Skip to main content
Log in

Significance of Programmed Death Ligand 1 (PD-L1) Immunohistochemical Expression in Colorectal Cancer

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Introduction

The significance of programmed death ligand 1 (PD-L1) expression in the prognosis of patients with colorectal cancer remains to be determined.

Methods

We assessed the levels of PD-L1 expression in tumor-infiltrating immune cells as well as tumor cells, and evaluated the association between PD-L1 expression and clinical outcome in 262 colorectal cancer patients.

Results

In univariate analysis, TNM stage (p < 0.001), PD-L1 expression in tumor-infiltrating immune cells (p = 0.016), tumor location (p = 0.033), and tumor size (p = 0.019) were associated with survival. In multivariate analysis, PD-L1 expression in tumor infiltrating immune cells and TNM stage were independent prognostic factors (HR 1.83, 95 % CI 1.09–3.05, p = 0.021; HR 2.49, 95 % CI 1.51–4.12, p < 0.001, respectively). Eight percent of patients had positive PD-L1 expression in tumor cells. In contrast, PD-L1 expression in tumor cells was not significantly associated with patient clinical outcome.

Conclusions

Our data indicate that PD-L1 status in tumor-infiltrating immune cells is a significant prognostic factor in colorectal cancer patients. There is a need for randomized studies that evaluate the role of PD-L1 expression in colorectal cancer in treatment decision protocols for novel immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, et al. Colorectal cancer. Lancet. 2010;375(9719):1030–47.

    Article  PubMed  Google Scholar 

  2. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383(9927):1490–502.

    Article  PubMed  Google Scholar 

  3. Fisher KW, Lopez-Beltran A, Montironi R, Cheng L. Precision medicine in colorectal cancer: evolving genomic landscape and emerging consensus. Future Oncol. 2015;11(19):2711–19.

    Article  CAS  Google Scholar 

  4. Correale P, Rotundo MS, Botta C, Del Vecchio MT, Ginanneschi C, Licchetta A, et al. Tumor infiltration by T lymphocytes expressing chemokine receptor 7 (CCR7) is predictive of favorable outcome in patients with advanced colorectal carcinoma. Clin Cancer Res. 2012;18(3):850–7.

    Article  PubMed  Google Scholar 

  5. Simpson JA, Al-Attar A, Watson NF, Scholefield JH, Ilyas M, Durrant LG. Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut. 2010;59(7):926–33.

    Article  CAS  PubMed  Google Scholar 

  6. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  CAS  PubMed  Google Scholar 

  7. Miller JF, Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell. 2015;27(4):439–49.

    Article  CAS  PubMed  Google Scholar 

  8. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.

    Article  CAS  PubMed  Google Scholar 

  11. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  12. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14(8):561–84.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  14. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  Google Scholar 

  15. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.

    Article  CAS  PubMed  Google Scholar 

  16. Awad MM, Hammerman PS. Durable responses With PD-1 inhibition in lung and kidney cancer and the ongoing search for predictive biomarkers. J Clin Oncol. 2015;33(18):1993–4.

    Article  PubMed  Google Scholar 

  17. Edge SB, Byrd DR, Compton CC, Fritz AG, Freene FL, Trotti A. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    Google Scholar 

  18. Bosman FT, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of the digestive system, vol. 4. Lyon: International Agency for Research on Cancer; 2010.

    Google Scholar 

  19. Xiao X, Wang L, Wei P, Chi Y, Li D, Wang Q, et al. Role of MUC20 overexpression as a predictor of recurrence and poor outcome in colorectal cancer. J Transl Med. 2013;11:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Faraj SF, Munari E, Guner G, Taube J, Anders R, Hicks J, et al. Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology. 2015;85(3):703 (e1–6).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    Article  CAS  PubMed  Google Scholar 

  22. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56.

    Article  CAS  PubMed  Google Scholar 

  23. Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy—inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res. 2012;18(24):6580–7.

    Article  CAS  PubMed  Google Scholar 

  24. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  Google Scholar 

  26. Atefi M, Avramis E, Lassen A, Wong DJ, Robert L, Foulad D, et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res. 2014;20(13):3446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kluger HM, Zito CR, Barr ML, Baine MK, Chiang VL, Sznol M, et al. Characterization of PD-L1 expression and associated T-cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin Cancer Res. 2015;21(13):3052–60.

    Article  CAS  PubMed  Google Scholar 

  28. Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 2014;25(10):1935–40.

    Article  CAS  PubMed  Google Scholar 

  29. Umemoto Y, Okano S, Matsumoto Y, Nakagawara H, Matono R, Yoshiya S, et al. Prognostic impact of programmed cell death 1 ligand 1 expression in human leukocyte antigen class I-positive hepatocellular carcinoma after curative hepatectomy. J Gastroenterol. 2015;50(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  30. Fankhauser CD, Curioni-Fontecedro A, Allmann V, Beyer J, Tischler V, Sulser T, et al. Frequent PD-L1 expression in testicular germ cell tumors. Br J Cancer. 2015;113(3):411–3.

    Article  CAS  PubMed  Google Scholar 

  31. Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Montironi R, Santoni M, Cheng L, Lopez-Beltran A, Massari F, Matrana MR, et al. An overview of emerging immunotargets of genitourinary tumors. Curr Drug Targets. 2015 [Epub ahead of print]

  33. Smyth MJ, Ngiow SF, Ribas A, Teng MWL. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2015. doi:10.1038/nrclinonc.2015.209

  34. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ngiow SF, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1. Cancer Res. 2015;75(18):3800–11.

    Article  CAS  PubMed  Google Scholar 

  36. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  Google Scholar 

  37. Gatalica Z, Snyder C, Maney T, Ghazalpour A, Holterman DA, Xiao N, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomark Prev. 2014;23(12):2965–70.

    Article  CAS  Google Scholar 

  38. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5(1):43–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol. 2015;33(13):1430–7.

    Article  CAS  PubMed  Google Scholar 

  41. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  42. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall survival and long-term safety of nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33(18):2004–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisha Wang.

Ethics declarations

Funding

This study was supported by the grant from the Science and Technology Commission of Shanghai Municipality (15495810300), and the National Natural Science Foundation of China (81071791, 81401963).

Conflicts of interest

LW, FR, QW, LB, MM, KF, WS, XZ, XD, and LC, declare no conflicts of interest that are directly relevant to the content of this article.

Ethical approval and informed consent

The study was carried out with the approval of the local Ethics Committee of Fudan University Shanghai Cancer Center. The patients were informed about the subject and aim of the study before the start of the investigation.

Author contributions

The study was designed and performed by L. Wang, X. Du, and L. Cheng. L. Wang had primary responsibility for writing this article. All authors contributed and reviewed the data, and approved the final content of the manuscript.

Additional information

L. Wang and F. Ren have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ren, F., Wang, Q. et al. Significance of Programmed Death Ligand 1 (PD-L1) Immunohistochemical Expression in Colorectal Cancer. Mol Diagn Ther 20, 175–181 (2016). https://doi.org/10.1007/s40291-016-0188-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0188-1

Keywords

Navigation