Skip to main content
Log in

The Effects of Set Structure Manipulation on Chronic Adaptations to Resistance Training: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

The acute effects of resistance training (RT) set structure alteration are well established; however, less is known about their effects on chronic training adaptations.

Objective

The aim of this systematic review and meta-analysis was to synthesise the available evidence on the effectiveness of traditional (TS), cluster (CS) and rest redistribution (RR) set structures in promoting chronic RT adaptations, and provide an overview of the factors which might differentially influence the magnitude of specific training adaptations between set structure types.

Methods

This review was performed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines encompassing the literature search of five databases. Studies in English that compared muscular strength, endurance, and/or hypertrophy adaptations, as well as vertical jump performance, velocity and power at submaximal loads and shifts in the slopes of force–velocity profiles between TS and CS or RR set structures (i.e., alternative set structures) were included. Risk of bias assessment was performed using a modified Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Random-effects meta-analyses and meta-regressions were performed where possible.

Results

17 studies met the inclusion criteria, none had more than one risk of bias item assessed as high risk. Pooled results revealed that none of the set structures were more effective at inducing strength (standardised mean difference (SMD) = − 0.06) or hypertrophy (SMD = − 0.03). TS were more effective at improving muscular endurance compared to alternative set structures (SMD = − 0.38), whereas alternative set structures tended to be more effective for vertical jump performance gains (SMD = 0.13), but this effect was not statistically significant (p = 0.190). Greater velocity and power outputs at submaximal loads (SMD = 0.18) were observed when using alternative set structures compared to TS. In addition, alternative set structures promoted greater shifts of the slope of force–velocity profiles towards more velocity dominant profiles compared to TS (SMD = 0.28). Sub-group analyses controlling for each alternative set structure independently showed mixed results likely caused by the relatively small number of studies available for some outcomes.

Conclusion

Modifying TS to an alternative set structure (CS or RR) has a negligible impact on strength and hypertrophy. Using CS and RR can lead to greater vertical jump performance, velocity and power at submaximal loads and shifts to more velocity dominant force–velocity profiles compared to training using TS. However, TS may provide more favourable effects on muscle endurance when compared to CS and RR. These findings demonstrate that altering TS to alternative set structures may influence the magnitude of specific muscular adaptations indicating set structure manipulation is an important consideration for RT program design.

Protocol registration

The original protocol was prospectively registered (CRD42019138954) with the PROSPERO (International Prospective Register of Systematic Reviews).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):1419–49.

    Article  PubMed  Google Scholar 

  2. Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48(4):765–85.

    Article  PubMed  Google Scholar 

  3. Kraemer WJ, Ratamess NA, French DN. Resistance training for health and performance. Curr Sports Med Rep. 2002;1(3):165–71.

    Article  PubMed  Google Scholar 

  4. O’Connor PJ, Herring MP, Caravalho A. Mental health benefits of strength training in adults. Am J Lifestyle Med. 2010;4(5):377–96.

    Article  Google Scholar 

  5. Feigenbaum MS, Pollock ML. Prescription of resistance training for health and disease. Med Sci Sports Exerc. 1999;31(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  6. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Datab Syst Rev. 2009;2009:3.

    Google Scholar 

  7. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, et al. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res. 2019;33:8.

    Article  Google Scholar 

  8. Ratamess N, Alvar B, Evetoch T, Housh T, Kibler W, Kraemer W. Progression models in resistance training for healthy adults [ACSM position stand]. Med Sci Sports Exerc. 2009;41(3):687–708.

    Article  Google Scholar 

  9. Grgic J, Lazinica B, Mikulic P, Krieger JW, Schoenfeld BJ. The effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy: a systematic review. Eur J Sport Sci. 2017;17(8):983–93.

    Article  PubMed  Google Scholar 

  10. Grgic J, Schoenfeld BJ, Davies TB, Lazinica B, Krieger JW, Pedisic Z. Effect of resistance training frequency on gains in muscular strength: a systematic review and meta-analysis. Sports Med. 2018;48(5):1207–20.

    Article  PubMed  Google Scholar 

  11. Grgic J, Schoenfeld BJ, Skrepnik M, Davies TB, Mikulic P. Effects of rest interval duration in resistance training on measures of muscular strength: a systematic review. Sports Med. 2018;48(1):137–51.

    Article  PubMed  Google Scholar 

  12. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low-vs high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–23.

