Skip to main content
Log in

Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is a genetically heterogeneous disease that, even with current advancements in therapy, continues to have a poor prognosis. Recurrent somatic mutations have been identified in a core set of pathogenic genes including FLT3 (25–30% prevalence), NPM1 (25–30%), DNMT3A (25–30%), IDH1/2 (5–15%), and TET2 (5–15%), with direct diagnostic, prognostic, and targeted therapeutic implications. Advances in the understanding of the complex mechanisms of AML leukemogenesis have led to the development and recent US Food and Drug Administration (FDA) approval of several targeted therapies: midostaurin and gilteritinib targeting activated FLT3, and ivosidenib and enasidenib targeting mutated IDH1/2. Several additional drug candidates targeting other recurrently mutated gene pathways in AML are also being actively developed. Furthermore, outside of the realm of predicting responses to targeted therapies, many other mutated genes, which comprise the so-called long tail of oncogenic drivers in AML, have been shown to provide clinically useful diagnostic and prognostic information for AML patients. Many of these recurrently mutated genes have also been shown to be excellent biomarkers for post-treatment minimal residual disease (MRD) monitoring for assessing treatment response and predicting future relapse. In addition, the identification of germline mutations in a set of genes predisposing to myeloid malignancies may directly inform treatment decisions (particularly stem cell transplantation) and impact other family members. Recent advances in sequencing technology have made it practically and economically feasible to evaluate many genes simultaneously using next-generation sequencing (NGS). Mutation screening with NGS panels has been recommended by national and international professional guidelines as the standard of care for AML patients. NGS-based detection of the heterogeneous genes commonly mutated in AML has practical clinical utility for disease diagnosis, prognosis, prediction of targeted therapy response, and MRD monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Cancer Institute. Cancer stat facts: leukemia - acute myeloid leukemia (AML). 2019. https://seer.cancer.gov/statfacts/html/amyl.html. Accessed 22 Apr 2019.

  2. American Society of Clinical Oncology. Leukemia - acute myeloid - AML: statistics. 2019. https://www.cancer.net/cancer-types/leukemia-acute-myeloid-aml/statistics. Accessed 22 Apr 2019.

  3. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. https://doi.org/10.1182/blood-2016-08-733196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Rev. 4th ed. World Health Organization classification of tumours. Lyon: IARC; 2017.

  5. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. https://doi.org/10.1056/NEJMoa1301689.

  6. Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Gorlich D, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686–98. https://doi.org/10.1182/blood-2016-01-693879.

    Article  CAS  PubMed  Google Scholar 

  7. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. https://doi.org/10.1056/NEJMoa1516192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562(7728):526–31. https://doi.org/10.1038/s41586-018-0623-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109(2):431–48. https://doi.org/10.1182/blood-2006-06-001149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bullinger L, Dohner K, Dohner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 2017;35(9):934–46. https://doi.org/10.1200/JCO.2016.71.2208.

    Article  CAS  PubMed  Google Scholar 

  11. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bloomfield CD, Brunning RD. FAB M7: acute megakaryoblastic leukemia–beyond morphology. Ann Intern Med. 1985;103(3):450–2.

    Article  CAS  PubMed  Google Scholar 

  13. Lee EJ, Pollak A, Leavitt RD, Testa JR, Schiffer CA. Minimally differentiated acute nonlymphocytic leukemia: a distinct entity. Blood. 1987;70(5):1400–6.

    Article  CAS  PubMed  Google Scholar 

  14. Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T, et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood. 2011;117(8):2348–57. https://doi.org/10.1182/blood-2009-11-255976.

    Article  CAS  PubMed  Google Scholar 

  15. Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009;113(9):1875–91. https://doi.org/10.1182/blood-2008-04-150250.

    Article  CAS  PubMed  Google Scholar 

  16. National Comprehensive Cancer Network. Acute myeloid leukemia (version 1.2020—August 13, 2019. 2019. https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf. Accessed 22 Apr 2019.

  17. Wang B, Liu Y, Hou G, Wang L, Lv N, Xu Y, et al. Mutational spectrum and risk stratification of intermediate-risk acute myeloid leukemia patients based on next-generation sequencing. Oncotarget. 2016;7(22):32065–78. https://doi.org/10.18632/oncotarget.7028.

