Skip to main content
Log in

Improving Molecular Therapy in the Kidney

  • Leading Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Mutations in approximately 80 genes have been implicated as the cause of various genetic kidney diseases. However, gene delivery to kidney cells from the blood is inefficient because of the natural filtering functions of the glomerulus, and research into and development of gene therapy directed toward kidney disease has lagged behind as compared with hepatic, neuromuscular, and ocular gene therapy. This lack of progress is in spite of numerous genetic mouse models of human disease available to the research community and many vectors in existence that can theoretically deliver genes to kidney cells with high efficiency. In the past decade, several groups have begun to develop novel injection techniques in mice, such as retrograde ureter, renal vein, and direct subcapsular injections to help resolve the issue of gene delivery to the kidney through the blood. In addition, the ability to retarget vectors specifically toward kidney cells has been underutilized but shows promise. This review discusses how recent advances in gene delivery to the kidney and the field of gene therapy can leverage the wealth of knowledge of kidney genetics to work toward developing gene therapy products for patients with kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765.

    PubMed  PubMed Central  Google Scholar 

  2. Hildebrandt F. Genetic kidney diseases. Lancet. 2010;375(9722):1287–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Leung JC. Inherited renal diseases. Curr Pediatr Rev. 2014;10(2):95–100.

    CAS  PubMed  Google Scholar 

  4. Boron WB, Emile S. Glomerular filtration and renal blood flow. Medical physiology. 3rd ed. Amsterdam: Elsevier; 2017. p. 739–53.

    Google Scholar 

  5. Murphy JJ, Myint MK, Rattner WH, Klaus R, Shallow J. The lymphatic system of the kidney. J Urol. 1958;80(1):1–6.

    CAS  PubMed  Google Scholar 

  6. McIntosh GH, Morris B. The lymphatics of the kidney and the formation of renal lymph. J Physiol. 1971;214(3):365–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.

    CAS  PubMed  Google Scholar 

  8. Yang Y, Ertl HC, Wilson JM. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity. 1994;1(5):433–42.

    CAS  PubMed  Google Scholar 

  9. Doronin K, Shashkova EV, May SM, Hofherr SE, Barry MA. Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum Gene Ther. 2009;20(9):975–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Barry MA, Weaver EA, Chen CY. Mining the adenovirus “virome” for systemic oncolytics. Curr Pharm Biotechnol. 2012;13(9):1804–8.

    CAS  PubMed  Google Scholar 

  11. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol. 1997;71(11):8798–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther. 1997;8(1):37–44.

    CAS  PubMed  Google Scholar 

  13. Zhu G, Nicolson AG, Zheng XX, Strom TB, Sukhatme VP. Adenovirus-mediated beta-galactosidase gene delivery to the liver leads to protein deposition in kidney glomeruli. Kidney Int. 1997;52(4):992–9.

    CAS  PubMed  Google Scholar 

  14. Ye X, Jerebtsova M, Ray PE. Liver bypass significantly increases the transduction efficiency of recombinant adenoviral vectors in the lung, intestine, and kidney. Hum Gene Ther. 2000;11(4):621–7.

    CAS  PubMed  Google Scholar 

  15. Moullier P, Friedlander G, Calise D, Ronco P, Perricaudet M, Ferry N. Adenoviral-mediated gene transfer to renal tubular cells in vivo. Kidney Int. 1994;45(4):1220–5.

    CAS  PubMed  Google Scholar 

  16. Heikkila P, Parpala T, Lukkarinen O, Weber M, Tryggvason K. Adenovirus-mediated gene transfer into kidney glomeruli using an ex vivo and in vivo kidney perfusion system—first steps towards gene therapy of Alport syndrome. Gene Ther. 1996;3(1):21–7.

    CAS  PubMed  Google Scholar 

  17. McDonald GA, Zhu G, Li Y, Kovesdi I, Wickham TJ, Sukhatme VP. Efficient adenoviral gene transfer to kidney cortical vasculature utilizing a fiber modified vector. J Gene Med. 1999;1(2):103–10.

    CAS  PubMed  Google Scholar 

  18. Ye X, Liu X, Li Z, Ray PE. Efficient gene transfer to rat renal glomeruli with recombinant adenoviral vectors. Hum Gene Ther. 2001;12(2):141–8.

    CAS  PubMed  Google Scholar 

  19. Chetboul V, Klonjkowski B, Lefebvre HP, Desvaux D, Laroute V, Rosenberg D, et al. Short-term efficiency and safety of gene delivery into canine kidneys. Nephrol Dial Transplant. 2001;16(3):608–14.

    CAS  PubMed  Google Scholar 

  20. Choi YK, Kim YJ, Park HS, Choi K, Paik SG, Lee YI, et al. Suppression of glomerulosclerosis by adenovirus-mediated IL-10 expression in the kidney. Gene Ther. 2003;10(7):559–68.

    CAS  PubMed  Google Scholar 

  21. Fujishiro J, Takeda S, Takeno Y, Takeuchi K, Ogata Y, Takahashi M, et al. Gene transfer to the rat kidney in vivo and ex vivo using an adenovirus vector: factors influencing transgene expression. Nephrol Dial Transplant. 2005;20(7):1385–91.

