Skip to main content

Advertisement

Log in

The Role of Pharmacogenetics in Chronic Plaque Psoriasis: Update of the Literature

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Psoriasis is a chronic inflammatory disease triggered by both genetic and environmental factors. Systemic and biologic therapies used to treat moderate-to-severe psoriasis show significant variability in efficacy, are associated with various degrees of toxicity, and, for biologic therapies, are expensive. There is a great need for non-invasive biomarkers to predict treatment outcomes of these therapies and to individualize care for patients with psoriasis. This article reviews currently recognized pharmacogenetic targets related to the treatment of chronic plaque psoriasis, in particular to biologic therapies. The use of pharmacogenetic and pharmacogenomic approaches to genetically profile patients will allow therapies to be targeted more precisely and safely to individual patients, to optimize the treatment of psoriasis, and minimize unnecessary costs. Characterizing patients with psoriasis according to common molecular mechanisms rather than by clinical phenotype may also allow more selective therapeutic agents to be targeted to genetically distinct groups of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parisi R, Symmons DP, Griffiths CE, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133:377–85.

    Article  CAS  PubMed  Google Scholar 

  2. Chandran V, Raychaudhuri SP. Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun. 2010;34:J314–21.

    Article  CAS  PubMed  Google Scholar 

  3. Kurd SK, Richardson S, Gelfand JM. Update on the epidemiology and systemic treatment of psoriasis. Expert Rev Clin Immunol. 2007;3:171–85.

    Article  PubMed  Google Scholar 

  4. Gladman DD, Brockbank J. Psoriatic arthritis. Expert Opin Investig Drugs. 2000;9:1511–22.

    Article  CAS  PubMed  Google Scholar 

  5. Crofford LJ. Psoriatic arthritis. In: Klippel JH, editor. Primer on the rheumatic diseases. 12th ed. Atlanta: Arthritis Foundation; 2001. p. 234–8.

    Google Scholar 

  6. Gladman DD, Shuckett R, Russel ML, et al. Psoriatic arthritis (PSA): an analysis of 220 patients. Q J Med. 1987;62:127–41.

    CAS  PubMed  Google Scholar 

  7. Farley E, Menter A. Psoriasis: comorbidities and associations. G Ital Dermatol Venereol. 2011;146:9–15.

    CAS  PubMed  Google Scholar 

  8. Krueger G, Koo J, Lebwohl M, et al. The impact of psoriasis on quality of life: results of a 1998 National Psoriasis Foundation patient-membership survey. Arch Dermatol. 2001;137:280–4.

    CAS  PubMed  Google Scholar 

  9. Gupta MA, Gupta AK. Depression and suicidal ideation in dermatology patients with acne, alopecia areata, atopic dermatitis and psoriasis. Br J Dermatol. 1998;139:846–50.

    Article  CAS  PubMed  Google Scholar 

  10. Gupta MA, Schork NJ, Gupta AK, et al. Suicidal ideation in psoriasis. Int J Dermatol. 1993;32:188–90.

    Article  CAS  PubMed  Google Scholar 

  11. Pearce DJ, Morrison AE, Higgins KB, et al. The comorbid state of psoriasis patients in a university dermatology practice. J Dermatolog Treat. 2005;16(5–6):319–23.

    Article  PubMed  Google Scholar 

  12. Kimball AB, Jacobson C, Weiss S, et al. The psychosocial burden of psoriasis. Am J Clin Dermatol. 2005;6:383–92.

    Article  PubMed  Google Scholar 

  13. Bhalerao J, Bowcock AM. The genetics of psoriasis: a complex disorder of the skin and immune system. Mol Genet. 1998;7:1537–45.

    CAS  Google Scholar 

  14. Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet. 2007;370:263–71.

    Article  CAS  PubMed  Google Scholar 

  15. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445:866–73.