    Article  PubMed  Google Scholar 

  13. Davies TB, Kuang K, Orr R, Halaki M, Hackett D. Effect of movement velocity during resistance training on dynamic muscular strength: a systematic review and meta-analysis. Sports Med. 2017;47(8):1603–17.

    Article  PubMed  Google Scholar 

  14. Ralston GW, Kilgore L, Wyatt FB, Baker JS. The effect of weekly set volume on strength gain: a meta-analysis. Sports Med. 2017;47(12):2585–601.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tufano JJ, Brown LE, Haff GG. Theoretical and practical aspects of different cluster set structures: a systematic review. J Strength Cond Res. 2017;31(3):848–67.

    Article  PubMed  Google Scholar 

  16. González-Badillo JJ, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, Pareja-Blanco F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci. 2014;14(8):772–81.

    Article  PubMed  Google Scholar 

  17. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga E, González-Badillo J. Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med. 2014;35(11):916–24.

    Article  CAS  PubMed  Google Scholar 

  18. Padulo J, Mignogna P, Mignardi S, Tonni F, Dottavio S. Effect of different pushing speeds on bench press. Int J Sports Med. 2012;33(05):376–80.

    Article  CAS  PubMed  Google Scholar 

  19. González-Badillo JJ, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31(05):347–52.

    Article  PubMed  Google Scholar 

  20. González-Badillo JJ, Yañez-García JM, Mora-Custodio R, Rodríguez-Rosell D. Velocity loss as a variable for monitoring resistance exercise. Int J Sports Med. 2017;38(03):217–25.

    Article  PubMed  Google Scholar 

  21. Pareja-Blanco F, Sánchez-Medina L, Suárez-Arrones L, González-Badillo JJ. Effects of velocity loss during resistance training on performance in professional soccer players. Int J Sports Physiol Perform. 2017;12(4):512–9.

    Article  PubMed  Google Scholar 

  22. Sanchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):1725–34.

    Article  PubMed  Google Scholar 

  23. Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351–62.

    Article  CAS  PubMed  Google Scholar 

  24. Mohamad NI, Cronin JB, Nosaka KK. Difference in kinematics and kinetics between high-and low-velocity resistance loading equated by volume: implications for hypertrophy training. J Strength Cond Res. 2012;26(1):269–75.

    Article  PubMed  Google Scholar 

  25. Joy J, Oliver J, McCleary S, Lowery R, Wilson J. Power output and electromyography activity of the back squat exercise with cluster sets. J Sports Sci. 2013;1:37–45.

    Google Scholar 

  26. Walker S, Davis L, Avela J, Häkkinen K. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J Electromyogr Kines. 2012;22(3):356–62.

    Article  Google Scholar 

  27. van den Tillaar R, Saeterbakken A. Effect of fatigue upon performance and electromyographic activity in 6-RM bench press. J Hum Kinet. 2014;40(1):57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahtiainen JP, Pakarinen A, Kraemer WJ, Häkkinen K. Acute hormonal and neuromuscular responses and recovery to forced vs maximum repetitions multiple resistance exercises. Int J Sports Med. 2003;24(6):410–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K. Acute hormonal responses to heavy resistance exercise in strength athletes versus nonathletes. Can J Appl Physiol. 2004;29(5):527–43.

    Article  CAS  PubMed  Google Scholar 

  30. McCaulley GO, McBride JM, Cormie P, Hudson MB, Nuzzo JL, Quindry JC, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2009;105(5):695–704.

    Article  CAS  PubMed  Google Scholar 

  31. Fleck SJ, Kraemer W. Designing resistance training programs, 4E. Human Kinetics; 2014.

  32. Drinkwater EJ, Lawton TW, Lindsell RP, Pyne DB, Hunt PH, Mckenna MJ. Training leading to repetition failure enhances bench press strength gains in elite junior athletes. J Strength Cond Res. 2005;19(2):382–8.

    PubMed  Google Scholar 

  33. Lawton T, Cronin J, Drinkwater E, Lindsell R, Pyne D. The effect of continuous repetition training and intra-set rest training on bench press strength and power. J Sport Med Phys Fit. 2004;44(4):361–7.

    CAS  Google Scholar 

  34. Goto K, Ishii N, Kizuka T, Takamatsu K. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc. 2005;37(6):955–63.

    CAS  PubMed  Google Scholar 

  35. Sooneste H, Tanimoto M, Kakigi R, Saga N, Katamoto S. Effects of training volume on strength and hypertrophy in young men. J Strength Cond Res. 2013;27(1):8–13.