    CAS  PubMed  Google Scholar 

  22. Heikkila P, Tibell A, Morita T, Chen Y, Wu G, Sado Y, et al. Adenovirus-mediated transfer of type IV collagen alpha5 chain cDNA into swine kidney in vivo: deposition of the protein into the glomerular basement membrane. Gene Ther. 2001;8(11):882–90.

    CAS  PubMed  Google Scholar 

  23. Rubin J, Nguyen TV, Allen K, Ayasoufi K, Barry MA. Comparison of gene delivery to the kidney by adenovirus, adeno-associated virus, and lentiviral vectors after intravenous and direct kidney injections. Hum Gene Ther. 2019.

  24. Watanabe S, Ogasawara T, Tamura Y, Saito T, Ikeda T, Suzuki N, et al. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments. PLoS One. 2017;12(3):e0168638.

    PubMed  PubMed Central  Google Scholar 

  25. Rux JJ, Burnett RM. Adenovirus structure. Hum Gene Ther. 2004;15(12):1167–76.

    CAS  PubMed  Google Scholar 

  26. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A. Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol. 2005;79(12):7478–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L, et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood. 2006;108(8):2554–61.

    CAS  PubMed  Google Scholar 

  28. Xu Z, Tian J, Smith JS, Byrnes AP. Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol. 2008;82(23):11705–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol. 1998;72(3):1844–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol. 1998;72(12):9706–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Koizumi N, Mizuguchi H, Hosono T, Ishii-Watabe A, Uchida E, Utoguchi N, et al. Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide. Biochim Biophys Acta. 2001;1568(1):13–20.

    CAS  PubMed  Google Scholar 

  32. Mizuguchi H, Koizumi N, Hosono T, Utoguchi N, Watanabe Y, Kay MA, et al. A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Ther. 2001;8(9):730–5.

    CAS  PubMed  Google Scholar 

  33. Wickham TJ, Tzeng E, Shears LL 2nd, Roelvink PW, Li Y, Lee GM, et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol. 1997;71(11):8221–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Michael SI, Hong JS, Curiel DT, Engler JA. Addition of a short peptide ligand to the adenovirus fiber protein. Gene Ther. 1995;2(9):660–8.

    CAS  PubMed  Google Scholar 

  35. Nicklin SA, Wu E, Nemerow GR, Baker AH. The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther. 2005;12(3):384–93.

    CAS  PubMed  Google Scholar 

  36. Ghosh D, Barry MA. Selection of muscle-binding peptides from context-specific peptide-presenting phage libraries for adenoviral vector targeting. J Virol. 2005;79(21):13667–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Barry MA, Dower WJ, Johnston SA. Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med. 1996;2(3):299–305.

    CAS  PubMed  Google Scholar 

  38. Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci. 2016;19(23):8.

    Google Scholar 

  39. Barry MA, Takahashi S, Parrott MB. Selection of peptides on phage. In: Douglas JaC DT, editor. Vector targeting strategies for gene therapy. Hoboken: Wiley-Liss, Inc.; 2002. p. 549–79.

    Google Scholar 

  40. Denby L, Work LM, Seggern DJ, Wu E, McVey JH, Nicklin SA, et al. Development of renal-targeted vectors through combined in vivo phage display and capsid engineering of adenoviral fibers from serotype 19p. Mol Ther. 2007;15(9):1647–54.

    CAS  PubMed  Google Scholar 

  41. Diaconu I, Denby L, Pesonen S, Cerullo V, Bauerschmitz GJ, Guse K, et al. Serotype chimeric and fiber-mutated adenovirus Ad5/19p-HIT for targeting renal cancer and untargeting the liver. Hum Gene Ther. 2009;20(6):611–20.

    CAS  PubMed  Google Scholar 

  42. Campos SK, Barry MA. Current advances and future challenges in adenoviral vector biology and targeting. Curr Gene Ther. 2007;7(3):189–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Parrott MB, Adams KE, Mercier GT, Mok H, Campos SK, Barry MA. Metabolically biotinylated adenovirus for cell targeting, ligand screening, and vector purification. Mol Ther. 2003;8(4):688–700.

    CAS  PubMed  Google Scholar 

  44. Campos SK, Parrott MB, Barry MA. Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. Mol Ther. 2004;9(6):942–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Campos SK, Barry MA. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. Virology. 2006;349(2):453–62.

    CAS  PubMed  Google Scholar 

  46. Lanciotti J, Song A, Doukas J, Sosnowski B, Pierce G, Gregory R, et al. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther. 2003;8(1):99–107.

    CAS  PubMed  Google Scholar 

  47. Romanczuk H, Galer CE, Zabner J, Barsomian G, Wadsworth SC, O’Riordan CR. Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Hum Gene Ther. 1999;10(16):2615–26.

    CAS  PubMed  Google Scholar 

  48. Takahashi S, Mok H, Parrott MB, Marini FC 3rd, Andreeff M, Brenner MK, et al. Selection of chronic lymphocytic leukemia binding peptides. Cancer Res. 2003;63(17):5213–7.

    CAS  PubMed  Google Scholar 

  49. Menezes KM, Mok HS, Barry MA. Increased transduction of skeletal muscle cells by fibroblast growth factor-modified adenoviral vectors. Hum Gene Ther. 2006;17(3):314–20.