    Article  CAS  PubMed  Google Scholar 

  16. Rahman P, Elder JT. Genetic epidemiology of psoriasis and psoriatic arthritis. Ann Rheum Dis. 2005;64:1137–9.

    Article  CAS  Google Scholar 

  17. Suomela S, Kainu K, Onkamo P, et al. Clinical associations of the risk alleles of HLA-Cw6 and CHCR1*WWCC in psoriasis. Acta Derm Venereol. 2007;87:127–34.

    Article  PubMed  Google Scholar 

  18. Barker JN. Genetic aspects of psoriasis. Clin Exp Dermatol. 2001;26:321–5.

    Article  CAS  PubMed  Google Scholar 

  19. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2, Strange A, Capon F, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42:985–90.

    Article  CAS  Google Scholar 

  20. Prieto-Pérez R, Cabaleiro T, Daudén E, et al. Genetics of psoriasis and pharmacogenetics of biological drugs. Autoimmune Dis. 2013;2013:613086.

    PubMed  PubMed Central  Google Scholar 

  21. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use [ICH]. Guidance for industry: E15 definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. Geneva: ICH; 2008. Available from URL: http://www.fda.gov/RegulatoryInformation/Guidances/ucm129286.htm. Accessed 6 Feb 2010.

  22. Heydendael VM, Spuls PI, Opmeer BC, et al. Methotrexate versus cyclosporine in moderate-to-severe chronic plaque psoriasis. N Engl J Med. 2003;349:658–65.

    Article  CAS  PubMed  Google Scholar 

  23. Flytström I, Stenberg B, Svensson A, et al. Methotrexate vs ciclosporin in psoriasis: effectiveness, quality of life and safety: a randomized controlled trial. Br J Dermatol. 2008;158:116–21.

    PubMed  Google Scholar 

  24. Van Dooen-Greebe RJ, Kuijpers AL, Mulder J, et al. Methotrexate revisited: effects of long-term treatment in psoriasis. Br J Dermatol. 1994;130:204–10.

    Article  Google Scholar 

  25. Ranganathan P, McLeod HL. Methotrexate pharmacogenetics: the first step toward individualized therapy in rheumatoid arthritis. Arthritis Rheum. 2006;54:1366–77.

    Article  CAS  PubMed  Google Scholar 

  26. Warren RB, Smith RL, Campalani E, et al. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. J Invest Dermatol. 2008;128:1925–9.

    Article  CAS  PubMed  Google Scholar 

  27. Campalani E, Arenas M, Marinaki AM, et al. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007;127:1860–7.

    Article  CAS  PubMed  Google Scholar 

  28. Menter A, Korman NJ, Elmets CA, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 4. Guidelines of care for the management and treatment of psoriasis with traditional systemic agents. J Am Acad Dermatol. 2009;61:451–85.

    Article  CAS  PubMed  Google Scholar 

  29. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4:481–508.

    CAS  PubMed  Google Scholar 

  30. O’Rielly DD, Rahman P. Pharmacogenetics of psoriasis. Pharmacogenomics. 2011;12:87–101.

    Article  PubMed  Google Scholar 

  31. Vasilopoulos Y, Sarri C, Zafiriou E, et al. A pharmacogenetic study of ABCB1 polymorphisms and cyclosporine treatment response in patients with psoriasis in the Greek population. Pharmacogenomics J. 2014;14:523–5.

    Article  CAS  PubMed  Google Scholar 

  32. Wongpiyabovorn J, Yooyongsatit S, Ruchusatsawat K, et al. Association of the CTG (-278/-460/405) haplotype within the vascular endothelial growth factor gene with early-onset psoriasis. Tissue Antigens. 2008;72:458–63.

    Article  CAS  PubMed  Google Scholar 

  33. Lee JH, Cho EY, Namkung JH, et al. Single-nucleotide polymorphisms and haplotypes in the VEGF receptor 3 gene and the haplotype GC in the VEGFA gene are associated with psoriasis in Koreans. J Invest Dermatol. 2008;128:1599–603.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Liang W, Zhang B, et al. Single nucleotide polymorphisms of VEGF gene and psoriasis risk. J Dermatol Sci. 2008;49:263–5.