  18. Dunlap JB, Leonard J, Rosenberg M, Cook R, Press R, Fan G, et al. The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML. Am J Hematol. 2019;94(8):913–20. https://doi.org/10.1002/ajh.25517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma J, Dunlap J, Paliga A, Traer E, Press R, Shen L, et al. DNMT3A co-mutation is required for FLT3-ITD as an adverse prognostic indicator in intermediate-risk cytogenetic group AML. Leuk Lymphoma. 2018;59(8):1938–48. https://doi.org/10.1080/10428194.2017.1397659.

    Article  CAS  PubMed  Google Scholar 

  20. Patel SS, Kuo FC, Gibson CJ, Steensma DP, Soiffer RJ, Alyea EP 3rd, et al. High NPM1-mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML. Blood. 2018;131(25):2816–25. https://doi.org/10.1182/blood-2018-01-828467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alpermann T, Schnittger S, Eder C, Dicker F, Meggendorfer M, Kern W, et al. Molecular subtypes of NPM1 mutations have different clinical profiles, specific patterns of accompanying molecular mutations and varying outcomes in intermediate risk acute myeloid leukemia. Haematologica. 2016;101(2):e55–8. https://doi.org/10.3324/haematol.2015.133819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367–76. https://doi.org/10.1182/blood-2014-11-610543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuo FC, Mar BG, Lindsley RC, Lindeman NI. The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood. 2017;130(4):433–9. https://doi.org/10.1182/blood-2017-03-734533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009;361(13):1249–59. https://doi.org/10.1056/NEJMoa0904544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–89. https://doi.org/10.1056/NEJMoa1112304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luskin MR, Lee JW, Fernandez HF, Abdel-Wahab O, Bennett JM, Ketterling RP, et al. Benefit of high-dose daunorubicin in AML induction extends across cytogenetic and molecular groups. Blood. 2016;127(12):1551–8. https://doi.org/10.1182/blood-2015-07-657403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–92. https://doi.org/10.1200/JCO.2017.77.6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36. https://doi.org/10.1056/NEJMoa1605949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64. https://doi.org/10.1056/NEJMoa1614359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98. https://doi.org/10.1056/NEJMoa1716984.

    Article  CAS  PubMed  Google Scholar 

  31. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31. https://doi.org/10.1182/blood-2017-04-779405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perl AE, Altman JK, Cortes J, Smith C, Litzow M, Baer MR, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study. Lancet Oncol. 2017;18(8):1061–75. https://doi.org/10.1016/S1470-2045(17)30416-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carbonell D, Suarez-Gonzalez J, Chicano M, Andres-Zayas C, Trivino JC, Rodriguez-Macias G, et al. Next-generation sequencing improves diagnosis, prognosis and clinical management of myeloid neoplasms. Cancers (Basel). 2019;11(9):E1364. https://doi.org/10.3390/cancers11091364.

    Article  PubMed  Google Scholar 

  34. Watts J, Nimer S. Recent advances in the understanding and treatment of acute myeloid leukemia. F1000Res. 2018;7:F1000 Faculty Rev-1196. https://doi.org/10.12688/f1000research.14116.1.

    Article  Google Scholar 

  35. Burd A, Levine RL, Shoben A, Mims AS, Borate U, Stein EM, et al. Initial report of the Beat AML umbrella study for previously untreated AML: evidence of feasibility and early success in molecularly driven phase 1 and 2 studies [abstract]. Blood. 2018;132(Suppl 1):559. https://doi.org/10.1182/blood-2018-99-118494.

    Article  Google Scholar 

  36. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schuurhuis GJ, Heuser M, Freeman S, Bene MC, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275–91. https://doi.org/10.1182/blood-2017-09-801498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nat Rev Clin Oncol. 2013;10(8):460–71. https://doi.org/10.1038/nrclinonc.2013.100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bacher U, Dicker F, Haferlach C, Alpermann T, Rose D, Kern W, et al. Quantification of rare NPM1 mutation subtypes by digital PCR. Br J Haematol. 2014;167(5):710–4. https://doi.org/10.1111/bjh.13038.