    CAS  PubMed  Google Scholar 

  50. O’Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith AE, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther. 1999;10(8):1349–58.

    PubMed  Google Scholar 

  51. Mok H, Palmer DJ, Ng P, Barry MA. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther. 2005;11(1):66–79.

    CAS  PubMed  Google Scholar 

  52. Hofherr SE, Shashkova EV, Weaver EA, Khare R, Barry MA. Modification of adenoviral vectors with polyethylene glycol modulates in vivo tissue tropism and gene expression. Mol Ther. 2008;16(7):1276–82.

    CAS  PubMed  Google Scholar 

  53. Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149(3685):754–6.

    CAS  PubMed  Google Scholar 

  54. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16(6):1073–80.

    CAS  PubMed  Google Scholar 

  56. Hillestad ML, Guenzel AJ, Nath KA, Barry MA. A vector–host system to fingerprint virus tropism. Hum Gene Ther. 2012;23(10):1116–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lang JF, Toulmin SA, Brida KL, Eisenlohr LC, Davidson BL. Standard screening methods underreport AAV-mediated transduction and gene editing. Nat Commun. 2019;10(1):3415.

    PubMed  PubMed Central  Google Scholar 

  58. Lipkowitz MS, Hanss B, Tulchin N, Wilson PD, Langer JC, Ross MD, et al. Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors. J Am Soc Nephrol. 1999;10(9):1908–15.

    CAS  PubMed  Google Scholar 

  59. Chen S, Agarwal A, Glushakova OY, Jorgensen MS, Salgar SK, Poirier A, et al. Gene delivery in renal tubular epithelial cells using recombinant adeno-associated viral vectors. J Am Soc Nephrol. 2003;14(4):947–58.

    CAS  PubMed  Google Scholar 

  60. Takeda S, Takahashi M, Mizukami H, Kobayashi E, Takeuchi K, Hakamata Y, et al. Successful gene transfer using adeno-associated virus vectors into the kidney: comparison among adeno-associated virus serotype 1–5 vectors in vitro and in vivo. Nephron Exp Nephrol. 2004;96(4):e119–26.

    CAS  PubMed  Google Scholar 

  61. Ito K, Chen J, Khodadadian JJ, Vaughan ED Jr, Lipkowitz M, Poppas DP, et al. Adeno-associated viral vector transduction of green fluorescent protein in kidney: effect of unilateral ureteric obstruction. BJU Int. 2008;101(3):376–81.

    CAS  PubMed  Google Scholar 

  62. Qi YF, Li QH, Shenoy V, Zingler M, Jun JY, Verma A, et al. Comparison of the transduction efficiency of tyrosine-mutant adeno-associated virus serotype vectors in kidney. Clin Exp Pharmacol Physiol. 2013;40(1):53–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chung DC, Fogelgren B, Park KM, Heidenberg J, Zuo X, Huang L, et al. Adeno-associated virus-mediated gene transfer to renal tubule cells via a retrograde ureteral approach. Nephron Extra. 2011;1(1):217–23.

    PubMed  PubMed Central  Google Scholar 

  64. Konkalmatt PR, Asico LD, Zhang Y, Yang Y, Drachenberg C, Zheng X, Han F, Jose PA, Armando I. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight. 2016;1(8):e85888. https://doi.org/10.1172/jci.insight.85888.

    Google Scholar 

  65. Shen X, Xu Y, Bai Z, Ma D, Niu Q, Meng J, et al. Transparenchymal renal pelvis injection of recombinant adeno-associated virus serotype 9 vectors is a practical approach for gene delivery in the kidney. Hum Gene Ther Methods. 2018;29(6):251–8.

    CAS  PubMed  Google Scholar 

  66. Rocca CJ, Ur SN, Harrison F, Cherqui S. rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Ther. 2014;21(6):618–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Corridon PR, Rhodes GJ, Leonard EC, Basile DP, Gattone VH 2nd, Bacallao RL, et al. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors. Am J Physiol Ren Physiol. 2013;304(9):F1217–29.

    CAS  Google Scholar 

  68. Saito S, Ohno SI, Harada Y, Oikawa K, Fujita K, Mineo S, et al. rAAV6-mediated miR-29b delivery suppresses renal fibrosis. Clin Exp Nephrol. 2019;23(12):1345–56.

    CAS  PubMed  Google Scholar 

  69. Chandler RJ, LaFave MC, Varshney GK, Trivedi NS, Carrillo-Carrasco N, Senac JS, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Investig. 2015;125(2):870–80.

    PubMed  Google Scholar 

  70. Nault JC, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015;47(10):1187–93.

    CAS  PubMed  Google Scholar 

  71. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Perabo L, Endell J, King S, Lux K, Goldnau D, Hallek M, et al. Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. J Gene Med. 2006;8(2):155–62.

    CAS  PubMed  Google Scholar 

  73. Li W, Asokan A, Wu Z, Van Dyke T, DiPrimio N, Johnson JS, et al. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther. 2008;16(7):1252–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zinn E, Pacouret S, Khaychuk V, Turunen HT, Carvalho LS, Andres-Mateos E, et al. In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep. 2015;12(6):1056–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ikeda Y, Sun Z, Ru X, Vandenberghe LH, Humphreys BD. Efficient gene transfer to kidney mesenchymal cells using a synthetic adeno-associated viral vector. J Am Soc Nephrol. 2018;29(9):2287–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Buchholz CJ, Friedel T, Buning H. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol. 2015;33(12):777–90.