    Article  CAS  PubMed  Google Scholar 

  35. Young HS, Summers AM, Read IR, et al. Interaction between genetic control of vascular endothelial growth factor production and retinoid responsiveness in psoriasis. J Invest Dermatol. 2006;126:453–9.

    Article  CAS  PubMed  Google Scholar 

  36. Campalani E, Allen MH, Fairhurst D, et al. Apolipoprotein E gene polymorphisms are associated with psoriasis but do not determine disease response to acitretin. Br J Dermatol. 2006;154:345–52.

    Article  CAS  PubMed  Google Scholar 

  37. Koch AE. Chemokines and their receptors in rheumatoid arthritis: future targets? Arthritis Rheum. 2005;52:710–21.

    Article  PubMed  Google Scholar 

  38. Mizutani H, Ohmoto Y, Mizutani T, et al. Role of increased production of monocytes TNF-alpha, IL-1beta and IL-6 in psoriasis: relation to focal infection, disease activity and responses to treatments. J Dermatol Sci. 1997;14:145–53.

    Article  CAS  PubMed  Google Scholar 

  39. Louis E, Franchimont D, Piron A, et al. Tumor necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol. 1998;113:401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vasilopoulos Y, Manolika M, Zafiriou E, et al. Pharmacogenetic analysis of TNF, TNFRSF1A, and TNFRSF1B gene polymorphisms and prediction of response to anti-TNF therapy in psoriasis patients in the Greek population. Mol Diagn Ther. 2012;16:29–34.

    Article  CAS  PubMed  Google Scholar 

  41. Verstrepen L, Carpentier I, Verhelst K, et al. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol. 2009;78:105–14.

  42. Tejasvi T, Stuart PE, Chandran V, et al. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol. 2012;132:593–600.

    Article  CAS  PubMed  Google Scholar 

  43. Gallo E, Cabaleiro T, Roman M, et al. The relationship between tumour necrosis factor (TNF)-alpha promoter and IL12B/IL-23R genes polymorphisms and the efficacy of anti-TNF-alpha therapy in psoriasis: a case-control study. Br J Dermatol. 2013;169:819–29.

    Article  CAS  PubMed  Google Scholar 

  44. Prieto-Perez R, Solano-Lopez G, Cabaleiro T, et al. The polymorphism rs763780 in the IL-17F gene is associated with response to biological drugs in patients with psoriasis. Pharmacogenomics. 2015;16:1723–31.

    Article  CAS  PubMed  Google Scholar 

  45. Cabaleiro T, Prieto-Perez R, Navarro R, et al. Paradoxical psoriasiform reactions to anti-TNFalpha drugs are associated with genetic polymorphisms in patients with psoriasis. Pharmacogenomics J. 2016;16:336–40.

    Article  CAS  PubMed  Google Scholar 

  46. Zaba LC, Cardinale I, Gilleaudeau P, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204:3183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Julia M, Guilabert A, Lozano F, et al. The role of Fcgamma receptor polymorphisms in the response to anti-tumor necrosis factor therapy in psoriasis: a pharmacogenetic study. JAMA Dermatol. 2013;149:1033–9.

    Article  CAS  PubMed  Google Scholar 

  48. Julia A, Ferrandiz C, Dauden E, et al. Association of the PDE3ASLCO1C1 locus with the response to anti-TNF agents in psoriasis. Pharmacogenomics J. 2015;15:322–5.

    Article  CAS  PubMed  Google Scholar 

  49. Ryan C, Kelleher J, Collins P, et al. A study to examine if the HLA Cw*0602 allele is a predictor of response to TNF-α inhibitors in the treatment of psoriasis [abstract]. Br J Dermatol. 2009;161(Suppl. 1):28.

    Google Scholar 

  50. Masouri S, Stefanaki I, Ntritsos G, et al. A pharmacogenetic study of psoriasis risk variants in a Greek population and prediction of responses to anti-TNF-α and anti-IL-12/23 Agents. Mol Diagn Ther. 2016;20:221–5.