    Article  CAS  PubMed  Google Scholar 

  41. Brunetti C, Anelli L, Zagaria A, Minervini A, Minervini CF, Casieri P, et al. Droplet digital PCR is a reliable tool for monitoring minimal residual disease in acute promyelocytic leukemia. J Mol Diagn. 2017;19(3):437–44. https://doi.org/10.1016/j.jmoldx.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  42. Mencia-Trinchant N, Hu Y, Alas MA, Ali F, Wouters BJ, Lee S, et al. Minimal residual disease monitoring of acute myeloid leukemia by massively multiplex digital PCR in patients with NPM1 mutations. J Mol Diagn. 2017;19(4):537–48. https://doi.org/10.1016/j.jmoldx.2017.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a “moving target” for detection of residual disease. Cytometry B Clin Cytom. 2013. https://doi.org/10.1002/cytob.21134.

    Article  PubMed  Google Scholar 

  44. Maurillo L, Buccisano F, Del Principe MI, Del Poeta G, Spagnoli A, Panetta P, et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol. 2008;26(30):4944–51. https://doi.org/10.1200/JCO.2007.15.9814.

    Article  PubMed  Google Scholar 

  45. Bacher U, Porret N, Joncourt R, Sanz J, Aliu N, Wiedemann G, et al. Pitfalls in the molecular follow up of NPM1 mutant acute myeloid leukemia. Haematologica. 2018;103(10):e486–8. https://doi.org/10.3324/haematol.2018.192104.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hollein A, Meggendorfer M, Dicker F, Jeromin S, Nadarajah N, Kern W, et al. NPM1 mutated AML can relapse with wild-type NPM1: persistent clonal hematopoiesis can drive relapse. Blood Adv. 2018;2(22):3118–25. https://doi.org/10.1182/bloodadvances.2018023432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28(8):1586–95. https://doi.org/10.1038/leu.2014.55.

    Article  CAS  PubMed  Google Scholar 

  48. Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A, Zeilemaker A, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018;378(13):1189–99. https://doi.org/10.1056/NEJMoa1716863.

    Article  CAS  PubMed  Google Scholar 

  49. Alonso CM, Llop M, Sargas C, Pedrola L, Panadero J, Hervas D, et al. Clinical utility of a next-generation sequencing panel for acute myeloid leukemia diagnostics. J Mol Diagn. 2019;21(2):228–40. https://doi.org/10.1016/j.jmoldx.2018.09.009.

    Article  CAS  PubMed  Google Scholar 

  50. Press RD, Eickelberg G, Froman A, Yang F, Stentz A, Flatley EM, et al. Next-generation sequencing-defined minimal residual disease before stem cell transplantation predicts acute myeloid leukemia relapse. Am J Hematol. 2019;94(8):902–12. https://doi.org/10.1002/ajh.25514.

    Article  CAS  PubMed  Google Scholar 

  51. Thol F, Gabdoulline R, Liebich A, Klement P, Schiller J, Kandziora C, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132(16):1703–13. https://doi.org/10.1182/blood-2018-02-829911.

    Article  CAS  PubMed  Google Scholar 

  52. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269–85. https://doi.org/10.1038/nrg.2017.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liggett LA, Sharma A, De S, DeGregori J. FERMI: a novel method for sensitive detection of rare mutations in somatic tissue. G3 (Bethesda). 2019;9(9):2977–87. https://doi.org/10.1534/g3.119.400438.

    Article  PubMed Central  Google Scholar 

  54. Klco JM, Miller CA, Griffith M, Petti A, Spencer DH, Ketkar-Kulkarni S, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015;314(8):811–22. https://doi.org/10.1001/jama.2015.9643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirsch P, Tang R, Abermil N, Flandrin P, Moatti H, Favale F, et al. Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia. Haematologica. 2017;102(7):1227–37. https://doi.org/10.3324/haematol.2016.159681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morita K, Kantarjian HM, Wang F, Yan Y, Bueso-Ramos C, Sasaki K, et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol. 2018;36(18):1788–97. https://doi.org/10.1200/JCO.2017.77.6757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malmberg EB, Stahlman S, Rehammar A, Samuelsson T, Alm SJ, Kristiansson E, et al. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing. Eur J Haematol. 2017;98(1):26–37. https://doi.org/10.1111/ejh.12780.