    CAS  PubMed  Google Scholar 

  77. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science. 2007;317(5837):477.

    CAS  PubMed  Google Scholar 

  78. Russell DW, Grompe M. Adeno-associated virus finds its disease. Nat Genet. 2015;47(10):1104–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Berns KI, Byrne BJ, Flotte TR, Gao G, Hauswirth WW, Herzog RW, et al. Adeno-associated virus type 2 and hepatocellular carcinoma? Hum Gene Ther. 2015;26(12):779–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther. 2018;26(3):664–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sakuma T, Barry MA, Ikeda Y. Lentiviral vectors: basic to translational. Biochem J. 2012;443(3):603–18.

    CAS  PubMed  Google Scholar 

  82. Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci USA. 2013;110(18):7306–11.

    CAS  PubMed  Google Scholar 

  83. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA. 1993;90(17):8033–7.

    CAS  PubMed  Google Scholar 

  84. Morizono K, Xie Y, Ringpis GE, Johnson M, Nassanian H, Lee B, et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med. 2005;11(3):346–52.

    CAS  PubMed  Google Scholar 

  85. Gennari F, Lopes L, Verhoeyen E, Marasco W, Collins MK. Single-chain antibodies that target lentiviral vectors to MHC class II on antigen-presenting cells. Hum Gene Ther. 2009;20(6):554–62.

    CAS  PubMed  Google Scholar 

  86. Hashiguchi T, Maenaka K, Yanagi Y. Measles virus hemagglutinin: structural insights into cell entry and measles vaccine. Front Microbiol. 2011;2:247.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kneissl S, Abel T, Rasbach A, Brynza J, Schneider-Schaulies J, Buchholz CJ. Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies. PLoS One. 2012;7(10):e46667.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Munch RC, Muhlebach MD, Schaser T, Kneissl S, Jost C, Pluckthun A, et al. DARPins: an efficient targeting domain for lentiviral vectors. Mol Ther. 2011;19(4):686–93.

    PubMed  PubMed Central  Google Scholar 

  89. Zhou Q, Uhlig KM, Muth A, Kimpel J, Levy C, Munch RC, et al. Exclusive transduction of human CD4 + T cells upon systemic delivery of CD4-targeted lentiviral vectors. J Immunol. 2015;195(5):2493–501.

    CAS  PubMed  Google Scholar 

  90. Bosch RJ, Woolf AS, Fine LG. Gene transfer into the mammalian kidney: direct retrovirus-transduction of regenerating tubular epithelial cells. Exp Nephrol. 1993;1(1):49–54.

    CAS  PubMed  Google Scholar 

  91. Gusella GL, Fedorova E, Hanss B, Marras D, Klotman ME, Klotman PE. Lentiviral gene transduction of kidney. Hum Gene Ther. 2002;13(3):407–14.

    CAS  PubMed  Google Scholar 

  92. Asico LD, Cuevas S, Ma X, Jose PA, Armando I, Konkalmatt PR. Nephron segment-specific gene expression using AAV vectors. Biochem Biophys Res Commun. 2018;497(1):19–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu X, Tan X, Tampe B, Wilhelmi T, Hulshoff MS, Saito S, et al. High-fidelity CRISPR/Cas9-based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat Commun. 2018;9(1):3509.

    PubMed  PubMed Central  Google Scholar 

  94. Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2016;2:16009.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pulecio J, Verma N, Mejia-Ramirez E, Huangfu D, Raya A. CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell. 2017;21(4):431–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lavender P, Kelly A, Hendy E, McErlean P. CRISPR-based reagents to study the influence of the epigenome on gene expression. Clin Exp Immunol. 2018;194(1):9–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim M, Chen SW, Park SW, Kim M, D’Agati VD, Yang J, et al. Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney Int. 2009;75(8):809–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Park SW, Chen SW, Kim M, D’Agati VD, Lee HT. Selective intrarenal human A1 adenosine receptor overexpression reduces acute liver and kidney injury after hepatic ischemia reperfusion in mice. Lab Investig. 2010;90(3):476–95.

    CAS  PubMed  Google Scholar 

  99. Park SW, Chen SW, Kim M, Brown KM, D’Agati VD, Lee HT. Protection against acute kidney injury via A(1) adenosine receptor-mediated Akt activation reduces liver injury after liver ischemia and reperfusion in mice. J Pharmacol Exp Ther. 2010;333(3):736–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim M, Park SW, Kim M, Chen SW, Gerthoffer WT, D’Agati VD, et al. Selective renal overexpression of human heat shock protein 27 reduces renal ischemia-reperfusion injury in mice. Am J Physiol Ren Physiol. 2010;299(2):F347–58.

    CAS  Google Scholar 

  101. Espana-Agusti J, Tuveson DA, Adams DJ, Matakidou A. A minimally invasive, lentiviral based method for the rapid and sustained genetic manipulation of renal tubules. Sci Rep. 2015;5(5):11061.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Yuzefovych Y, Valdivia E, Rong S, Hack F, Rother T, Schmitz J, et al. Genetic engineering of the kidney to permanently silence MHC transcripts during ex vivo organ perfusion. Front Immunol. 2020;11:265.