    Article  CAS  PubMed  Google Scholar 

  51. Coto-Segura P, González-Fernández D, Batalla A, et al. Common and rare CARD14 gene variants affect the antitumour necrosis factor response among patients with psoriasis. Br J Dermatol. 2016;175:134–41.

    Article  CAS  PubMed  Google Scholar 

  52. Caldarola G, Sgambato A, Fanali C, et al. HLA-Cw6 allele, NFkB1 and NFkBIA polymorphisms play no role in predicting response to etanercept in psoriatic patients. Pharmacogenet Genomics. 2016;26:423–7.

    Article  CAS  PubMed  Google Scholar 

  53. Batalla A, Coto E, Gómez J, et al. IL17RA gene variants and anti-TNF response among psoriasis patients. Pharmacogenomics J. 2016. doi:10.1038/tpj.2016.70 (Epub ahead of print).

  54. Prieto-Pérez R, et al. New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics J. 2016. doi:10.1038/tpj.2016.64 (Epub ahead of print).

  55. Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo controlled trial (PHOENIX 1). Lancet. 2008;371:1665–74.

    Article  CAS  PubMed  Google Scholar 

  56. Papp KA, Langley RG, Lebwohl M, et al. Efficacy and safety of ustekinumab a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371:1675–84.

    Article  CAS  PubMed  Google Scholar 

  57. Capon F, Di Meglio P, Szaub J, et al. Sequence variants in the genes for the interleukin-23 (IL-23R) and its ligand (IL-12B) confer protection against psoriasis. Hum Genet. 2007;122:201–6.

    Article  CAS  PubMed  Google Scholar 

  58. Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80:273–90.

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Helms C, Liao W, et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 2008;4:e10000041.

    Google Scholar 

  60. Smith RL, Warren RB, Eyre S, et al. Polymorphisms in the IL-12beta and IL-23R genes are associated with psoriasis of early onset in a UK cohort. J Invest Dermatol. 2008;128:1325–7.

    Article  CAS  PubMed  Google Scholar 

  61. Boca AN, Talamonti M, Galluzzo M, et al. Genetic variations in IL6 and IL12B decreasing the risk for psoriasis. Immunol Lett. 2013;156:127–31.

    Article  CAS  PubMed  Google Scholar 

  62. Galluzzo M, Boca AN, Botti E, et al. IL12B (p40) gene polymorphisms contribute to ustekinumab response prediction in psoriasis. Dermatology. 2016;232:230–6.

    Article  CAS  PubMed  Google Scholar 

  63. Talamonti M, Botti E, Galluzzo M, et al. Pharmacogenetics of psoriasis: HLA-Cw6 but not LCE3B/3C deletion nor TNFAIP3 polymorphism predisposes to clinical response to interleukin 12/23 blocker ustekinumab. Br J Dermatol. 2013;169:458–63.

    Article  CAS  PubMed  Google Scholar 

  64. Talamonti M, Galluzzo M, Chimenti S, et al. HLA-C*06 and response to ustekinumab in Caucasian patients with psoriasis: outcome and long-term follow-up. J Am Acad Dermatol. 2016;74:374–5.

    Article  CAS  PubMed  Google Scholar 

  65. Chiu HY, Wang TS, Chan CC, et al. Human leucocyte antigen-Cw6 as a predictor for clinical response to ustekinumab, an interleukin-12/23 blocker, in Chinese patients with psoriasis: a retrospective analysis. Br J Dermatol. 2014;171:1181–8.

    Article  CAS  PubMed  Google Scholar 

  66. van den Reek JM, Coenen MJ, van de L’Isle Arias M, et al. Polymorphisms in CD84, IL12B and TNFAIP3 are associated with response to biologics in patients with psoriasis. Br J Dermatol. 2016. doi:10.1111/bjd.15005 (Epub ahead of print).

  67. Prieto-Pérez R, Llamas-Velasco M, Cabaleiro T, et al. Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics. 2017;18:157–64.