    Article  CAS  PubMed  Google Scholar 

  58. Kim T, Moon JH, Ahn JS, Kim YK, Lee SS, Ahn SY, et al. Next-generation sequencing-based posttransplant monitoring of acute myeloid leukemia identifies patients at high risk of relapse. Blood. 2018;132(15):1604–13. https://doi.org/10.1182/blood-2018-04-848028.

    Article  CAS  PubMed  Google Scholar 

  59. Schroeder T, Rachlis E, Bug G, Stelljes M, Klein S, Steckel NK, et al. Treatment of acute myeloid leukemia or myelodysplastic syndrome relapse after allogeneic stem cell transplantation with azacitidine and donor lymphocyte infusions—a retrospective multicenter analysis from the German Cooperative Transplant Study Group. Biol Blood Marrow Transplant. 2015;21(4):653–60. https://doi.org/10.1016/j.bbmt.2014.12.016.

    Article  CAS  PubMed  Google Scholar 

  60. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87. https://doi.org/10.1056/NEJMoa1409405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98. https://doi.org/10.1056/NEJMoa1408617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8. https://doi.org/10.1038/nm.3733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bhatnagar B, Eisfeld AK, Nicolet D, Mrozek K, Blachly JS, Orwick S, et al. Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia. Br J Haematol. 2016;175(2):226–36. https://doi.org/10.1111/bjh.14254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Debarri H, Lebon D, Roumier C, Cheok M, Marceau-Renaut A, Nibourel O, et al. IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the Acute Leukemia French Association. Oncotarget. 2015;6(39):42345–53. https://doi.org/10.18632/oncotarget.5645.

  65. Rothenberg-Thurley M, Amler S, Goerlich D, Kohnke T, Konstandin NP, Schneider S, et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia. 2017. https://doi.org/10.1038/leu.2017.350.

    Article  PubMed  PubMed Central  Google Scholar 

  66. The University of Chicago Hematopoietic Malignancies Cancer Risk Team, Drazer MW, Feurstein S, West AH, Jones MF, Churpek JE, et al. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood. 2016;128(14):1800–13. https://doi.org/10.1182/blood-2016-05-670240.

  67. Taskesen E, Bullinger L, Corbacioglu A, Sanders MA, Erpelinck CA, Wouters BJ, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood. 2011;117(8):2469–75. https://doi.org/10.1182/blood-2010-09-307280.

    Article  CAS  PubMed  Google Scholar 

  68. Pabst T, Eyholzer M, Haefliger S, Schardt J, Mueller BU. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J Clin Oncol. 2008;26(31):5088–93. https://doi.org/10.1200/jco.2008.16.5563.

    Article  CAS  PubMed  Google Scholar 

  69. Wlodarski MW, Hirabayashi S, Pastor V, Stary J, Hasle H, Masetti R, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387–97. https://doi.org/10.1182/blood-2015-09-669937(quiz 518).

    Article  CAS  PubMed  Google Scholar 

  70. Xiao H, Shi J, Luo Y, Tan Y, He J, Xie W, et al. First report of multiple CEBPA mutations contributing to donor origin of leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood. 2011;117(19):5257–60. https://doi.org/10.1182/blood-2010-12-326322.

    Article  CAS  PubMed  Google Scholar 

  71. Berger G, van den Berg E, Sikkema-Raddatz B, Abbott KM, Sinke RJ, Bungener LB, et al. Re-emergence of acute myeloid leukemia in donor cells following allogeneic transplantation in a family with a germline DDX41 mutation. Leukemia. 2017;31(2):520–2. https://doi.org/10.1038/leu.2016.310.

    Article  CAS  PubMed  Google Scholar 

  72. Fogarty PF, Yamaguchi H, Wiestner A, Baerlocher GM, Sloand E, Zeng WS, et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet. 2003;362(9396):1628–30. https://doi.org/10.1016/S0140-6736(03)14797-6.