    PubMed  PubMed Central  Google Scholar 

  103. Sharma A, Li X, Bangari DS, Mittal SK. Adenovirus receptors and their implications in gene delivery. Virus Res. 2009;143(2):184–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Molinier-Frenkel V, Gahery-Segard H, Mehtali M, Le Boulaire C, Ribault S, Boulanger P, et al. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol. 2000;74(16):7678–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Suzuki M, Cela R, Bertin TK, Sule G, Cerullo V, Rodgers JR, et al. NOD2 signaling contributes to the innate immune response against helper-dependent adenovirus vectors independently of MyD88 in vivo. Hum Gene Ther. 2011;22(9):1071–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther. 2006;17(3):253–63.

    CAS  PubMed  Google Scholar 

  107. Muruve DA. The innate immune response to adenovirus vectors. Hum Gene Ther. 2004;15(12):1157–66.

    CAS  PubMed  Google Scholar 

  108. Ertl HCJ, High KA. Impact of AAV capsid-specific T-cell responses on design and outcome of clinical gene transfer trials with recombinant adeno-associated viral vectors: an evolving controversy. Hum Gene Ther. 2017;28(4):328–37.

    CAS  PubMed  Google Scholar 

  109. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML. Construction of adenovirus vectors through Cre–lox recombination. J Virol. 1997;71(3):1842–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6(7):1258–66.

    CAS  PubMed  Google Scholar 

  111. Liu F, Huang L. Development of non-viral vectors for systemic gene delivery. J Control Release. 2002;78(1–3):259–66.

    CAS  PubMed  Google Scholar 

  112. Zhdanov RI, Podobed OV, Vlassov VV. Cationic lipid–DNA complexes–lipoplexes-for gene transfer and therapy. Bioelectrochemistry. 2002;58(1):53–64.

    CAS  PubMed  Google Scholar 

  113. Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release. 2004;100(2):165–80.

    CAS  PubMed  Google Scholar 

  114. Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release. 2006;116(2):255–64.

    CAS  PubMed  Google Scholar 

  115. Tros de Ilarduya C, Sun Y, Duzgunes N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci. 2010;40(3):159–70.

    CAS  PubMed  Google Scholar 

  116. Zhang XX, McIntosh TJ, Grinstaff MW. Functional lipids and lipoplexes for improved gene delivery. Biochimie. 2012;94(1):42–58.

    CAS  PubMed  Google Scholar 

  117. Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release. 2012;161(2):554–65.

    CAS  PubMed  Google Scholar 

  118. Tomita N, Higaki J, Morishita R, Kato K, Mikami H, Kaneda Y, et al. Direct in vivo gene introduction into rat kidney. Biochem Biophys Res Commun. 1992;186(1):129–34.

    CAS  PubMed  Google Scholar 

  119. Imai E, Isaka Y, Akagi Y, Kaneda Y. Gene transfer into the glomerulus by the hemagglutinating virus of Japan-liposome method. Exp Nephrol. 1997;5(2):112–7.

    CAS  PubMed  Google Scholar 

  120. Isaka Y, Fujiwara Y, Ueda N, Kaneda Y, Kamada T, Imai E. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney. J Clin Investig. 1993;92(6):2597–601.

    CAS  PubMed  Google Scholar 

  121. Isaka Y, Akagi Y, Ando Y, Tsujie M, Sudo T, Ohno N, et al. Gene therapy by transforming growth factor-beta receptor-IgG Fc chimera suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int. 1999;55(2):465–75.

    CAS  PubMed  Google Scholar 

  122. Koike H, Tomita N, Azuma H, Taniyama Y, Yamasaki K, Kunugiza Y, et al. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med. 2005;7(1):108–16.

    CAS  PubMed  Google Scholar 

  123. Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther. 1996;7(11):1339–46.

    CAS  PubMed  Google Scholar 

  124. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol. 1997;23(6):953–9.

    CAS  PubMed  Google Scholar 

  125. Lauer U, Burgelt E, Squire Z, Messmer K, Hofschneider PH, Gregor M, et al. Shock wave permeabilization as a new gene transfer method. Gene Ther. 1997;4(7):710–5.

    CAS  PubMed  Google Scholar 

  126. Wyber JA, Andrews J, D’Emanuele A. The use of sonication for the efficient delivery of plasmid DNA into cells. Pharm Res. 1997;14(6):750–6.

    CAS  PubMed  Google Scholar 

  127. Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet. 1999;353(9162):1409.

    CAS  PubMed  Google Scholar 

  128. Sorace AG, Warram JM, Mahoney M, Zinn KR, Hoyt K. Enhancement of adenovirus delivery after ultrasound-stimulated therapy in a cancer model. Ultrasound Med Biol. 2013;39(12):2374–81.

    PubMed  PubMed Central  Google Scholar 

  129. Xing Y, Pua EC, Lu X, Zhong P. Low-amplitude ultrasound enhances hydrodynamic-based gene delivery to rat kidney. Biochem Biophys Res Commun. 2009;386(1):217–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kurosaki T, Kawakami S, Higuchi Y, Suzuki R, Maruyama K, Sasaki H, et al. Kidney-selective gene transfection using anionic bubble lipopolyplexes with renal ultrasound irradiation in mice. Nanomedicine. 2014;10(8):1829–38.