    Article  PubMed  CAS  Google Scholar 

  68. Li Y, Begovich AB. Unraveling the genetics of complex diseases: susceptibility genes for rheumatoid arthritis and psoriasis. Semin Immunol. 2009;21(6):318–27.

    Article  CAS  PubMed  Google Scholar 

  69. Garcia VE, Chang M, Brandon R, et al. Detailed genetic characterization of the interleukin-23 receptor in psoriasis. Genes Immun. 2008;9(6):546–55.

    Article  CAS  PubMed  Google Scholar 

  70. Nair RP, Ruether A, Stuart PE, et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J Invest Dermatol. 2008;128(7):1653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ellinghaus E, Ellinghaus D, Stuart PE, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet. 2010;42(11):991–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Julia A, Tortosa R, Hernanz JM. Risk variants for psoriasis vulgaris in a large case-control collection and association with clinical subphenotypes. Hum Mol Genet. 2012;21(20):4549–57.

    Article  CAS  PubMed  Google Scholar 

  73. Wu Y, Lu Z, Chen Y, et al. Replication of association between interleukin-23 receptor (IL-23R) and its ligand (IL-12B) polymorphisms and psoriasis in the Chinese Han population. Hum Immunol. 2020;71(12):1255–8.

  74. Halsall JA, Osborne JE, Pringle JH, Hutchinson PE. Vitamin D receptor gene polymorphisms, particularly the novel A-1012G promoter polymorphism, are associated with vitamin D3 responsiveness and non-familial susceptibility in psoriasis. Pharmacogenet Genomics. 2005;15(5):349–55.

    Article  CAS  PubMed  Google Scholar 

  75. Baran W, Szepietowski JC, Mazur G, Baran E. IFN-γ promoter gene polymorphism in psoriasis vulgaris. Biomarkers. 2008;13(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  76. Kim Y-K, Pyo C-W, Choi H-B, et al. Associations of IL-2 and IL-4 gene polymorphisms with psoriasis in the Korean population. J Dermatol Sci. 2007;48(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang X-J, Yan K-L, Wang Z-M, et al. Polymorphisms in interleukin-15 gene on chromosome 4q31.2 are associated with psoriasis vulgaris in Chinese population. J Invest Dermatol. 2007;127(11):2544–51.

    Article  CAS  PubMed  Google Scholar 

  78. Settin A, Hassan H, El-Baz R, Hassan T. Association of cytokine gene polymorphisms with psoriasis in cases from the Nile Delta of Egypt. Acta Dermatovenerol Al Pannonica et Adriatica. 2009;18(3):105–12.

    Google Scholar 

  79. Craven NM, Jackson CW, Kirby B, et al. Cytokine gene polymorphisms in psoriasis. Br J Dermatol. 2001;144(4):849–53.

    Article  CAS  PubMed  Google Scholar 

  80. Wang L, Yang L, Gao L, et al. A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with psoriasis. Int J Immunogenet. 2008;35(1):45–9.

    Article  PubMed  CAS  Google Scholar 

  81. Hohler T, Kruger A, Schneider PM, et al. A TNF-α promoter polymorphism is associated with juvenile onset psoriasis and psoriatic arthritis. J Invest Dermatol. 1997;109(4):562–5.

    Article  CAS  PubMed  Google Scholar 

  82. Mossner R, Kingo K, Kleensang A, et al. Association of TNF-238 and -308 promoter polymorphisms with psoriasis vulgaris and psoriatic arthritis but not with pustulosis palmoplantaris. J Invest Dermatol. 2005;124(1):282–4.

    Article  PubMed  Google Scholar 

  83. Li C, Wang G, Gao Y, et al. TNF-α gene promoter -238G>A and -308G>A polymorphisms alter risk of psoriasis vulgaris: a meta-analysis. J Invest Dermatol. 2007;127(8):1886–92.

    Article  CAS  PubMed  Google Scholar 

  84. Kaluza W, Reuss E, Grossmann S, et al. Different transcriptional activity and in vitro TNF-α production in psoriasis patients carrying the TNF-α 238A promoter polymorphism. J Invest Dermatol. 2000;114(6):1180–3.