    Article  PubMed  Google Scholar 

  36. Colquhoun RJ, Gai CM, Aguilar D, Bove D, Dolan J, Vargas A, et al. Training volume, not frequency, indicative of maximal strength adaptations to resistance training. J Strength Cond Res. 2018;32(5):1207–13.

    Article  PubMed  Google Scholar 

  37. Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci. 2017;35(11):1073–82.

    Article  PubMed  Google Scholar 

  38. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724–35.

    Article  CAS  PubMed  Google Scholar 

  39. Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, Cornejo-Daza PJ, Piqueras-Sanchiz F, Mora-Vela R, et al. Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020. https://doi.org/10.1249/mss.0000000000002295.

    Article  PubMed  Google Scholar 

  40. Pareja-Blanco F, Alcazar J, Cornejo-Daza PJ, Sánchez-Valdepeñas J, Rodriguez-Lopez C, Hidalgo-de Mora J, et al. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations and muscle hypertrophy. Scand J Med Sci Sports. 2020. https://doi.org/10.1111/sms.13775.

    Article  PubMed  Google Scholar 

  41. Orange ST, Metcalfe JW, Robinson A, Applegarth MJ, Liefeith A. Effects of in-season velocity-versus percentage-based training in academy rugby league players. Int J Sports Physiol Perform. 2019;15(4):554–61.

    Article  Google Scholar 

  42. Hansen KT, Cronin JB, Pickering SL, Newton MJ. Does cluster loading enhance lower body power development in preseason preparation of elite rugby union players? J Strength Cond Res. 2011;25(8):2118–26.

    Article  PubMed  Google Scholar 

  43. Haff GG, Hobbs RT, Haff EE, Sands WA, Pierce KC, Stone MH. Cluster training: a novel method for introducing training program variation. Strength Cond J. 2008;30(1):67–76.

    Article  Google Scholar 

  44. Tufano JJ, Conlon JA, Nimphius S, Brown LE, Petkovic A, Frick J, et al. Effects of cluster sets and rest-redistribution on mechanical responses to back squats in trained men. J Hum Kinet. 2017;58(1):35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tufano JJ, Conlon JA, Nimphius S, Brown LE, Seitz LB, Williamson BD, et al. Maintenance of velocity and power with cluster sets during high-volume back squats. Int J Sports Physiol Perform. 2016;11(7):885–92.

    Article  PubMed  Google Scholar 

  46. Tufano JJ, Conlon JA, Nimphius S, Oliver JM, Kreutzer A, Haff GG. Different cluster sets result in similar metabolic, endocrine, and perceptual responses in trained men. J Strength Cond Res. 2019;33(2):346–54.

    Article  PubMed  Google Scholar 

  47. Merrigan JJ, Tufano JJ, Oliver JM, White JB, Fields JB, Jones MT. Reducing the loss of velocity and power in women athletes via rest redistribution. Int J Sports Physiol Perform. 2020;15(2):255–61.

    Article  PubMed  Google Scholar 

  48. Oliver JM, Kreutzer A, Jenke SC, Phillips MD, Mitchell JB, Jones MT. Velocity drives greater power observed during back squat using cluster sets. J Strength Cond Res. 2016;30(1):235–43.

    Article  PubMed  Google Scholar 

  49. Morales-Artacho AJ, García-Ramos A, Pérez-Castilla A, Padial P, Gomez AM, Peinado AM, Pérez-Córdoba JL, Feriche B. Muscle activation during power-oriented resistance training: continuous vs cluster set configurations. J Strength Cond Res. 2019;33:95–102.

    Article  Google Scholar 

  50. Denton J, Cronin JB. Kinematic, kinetic, and blood lactate profiles of continuous and intraset rest loading schemes. J Strength Cond Res. 2006;20(3):528–34.

    PubMed  Google Scholar 

  51. Iglesias-Soler E, Carballeira E, Sánchez-Otero T, Mayo X, Jiménez A, Chapman ML. Acute effects of distribution of rest between repetitions. Int J Sports Med. 2012;33(5):351–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mayo X, Iglesias-Soler E, Fernández-Del-Olmo M. Effects of set configuration of resistance exercise on perceived exertion. Percept Mot Skills. 2014;119(3):825–37.

    Article  PubMed  Google Scholar 

  53. Mayo X, Iglesias-Soler E, Kingsley JD. Perceived exertion is affected by the submaximal set configuration used in resistance exercise. J Strength Cond Res. 2019;33(2):426–32.