    CAS  PubMed  Google Scholar 

  131. Tsujie M, Isaka Y, Nakamura H, Imai E, Hori M. Electroporation-mediated gene transfer that targets glomeruli. J Am Soc Nephrol. 2001;12(5):949–54.

    CAS  PubMed  Google Scholar 

  132. Lai LW, Chan DM, Erickson RP, Hsu SJ, Lien YH. Correction of renal tubular acidosis in carbonic anhydrase II-deficient mice with gene therapy. J Clin Investig. 1998;101(7):1320–5.

    CAS  PubMed  Google Scholar 

  133. Maruyama H, Higuchi N, Nishikawa Y, Hirahara H, Iino N, Kameda S, et al. Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther. 2002;13(3):455–68.

    CAS  PubMed  Google Scholar 

  134. Maruyama H, Higuchi N, Kameda S, Nakamura G, Iguchi S, Miyazaki J, et al. Rat kidney-targeted naked plasmid DNA transfer by retrograde injection into the renal vein. Mol Biotechnol. 2004;27(1):23–31.

    CAS  PubMed  Google Scholar 

  135. Kameda S, Maruyama H, Higuchi N, Iino N, Nakamura G, Miyazaki J, et al. Kidney-targeted naked DNA transfer by retrograde injection into the renal vein in mice. Biochem Biophys Res Commun. 2004;314(2):390–5.

    CAS  PubMed  Google Scholar 

  136. Woodard LE, Cheng J, Welch RC, Williams FM, Luo W, Gewin LS, et al. Kidney-specific transposon-mediated gene transfer in vivo. Sci Rep. 2017;20(7):44904.

    Google Scholar 

  137. Tomita N, Morishita R, Yamamoto K, Higaki J, Dzau VJ, Ogihara T, et al. Targeted gene therapy for rat glomerulonephritis using HVJ-immunoliposomes. J Gene Med. 2002;4(5):527–35.

    CAS  PubMed  Google Scholar 

  138. Uchida M, Maier B, Waghwani HK, Selivanovitch E, Pay SL, Avera J, et al. The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration. J Clin Investig. 2019;129(9):3941–51.

    PubMed  Google Scholar 

  139. Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146–57.

    CAS  PubMed  Google Scholar 

  140. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.

    CAS  PubMed  Google Scholar 

  141. Suga H, Nagasaki H, Kondo TA, Okajima Y, Suzuki C, Ozaki N, et al. Novel treatment for lithium-induced nephrogenic diabetes insipidus rat model using the Sendai-virus vector carrying aquaporin 2 gene. Endocrinology. 2008;149(11):5803–10.

    CAS  PubMed  Google Scholar 

  142. Bajimaya S, Hayashi T, Takimoto T. Rescue of sendai virus from cloned cDNA. Methods Mol Biol. 2017;1602:103–10.

    CAS  PubMed  Google Scholar 

  143. Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol. 2012;226(2):365–79.

    CAS  PubMed  Google Scholar 

  144. Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci USA. 1991;88(17):7595–9.

    CAS  PubMed  Google Scholar 

  145. Goodarzi G, Watabe M, Watabe K. Organ distribution and stability of phosphorothioated oligodeoxyribonucleotides in mice. Biopharm Drug Dispos. 1992;13(3):221–7.

    CAS  PubMed  Google Scholar 

  146. Cossum PA, Truong L, Owens SR, Markham PM, Shea JP, Crooke ST. Pharmacokinetics of a 14C-labeled phosphorothioate oligonucleotide, ISIS 2105, after intradermal administration to rats. J Pharmacol Exp Ther. 1994;269(1):89–94.

    CAS  PubMed  Google Scholar 

  147. Oberbauer R, Schreiner GF, Meyer TW. Renal uptake of an 18-mer phosphorothioate oligonucleotide. Kidney Int. 1995;48(4):1226–32.

    CAS  PubMed  Google Scholar 

  148. Rappaport J, Hanss B, Kopp JB, Copeland TD, Bruggeman LA, Coffman TM, et al. Transport of phosphorothioate oligonucleotides in kidney: implications for molecular therapy. Kidney Int. 1995;47(5):1462–9.

    CAS  PubMed  Google Scholar 

  149. Noiri E, Peresleni T, Miller F, Goligorsky MS. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Investig. 1996;97(10):2377–83.

    CAS  PubMed  Google Scholar 

  150. Akagi Y, Isaka Y, Arai M, Kaneko T, Takenaka M, Moriyama T, et al. Inhibition of TGF-beta 1 expression by antisense oligonucleotides suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int. 1996;50(1):148–55.

    CAS  PubMed  Google Scholar 

  151. Daniel C, Takabatake Y, Mizui M, Isaka Y, Kawashi H, Rupprecht H, et al. Antisense oligonucleotides against thrombospondin-1 inhibit activation of TGF-beta in fibrotic renal disease in the rat in vivo. Am J Pathol. 2003;163(3):1185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Tomita N, Kashihara N, Morishita R. Transcription factor decoy oligonucleotide-based therapeutic strategy for renal disease. Clin Exp Nephrol. 2007;11(1):7–17.