    Article  CAS  PubMed  Google Scholar 

  85. Kim T-G, Pyo C-W, Hur S-S, et al. Polymorphisms of tumor necrosis factor (TNF) α and β genes in Korean patients with psoriasis. Arch Dermatol Res. 2003;295(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  86. Reich K, Mossner R, Konig IR, et al. Promoter polymorphisms of the genes encoding tumor necrosis factor-α and interleukin-1β are associated with different subtypes of psoriasis characterized by early and late disease onset. J Invest Dermatol. 2002;118(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  87. Nedoszytko B, Szczerkowska-Dobosz A, Zabłotna M, et al. Associations of promoter region polymorphisms in the tumour necrosis factor-α gene and early-onset psoriasis vulgaris in a northern Polish population. Br J Dermatol. 2007;157(1):165–7.

    Article  CAS  PubMed  Google Scholar 

  88. Arias AI, Giles B, Eiermann TH, et al. Tumor necrosis factor-alpha gene polymorphism in psoriasis. Exp Clin Immunogenet. 1997;14(2):118–22.

    CAS  PubMed  Google Scholar 

  89. Łuszczek W, Majorczyk E, Nockowski P, et al. Distribution of the CTLA-4 single nucleotide polymorphisms CT60G>A and +49A>G in psoriasis vulgaris patients and control individuals from a Polish Caucasian population. Int J Immunogenet. 2008;35(1):51–5.

    Article  PubMed  CAS  Google Scholar 

  90. Hollox EJ, Huffmeier U, Zeeuwen PLJM, et al. Psoriasis is associated with increased β-defensin genomic copy number. Nat Genet. 2008;40(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  91. Zervou MI, Goulielmos GN, Castro-Giner F, et al. STAT4 gene polymorphism is associated with psoriasis in the genetically homogeneous population of Crete, Greece. Hum Immunol. 2009;70(9):738–41.

    Article  CAS  PubMed  Google Scholar 

  92. H¨uffmeier U, Uebe S, Ekici AB, et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat Genet. 2010;42(11):996–9.

  93. Nair RP, Duffin KC, Helms C, et al. Genome-wide scan reveals association of psoriasis with IL-23 andNF-κ B pathways. Nat Genet. 2009;41(2):199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Capon F, Bijlmakers M-J, Wolf N, et al. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. Hum Mol Genet. 2008;17(13):1938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Strange A, Capon F, Spencer CCA, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction betwEn HLA-C and ERAP1. Nat Genet. 2010;42(11):985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang X-J, Huang W, Yang S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet. 2009;41(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  97. Feng B-J, Sun L-D, Soltani-Arabshahi R, et al. Multiple loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet. 2009;5(8):e1000606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zheng H-F, Zhang C, Sun L-D, et al. A single nucleotide polymorphism of MHC region is associated with subphenotypes of psoriasis in Chinese population. J Dermatol Sci. 2010;59(1):50–2.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang X-J. Enlightenment from genome-wide association study to genetics of psoriasis. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2009;38(4):333–7.

    CAS  PubMed  Google Scholar 

  100. Musone SL, Taylor KE, Nititham J, et al. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun. 2011;12(3):176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lodolce JP, Kolodziej LE, Rhee L, et al. African-derived genetic polymorphisms in TNFAIP3 mediate risk for autoimmunity. J Immunol. 2010;184(12):7001–9.

  102. Tsunemi Y, Saeki H, Nakamura K, et al. Interleukin-12 p40 gene (IL12B) 3-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci. 2002;30(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  103. Zheng H-F, Zuo X-B, Lu W-S, et al. Variants in MHC, LCE and IL12B have epistatic effects on psoriasis risk in Chinese population. J Dermatol Sci. 2011;61(2):124–8.

    Article  CAS  PubMed  Google Scholar 

  104. Koks S, Kingo K, Ratsep R, et al. Combined haplotype analysis of the interleukin-19 and -20 genes: relationship to plaque-type psoriasis. Genes Immun. 2004;5(8):662–7.

