;19(10):2926.

    PubMed Central  Google Scholar 

  130. Zhao C, Dong J, Jiang T, Shi Z, Yu B, Zhu Y, Chen D, Xu J, Huo R, Dai J, Xia Y, Pan S, Hu Z, Sha J. Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus. PLoS One. 2011;6:e23925.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wander PL, Boyko EJ, Hevner K, Parikh VJ, Tadesse MG, Sorensen TK, Williams MA, Enquobahrie DA. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res Clin Pract. 2017;132:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pheiffer C, Dias S, Rheeder P, Adam S. Decreased expression of circulating miR-20a-5p in South African women with gestational diabetes mellitus. Mol Diagn Ther. 2018;22:345–52.

    CAS  PubMed  Google Scholar 

  133. Yoffe L, Polsky A, Gilam A, Raff C, Mecacci F, Ognibene A, Crispi F, Gratacós E, Kanety H, Mazaki-Tovi S, Shomron N, Hod M. Early diagnosis of gestational diabetes mellitus using circulating microRNAs. Eur J Endocrinol. 2019;181:565–77.

    PubMed  Google Scholar 

  134. Lamadrid-Romero M, Solís KH, Cruz-Reséndiz MS, Pérez JE, Díaz NF, Flores-Herrera H, García-López G, Perichart O, Reyes-Muñoz E, Arenas-Huertero F, Eguía-Aguilar P, Molina-Hernández A. Central nervous system development-related microRNAs levels increase in the serum of gestational diabetic women during the first trimester of pregnancy. Neurosci Res. 2018;130:8–22.

    CAS  PubMed  Google Scholar 

  135. Ibarra A, Vega-Guedes B, Brito-Casillas Y, Wägner AM. Diabetes in pregnancy and microRNAs: promises and limitations in their clinical application. Noncoding RNA. 2018;4(4):32.

    CAS  PubMed Central  Google Scholar 

  136. Hristoskova S, Holzgreve W, Hahn S. Anti-phospholipid and anti-DNA antibodies are not associated with the elevated release of circulatory fetal DNA in pregnancies affected by preeclampsia. Hypertens Pregnancy. 2004;23:257–68.

    CAS  PubMed  Google Scholar 

  137. Korabecna M, Ulcova-Gallova Z, Horinek A, Pazourková E, Calda P. Quantification of circulating fetal DNA as a tool for potential monitoring of pregnant patients with antiphospholipid antibodies. Autoimmunity. 2014;47:473–7.

    CAS  PubMed  Google Scholar 

  138. Farina A, Rizzo N, Concu M, Banzola I, Sekizawa A, Grotti S, Carinci P. Lower maternal PLAC1 mRNA in pregnancies complicated with vaginal bleeding (threatened abortion <20 weeks) and a surviving fetus. Clin Chem. 2005;51:224–7.

    CAS  PubMed  Google Scholar 

  139. Yi P, Yin N, Zheng Y, Jiang H, Yu X, Yan Y, Liu Q, Xiao F, Li L. Elevated plasma levels of hypermethylated RASSF1A gene sequences in pregnant women with intrahepatic cholestasis. Cell Biochem Biophys. 2013;67:977–81.

    CAS  PubMed  Google Scholar 

  140. Sekizawa A, Sugito Y, Iwasaki M, Watanabe A, Jimbo M, Hoshi S, et al. Cell-free fetal DNA is increased in plasma of women with hyperemesis gravidarum. Clin Chem. 2001;47:2164–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Farina.

Ethics declarations

Conflict of interest

The authors, Ilma Floriana Carbone, Alessandro Conforti, Silvia Picarelli, Danila Morano, Carlo Alviggi, and Antonio Farina, do not have any conflict of interest.

Funding

No funding was used in the preparation of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, I.F., Conforti, A., Picarelli, S. et al. Circulating Nucleic Acids in Maternal Plasma and Serum in Pregnancy Complications: Are They Really Useful in Clinical Practice? A Systematic Review. Mol Diagn Ther 24, 409–431 (2020). https://doi.org/10.1007/s40291-020-00468-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00468-5

Navigation