    CAS  PubMed  Google Scholar 

  153. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, Ashush H, Fridman E, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009;20(8):1754–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Morishita Y, Yoshizawa H, Watanabe M, Ishibashi K, Muto S, Kusano E, et al. siRNAs targeted to Smad4 prevent renal fibrosis in vivo. Sci Rep. 2014;19(4):6424.

    Google Scholar 

  155. Alidori S, Akhavein N, Thorek DL, Behling K, Romin Y, Queen D, et al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci Transl Med. 2016;8(331):331ra39.

    PubMed  PubMed Central  Google Scholar 

  156. Schievenbusch S, Strack I, Scheffler M, Nischt R, Coutelle O, Hosel M, et al. Combined paracrine and endocrine AAV9 mediated expression of hepatocyte growth factor for the treatment of renal fibrosis. Mol Ther. 2010;18(7):1302–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Holditch SJ, Schreiber CA, Harris PC, LaRusso NF, Ramirez-Alvarado M, Cataliotti A, et al. B-type natriuretic peptide overexpression ameliorates hepatorenal fibrocystic disease in a rat model of polycystic kidney disease. Kidney Int. 2017;92(3):657–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Holditch SJ, Brown CN, Atwood DJ, Pokhrel D, Brown SE, Lombardi AM, et al. The consequences of increased 4E-BP1 in polycystic kidney disease. Hum Mol Genet. 2019;28(24):4132–47.

    CAS  PubMed  Google Scholar 

  159. Wang B, Wang J, He W, Zhao Y, Zhang A, Liu Y, et al. Exogenous miR-29a attenuates muscle atrophy and kidney fibrosis in unilateral ureteral obstruction mice. Hum Gene Ther. 2020.

  160. Vormittag P, Gunn R, Ghorashian S, Veraitch FS. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol. 2018;53:164–81.

    CAS  PubMed  Google Scholar 

  161. Kitamura M, Taylor S, Unwin R, Burton S, Shimizu F, Fine LG. Gene transfer into the rat renal glomerulus via a mesangial cell vector: site-specific delivery, in situ amplification, and sustained expression of an exogenous gene in vivo. J Clin Investig. 1994;94(2):497–505.

    CAS  PubMed  Google Scholar 

  162. Kitamura M, Burton S, Yokoo T, Fine LG. Gene delivery into the renal glomerulus by transfer of genetically engineered, autologous mesangial cells. Exp Nephrol. 1996;4(1):56–9.

    CAS  PubMed  Google Scholar 

  163. Naito T, Yokoyama H, Moore KJ, Dranoff G, Mulligan RC, Kelley VR. Macrophage growth factors introduced into the kidney initiate renal injury. Mol Med. 1996;2(3):297–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kitamura M. Creation of a reversible on/off system for site-specific in vivo control of exogenous gene activity in the renal glomerulus. Proc Natl Acad Sci USA. 1996;93(14):7387–91.

    CAS  PubMed  Google Scholar 

  165. Kitamura M, Kawachi H. Creation of an in vivo cytosensor using engineered mesangial cells. Automatic sensing of glomerular inflammation controls transgene activity. J Clin Investig. 1997;100(6):1394–9.

    CAS  PubMed  Google Scholar 

  166. Syres K, Harrison F, Tadlock M, Jester JV, Simpson J, Roy S, et al. Successful treatment of the murine model of cystinosis using bone marrow cell transplantation. Blood. 2009;114(12):2542–52.

    CAS  PubMed  Google Scholar 

  167. Harrison F, Yeagy BA, Rocca CJ, Kohn DB, Salomon DR, Cherqui S. Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis. Mol Ther. 2013;21(2):433–44.

    CAS  PubMed  Google Scholar 

  168. Naphade S, Sharma J, Gaide Chevronnay HP, Shook MA, Yeagy BA, Rocca CJ, et al. Brief reports: lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells. 2015;33(1):301–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Prim. 2018;4(1):50.

    PubMed  Google Scholar 

  170. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997;17(2):171–8.

    CAS  PubMed  Google Scholar 

  171. Konrad M, Vollmer M, Lemmink HH, van den Heuvel LP, Jeck N, Vargas-Poussou R, et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol. 2000;11(8):1449–59.

    CAS  PubMed  Google Scholar 

  172. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29(3):310–4.

    CAS  PubMed  Google Scholar 

  173. Nozu K, Fu XJ, Kaito H, Kanda K, Yokoyama N, Krol RP, et al. A novel mutation in KCNJ1 in a Bartter syndrome case diagnosed as pseudohypoaldosteronism. Pediatr Nephrol. 2007;22(8):1219–23.

    PubMed  Google Scholar 

  174. Sun M, Ning J, Xu W, Zhang H, Zhao K, Li W, et al. Genetic heterogeneity in patients with Bartter syndrome type 1. Mol Med Rep. 2017;15(2):581–90.