    Article  PubMed  Google Scholar 

  54. Jukic I, Ramos AG, Helms ER, McGuigan MR, Tufano JJ. Acute effects of cluster and rest redistribution set structures on mechanical, metabolic, and perceptual fatigue during and after resistance training: a systematic review and meta-analysis. Sports Med. 2020;50(12):2209–36.

    Article  PubMed  Google Scholar 

  55. Oliver JM, Jagim AR, Sanchez AC, Mardock MA, Kelly KA, Meredith HJ, et al. Greater gains in strength and power with intraset rest intervals in hypertrophic training. J Strength Cond Res. 2013;27(11):3116–31.

    Article  PubMed  Google Scholar 

  56. Nicholson G, Ispoglou T, Bissas A. The impact of repetition mechanics on the adaptations resulting from strength-, hypertrophy-and cluster-type resistance training. Eur J Appl Physiol. 2016;116(10):1875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cuevas-Aburto J, Jukic I, González-Hernández JM, Janicijevic D, Barboza-González P, Chirosa-Ríos LJ, et al. Effect of resistance-training programs differing in set configuration on maximal strength and explosive-action performance. Int J Sports Physiol Perform. 2020. https://doi.org/10.1123/ijspp.2019-1005.

    Article  PubMed  Google Scholar 

  58. Asadi A, Ramírez-Campillo R. Effects of cluster vs. traditional plyometric training sets on maximal-intensity exercise performance. Med (Kaunas, Lithuania). 2016;52(1):41–5.

  59. Carneiro MA, de Oliveira Júnior GN, de Sousa JF, Santagnello SB, Souza MV, Orsatti FL. Effects of cluster training sets on muscle power and force–velocity relationship in postmenopausal women. Sport Sci Health. 2019;2019:1–9.

    Google Scholar 

  60. Davies TB, Halaki M, Orr R, Helms ER, Hackett DA. Changes in bench press velocity and power after 8 weeks of high-load cluster- or traditional-set structures. J Strength Cond Res. 2020;34(10):2734–42.

    Article  PubMed  Google Scholar 

  61. Iglesias-Soler E, Mayo X, Rio-Rodriguez D, Carballeira E, Farinas J, Fernandez-Del-Olmo M. Inter-repetition rest training and traditional set configuration produce similar strength gains without cortical adaptations. J Sports Sci. 2016;34(15):1473–84.

    Article  PubMed  Google Scholar 

  62. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Miller JR, Van Hooren B, Bishop C, Buckley JD, Willy RW, Fuller JT. A systematic review and meta-analysis of crossover studies comparing physiological, perceptual and performance measures between treadmill and overground running. Sports Med. 2019;49(5):763–82.

    Article  PubMed  Google Scholar 

  65. Atkins D, Best D, Briss P, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490.

    Article  PubMed  Google Scholar 

  66. Schwarzer G, Carpenter JR, Rücker G. Meta-analysis with R. Berlin: Springer; 2015.

    Book  Google Scholar 

  67. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1–48.

    Article  Google Scholar 

  68. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.R-project.org/.

  69. Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55–79.

    Article  PubMed  Google Scholar 

  70. Fu R, Gartlehner G, Grant M, Shamliyan T, Sedrakyan A, Wilt TJ, et al. Conducting quantitative synthesis when comparing medical interventions: AHRQ and the Effective Health Care Program. J Clin Epidemiol. 2011;64(11):1187–97.

    Article  PubMed  Google Scholar 

  71. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sterne JA, Egger M, Moher D. Chapter 10: Addressing reporting biases. In: Higgins JPT, Green S, editors. Conchrane handbook for systematic reviews of interventions. Chichester: Wiley; 2008. p. 297–333.

    Chapter  Google Scholar 

  73. Becker BJ. Synthesizing standardized mean-change measures. Brit J Math Stat Psy. 1988;41(2):257–78.

    Article  Google Scholar 

  74. Morris SB. Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods. 2008;11(2):364–86.

    Article  Google Scholar 

  75. Morris SB. Distribution of the standardized mean change effect size for meta-analysis on repeated measures. Brit J Math Stat Psy. 2000;53(1):17–29.

    Article  Google Scholar 

  76. Cohen J. The concepts of power analysis. Statistical power analysis for the behavioral sciences. Hillsdale: L. Erlbaum Associates; 1988. p. 1–17.

  77. Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol methods. 2002;7(1):105.

    Article  PubMed  Google Scholar 

  78. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. Amsterdan: Wiley; 2011.