    Article  CAS  PubMed  Google Scholar 

  73. Churpek JE, Nickels E, Marquez R, Rojek K, Liu B, Lorenz R, et al. Identifying familial myelodysplastic/acute leukemia predisposition syndromes through hematopoietic stem cell transplantation donors with thrombocytopenia. Blood. 2012;120(26):5247–9. https://doi.org/10.1182/blood-2012-09-457945.

    Article  CAS  PubMed  Google Scholar 

  74. Rosenberg PS, Alter BP, Ebell W. Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. Haematologica. 2008;93(4):511–7. https://doi.org/10.3324/haematol.12234.

    Article  PubMed  Google Scholar 

  75. Dror Y, Freedman MH, Leaker M, Verbeek J, Armstrong CA, Saunders FE, et al. Low-intensity hematopoietic stem-cell transplantation across human leucocyte antigen barriers in dyskeratosis congenita. Bone Marrow Transplant. 2003;31(10):847–50. https://doi.org/10.1038/sj.bmt.1703931.

    Article  CAS  PubMed  Google Scholar 

  76. Dietz AC, Orchard PJ, Baker KS, Giller RH, Savage SA, Alter BP, et al. Disease-specific hematopoietic cell transplantation: nonmyeloablative conditioning regimen for dyskeratosis congenita. Bone Marrow Transplant. 2011;46(1):98–104. https://doi.org/10.1038/bmt.2010.65.

    Article  CAS  PubMed  Google Scholar 

  77. Nelson AS, Marsh RA, Myers KC, Davies SM, Jodele S, O’Brien TA, et al. A reduced-intensity conditioning regimen for patients with dyskeratosis congenita undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(5):884–8. https://doi.org/10.1016/j.bbmt.2016.01.026.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Guidugli L, Johnson AK, Alkorta-Aranburu G, Nelakuditi V, Arndt K, Churpek JE, et al. Clinical utility of gene panel-based testing for hereditary myelodysplastic syndrome/acute leukemia predisposition syndromes. Leukemia. 2017;31(5):1226–9. https://doi.org/10.1038/leu.2017.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46. https://doi.org/10.1056/NEJMoa1508054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Churpek JE, Pyrtel K, Kanchi KL, Shao J, Koboldt D, Miller CA, et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood. 2015;126(22):2484–90. https://doi.org/10.1182/blood-2015-04-641100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Godley LA, Shimamura A. Genetic predisposition to hematologic malignancies: management and surveillance. Blood. 2017;130(4):424–32. https://doi.org/10.1182/blood-2017-02-735290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Churpek JE, Lorenz R, Nedumgottil S, Onel K, Olopade OI, Sorrell A, et al. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk Lymphoma. 2013;54(1):28–35. https://doi.org/10.3109/10428194.2012.701738.

    Article  PubMed  Google Scholar 

  83. Mack EKM, Marquardt A, Langer D, Ross P, Ultsch A, Kiehl MG, et al. Comprehensive genetic diagnosis of acute myeloid leukemia by next-generation sequencing. Haematologica. 2019;104(2):277–87. https://doi.org/10.3324/haematol.2018.194258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hills RK, Ivey A, Grimwade D. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;375(6):e9. https://doi.org/10.1056/NEJMc1603847.

    Article  PubMed  Google Scholar 

  85. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. https://doi.org/10.1056/NEJMoa1005143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu X, Ye Q, Zhao XP, Zhang PB, Li S, Li RQ, et al. RAS mutations in acute myeloid leukaemia patients: a review and meta-analysis. Clin Chim Acta. 2019;489:254–60. https://doi.org/10.1016/j.cca.2018.08.040.

    Article  CAS  PubMed  Google Scholar 

  87. Dunna NR, Vuree S, Anuradha C, Sailaja K, Surekha D, Digumarti RR, et al. NRAS mutations in de novo acute leukemia: prevalence and clinical significance. Indian J Biochem Biophys. 2014;51(3):207–10.

    CAS  PubMed  Google Scholar 

  88. Chou WC, Chou SC, Liu CY, Chen CY, Hou HA, Kuo YY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118(14):3803–10. https://doi.org/10.1182/blood-2011-02-339747.

    Article  CAS  PubMed  Google Scholar 

  89. Loh ML, Reynolds MG, Vattikuti S, Gerbing RB, Alonzo TA, Carlson E, et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children’s Cancer Group. Leukemia. 2004;18(11):1831–4. https://doi.org/10.1038/sj.leu.2403492.