    CAS  PubMed  Google Scholar 

  175. Seys E, Andrini O, Keck M, Mansour-Hendili L, Courand PY, Simian C, et al. Clinical and genetic spectrum of bartter syndrome type 3. J Am Soc Nephrol. 2017;28(8):2540–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Findeis-Hosey JJ, McMahon KQ, Findeis SK. Von Hippel–Lindau disease. J Pediatr Genet. 2016;5(2):116–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Enriquez R, Adam V, Sirvent AE, Garcia-Garcia AB, Millan I, Amoros F. Gitelman syndrome due to p.A204T mutation in CLCNKB gene. Int Urol Nephrol. 2010;42(4):1099–102.

    CAS  PubMed  Google Scholar 

  178. Lee JW, Lee J, Heo NJ, Cheong HI, Han JS. Mutations in SLC12A3 and CLCNKB and their correlation with clinical phenotype in patients with Gitelman and Gitelman-like Syndrome. J Korean Med Sci. 2016;31(1):47–54.

    CAS  PubMed  Google Scholar 

  179. Blanchard A, Bockenhauer D, Bolignano D, Calo LA, Cosyns E, Devuyst O, et al. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2017;91(1):24–33.

    PubMed  Google Scholar 

  180. Kong Y, Xu K, Yuan K, Zhu J, Gu W, Liang L, et al. Digenetic inheritance of SLC12A3 and CLCNKB genes in a Chinese girl with Gitelman syndrome. BMC Pediatr. 2019;19(1):114.

    PubMed  PubMed Central  Google Scholar 

  181. Patrakka J, Kestila M, Wartiovaara J, Ruotsalainen V, Tissari P, Lenkkeri U, et al. Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int. 2000;58(3):972–80.

    CAS  PubMed  Google Scholar 

  182. Cox JP, Yamamoto K, Christie PT, Wooding C, Feest T, Flinter FA, et al. Renal chloride channel, CLCN5, mutations in Dent’s disease. J Bone Miner Res. 1999;14(9):1536–42.

    CAS  PubMed  Google Scholar 

  183. Alur RP, Vijayasarathy C, Brown JD, Mehtani M, Onojafe IF, Sergeev YV, et al. Papillorenal syndrome-causing missense mutations in PAX2/Pax2 result in hypomorphic alleles in mouse and human. PLoS Genet. 2010;6(3):e1000870.

    PubMed  PubMed Central  Google Scholar 

  184. Kruegel J, Rubel D, Gross O. Alport syndrome–insights from basic and clinical research. Nat Rev Nephrol. 2013;9(3):170–8.

    CAS  PubMed  Google Scholar 

  185. Elmonem MA, Veys KR, Soliman NA, van Dyck M, van den Heuvel LP, Levtchenko E. Cystinosis: a review. Orphanet J Rare Dis. 2016;22(11):47.

    Google Scholar 

  186. Tetti M, Monticone S, Burrello J, Matarazzo P, Veglio F, Pasini B, et al. Liddle Syndrome: review of the literature and description of a new case. Int J Mol Sci. 2018;19(3).

  187. Yu SM, Bleyer AJ, Anis K, Herlitz L, Zivna M, Hulkova H, et al. Autosomal dominant tubulointerstitial kidney disease due to MUC1 mutation. Am J Kidney Dis. 2018;71(4):495–500.

    CAS  PubMed  Google Scholar 

  188. Gast C, Marinaki A, Arenas-Hernandez M, Campbell S, Seaby EG, Pengelly RJ, et al. Autosomal dominant tubulointerstitial kidney disease-UMOD is the most frequent non polycystic genetic kidney disease. BMC Nephrol. 2018;19(1):301.

    PubMed  PubMed Central  Google Scholar 

  189. Clissold RL, Clarke HC, Spasic-Boskovic O, Brugger K, Abbs S, Bingham C, et al. Discovery of a novel dominant mutation in the REN gene after forty years of renal disease: a case report. BMC Nephrol. 2017;18(1):234.

    PubMed  PubMed Central  Google Scholar 

  190. Devuyst O, Olinger E, Weber S, Eckardt KU, Kmoch S, Rampoldi L, et al. Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers. 2019;5(1):60.

    PubMed  Google Scholar 

  191. Lee EC, Valencia T, Allerson C, Schairer A, Flaten A, Yheskel M, et al. Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun. 2019;10(1):4148.

    PubMed  PubMed Central  Google Scholar 

  192. Rocca CJ, Cherqui S. Gene transfer to mouse kidney in vivo. Methods Mol Biol. 2019;1937:227–34.

    CAS  PubMed  Google Scholar 

  193. Jerebtsova M, Liu XH, Ye X, Ray PE. Adenovirus-mediated gene transfer to glomerular cells in newborn mice. Pediatr Nephrol. 2005;20(10):1395–400.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Barry.

Ethics declarations

Funding

This work was supported by the Department of Molecular Medicine at Mayo Clinic (J.D.R.), National Institute of Diabetes Digestive and Kidney Diseases Grant number 1F31DK123858–01 and P30-DK090728 (J.D.R.), and the Department of Laboratory Medicine and Pathology at Mayo Clinic (M.A.B.).

Conflict of interest

Jeffrey D. Rubin and Michael A. Barry have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, J.D., Barry, M.A. Improving Molecular Therapy in the Kidney. Mol Diagn Ther 24, 375–396 (2020). https://doi.org/10.1007/s40291-020-00467-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00467-6

Navigation