    Article  CAS  PubMed  Google Scholar 

  105. Koks S, Kingo K, Vabrit K, et al. Possible relations between the polymorphisms of the cytokines IL-19, IL-20 and IL-24 and plaque-type psoriasis. Genes Immun. 2005;6(5):407–15.

    Article  CAS  PubMed  Google Scholar 

  106. Kato T, Tsunemi Y, Saeki H, et al. Interferon-18 gene polymorphism-137 G/C is associated with susceptibility to psoriasis vulgaris but not with atopic dermatitis in Japanese patients. J Dermatol Sci. 2009;53(2):162–3.

    Article  CAS  PubMed  Google Scholar 

  107. Chen X-Y, Jin LW, Chen Y-W, et al. The association between the IL-20 -1723C → G allele on the 1q chromosome and psoriasis triggered or exacerbated by an upper respiratory tract infection in the Chinese Han population. Dermatology. 2011;222(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  108. Kingo K, Koks S, Nikopensius T, et al. Polymorphisms in the interleukin-20 gene: relationships to plaque type psoriasis. Genes Immun. 2004;5(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  109. Kingo K, Mossner R, Traks T, et al. Further association analysis of chr 6q22-24 suggests a role of IL-20RA polymorphisms in psoriasis. J Dermatol Sci. 2010;57(1):71–3.

    Article  CAS  PubMed  Google Scholar 

  110. Sun LD, Cheng H, Wang ZX. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet. 2010;42(11):1005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chang M, Li Y, Yan C, et al. Variants in the 5q31 cytokine gene cluster are associated with psoriasis. Genes Immun. 2008;9(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  112. West K. CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr Opin Invest Drugs. 2009;10(5):491–504.

    CAS  Google Scholar 

  113. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40:955–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Juneblad K, Johansson M, Rantapää-Dahlqvist S, Alenius GM. Association between the PTPN22 + 1858 C/T polymorphism and psoriatic arthritis. Arthritis Res Ther. 2011;13:R45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de Ridder L, Weersma RK, Dijkstra G, et al. Genetic susceptibility has a more important role in pediatric-onset Crohn’s disease than in adult-onset Crohn’s disease. Inflamm Bowel Dis. 2007;13:1083–92.

    Article  PubMed  Google Scholar 

  116. Okada Y, Mori M, Yamada R, et al. SLC22A4 polymorphism and rheumatoid arthritis susceptibility: a replication study in a Japanese population and a metaanalysis. J Rheumatol. 2008;35:1723–8.

    Article  PubMed  CAS  Google Scholar 

  117. Qiu ZX, Zhang K, Qiu XS, et al. CD226 Gly307Ser association with multiple autoimmune diseases: a meta-analysis. Hum Immunol. 2013;74:249–55.

    Article  CAS  PubMed  Google Scholar 

  118. Rahman P, Sun S, Peddle L, et al. Association between the interleukin-family gene cluster and psoriatic arthritis. Arthritis Rheum. 2006;54:2321–5.

    Article  CAS  PubMed  Google Scholar 

  119. Potter C, Cordell HJ, Barton A, et al. Association between anti-tumour necrosis factor treatment response and genetic variants within the TLR and NFjB signalling pathways. Ann Rheum Dis. 2010;69:1315–20.

    Article  CAS  PubMed  Google Scholar 

  120. Louis E, Franchimont D, Piron A, et al. Tumour necrosis factor (TNF) gene polymorphism influences TNF-α production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol. 1998;113(3):401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Talamonti.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of interest

MT, SDA, LB, and MG have no conflicts of interest directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talamonti, M., D’Adamio, S., Bianchi, L. et al. The Role of Pharmacogenetics in Chronic Plaque Psoriasis: Update of the Literature. Mol Diagn Ther 21, 467–480 (2017). https://doi.org/10.1007/s40291-017-0274-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0274-z

Keywords

Navigation