    Article  CAS  PubMed  Google Scholar 

  90. Hou HA, Chou WC, Lin LI, Chen CY, Tang JL, Tseng MH, et al. Characterization of acute myeloid leukemia with PTPN11 mutation: the mutation is closely associated with NPM1 mutation but inversely related to FLT3/ITD. Leukemia. 2008;22(5):1075–8. https://doi.org/10.1038/sj.leu.2405005.

    Article  CAS  PubMed  Google Scholar 

  91. Grosskopf S, Eckert C, Arkona C, Radetzki S, Bohm K, Heinemann U, et al. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo. ChemMedChem. 2015;10(5):815–26. https://doi.org/10.1002/cmdc.201500015.

    Article  CAS  PubMed  Google Scholar 

  92. Yu B, Liu W, Yu WM, Loh ML, Alter S, Guvench O, et al. Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11-associated malignancies. Mol Cancer Ther. 2013;12(9):1738–48. https://doi.org/10.1158/1535-7163.Mct-13-0049-t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ahmad EI, Gawish HH, Al Azizi NM, Elhefni AM. The prognostic impact of K-RAS mutations in adult acute myeloid leukemia patients treated with high-dose cytarabine. Onco Targets Ther. 2011;4:115–21. https://doi.org/10.2147/ott.S12602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fasan A, Eder C, Haferlach C, Grossmann V, Kohlmann A, Dicker F, et al. GATA2 mutations are frequent in intermediate-risk karyotype AML with biallelic CEBPA mutations and are associated with favorable prognosis. Leukemia. 2013;27(2):482–5. https://doi.org/10.1038/leu.2012.174.

    Article  CAS  PubMed  Google Scholar 

  95. Weisberg E, Meng C, Case AE, Sattler M, Tiv HL, Gokhale PC, et al. Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU-285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies. Br J Haematol. 2019;187(4):488–501. https://doi.org/10.1111/bjh.16092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tsai CH, Hou HA, Tang JL, Kuo YY, Chiu YC, Lin CC, et al. Prognostic impacts and dynamic changes of cohesin complex gene mutations in de novo acute myeloid leukemia. Blood Cancer J. 2017;7(12):663. https://doi.org/10.1038/s41408-017-0022-y.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cheah JJC, Hahn CN, Hiwase DK, Scott HS, Brown AL. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol. 2017;106(2):163–74. https://doi.org/10.1007/s12185-017-2260-y.

    Article  CAS  PubMed  Google Scholar 

  98. Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27(5):658–70. https://doi.org/10.1016/j.ccell.2015.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Eisfeld AK, Kohlschmidt J, Mrozek K, Mims A, Walker CJ, Blachly JS, et al. NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome. Leukemia. 2018;32(12):2536–45. https://doi.org/10.1038/s41375-018-0147-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Saliba J, Saint-Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47(10):1131–40. https://doi.org/10.1038/ng.3380.

    Article  CAS  PubMed  Google Scholar 

  101. National Comprehensive Cancer Network. Myelodysplastic syndromes (version 2.2019). 2019. https://www.nccn.org/professionals/physician_gls/pdf/mds.pdf. Accessed 22 Apr 2019.

  102. Robles-Espinoza CD, Velasco-Herrera Mdel C, Hayward NK, Adams DJ. Telomere-regulating genes and the telomere interactome in familial cancers. Mol Cancer Res. 2015;13(2):211–22. https://doi.org/10.1158/1541-7786.Mcr-14-0305.

    Article  CAS  PubMed  Google Scholar 

  103. Borate U, et al. 373 Prevalence of inherited cancer predisposition mutations in a cohort of older AML patients enrolled on the beat AML master trial. https://ash.confex.com/ash/2019/webprogram/Paper131925.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Press.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Fei Yang, Tauangtham Anekpuritanang, and Richard D. Press declare that they have no conflicts of interest that might be relevant to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Anekpuritanang, T. & Press, R.D. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia. Mol Diagn Ther 24, 1–13 (2020). https://doi.org/10.1007/s40291-019-00443-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-019-00443-9

Navigation