    Google Scholar 

  79. Dias RKN, Penna EM, Noronha ASN, de Azevedo ABC, Barbalho M, Gentil PV, et al. Cluster-sets resistance training induce similar functional and strength improvements than the traditional method in postmenopausal and elderly women. Exp Gerontol. 2020;138:111011.

    Article  PubMed  Google Scholar 

  80. Fariñas J, Mayo X, Giraldez-García MA, Carballeira E, Fernandez-Del-Olmo M, Rial-Vazquez J, et al. Set configuration in strength training programs modulates the cross education phenomenon. J Strength Cond Res. 2019. https://doi.org/10.1519/jsc.0000000000003189.

    Article  Google Scholar 

  81. García-Ramos A, Haff GG, Padial P, Feriche B. Reliability of power and velocity variables collected during the traditional and ballistic bench press exercise. Sports Biomech. 2018;17(1):117–30.

    Article  PubMed  Google Scholar 

  82. Jukic I, García-Ramos A, Malecek J, Omcirk D, Tufano JJ. Magnitude and reliability of velocity and power variables during deadlifts performed with and without lifting straps. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003608.

    Article  PubMed  Google Scholar 

  83. Winter EM, Abt G, Brookes FC, Challis JH, Fowler NE, Knudson DV, et al. Misuse of “power” and other mechanical terms in sport and exercise science research. J Strength Cond Res. 2016;30(1):292–300.

    Article  PubMed  Google Scholar 

  84. Jiménez-Alonso A, García-Ramos A, Cepero M, Miras-Moreno S, Rojas FJ, Pérez-Castilla A. Effect of augmented feedback on velocity performance during strength-oriented and power-oriented resistance training sessions. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003705.

    Article  PubMed  Google Scholar 

  85. Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load–velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31(7):1897–904.

    Article  PubMed  Google Scholar 

  86. Iglesias-Soler E, Fernandez-del-Olmo M, Mayo X, Farinas J, Rio-Rodriguez D, Carballeira E, et al. Changes in the force-velocity mechanical profile after short resistance training programs differing in set configurations. J Appl Biomech. 2017;33(2):144–52.

    Article  PubMed  Google Scholar 

  87. Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rooney KJ, Herbert RD, Balnave RD. Fatigue contributes to the strength training stimulus. Med Sci Sports Exerc. 1994;26(9):1160–4.

    CAS  PubMed  Google Scholar 

  89. Rial-Vázquez J, Mayo X, Tufano JJ, Fariñas J, Rúa-Alonso M, Iglesias-Soler E. Cluster vs traditional training programmes: changes in the force–velocity relationship. Sports Biomech. 2020;2020:1–19. https://doi.org/10.1080/14763141.2020.1718197.

    Article  Google Scholar 

  90. Morales-Artacho AJ, Padial P, García-Ramos A, Pérez-Castilla A, Feriche B. Influence of a cluster set configuration on the adaptations to short-term power training. J Strength Cond Res. 2018. https://doi.org/10.1519/jsc.0000000000001925.

    Article  PubMed  Google Scholar 

  91. Cuevas-Aburto J, Jukic I, Chirosa-Ríos LJ, González Hernández J, Janicijevic D, Barboza-González P, et al. Effect of traditional, cluster, and rest redistribution set configurations on neuromuscular and perceptual responses during strength-oriented resistance training. J Strength Cond Res. 2020. https://doi.org/10.1519/jsc.0000000000003658.

    Article  PubMed  Google Scholar 

  92. Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol. 2010;588(16):3119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schoenfeld BJ, Grgic J. Does training to failure maximize muscle hypertrophy? Strength Cond J. 2019;41(5):108–13.

    Article  Google Scholar 

  94. Latella C, Teo W-P, Drinkwater EJ, Kendall K, Haff GG. The acute neuromuscular responses to cluster set resistance training: a systematic review and meta-analysis. Sports Med. 2019;49(12):1861–87.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Crewther B, Cronin J, Keogh J. Possible stimuli for strength and power adaptation. Sports Med. 2005;35(11):967–89.

    Article  PubMed  Google Scholar 

  96. Carroll TJ, Riek S, Carson RG. Neural adaptations to resistance training. Sports Med. 2001;31(12):829–40.

    Article  CAS  PubMed  Google Scholar 

  97. Mattocks KT, Buckner SL, Jessee MB, Dankel SJ, Mouser JG, Loenneke JP. Practicing the test produces strength equivalent to higher volume training. Med Sci Sports Exerc. 2017;49(9):1945–54.

    Article  PubMed  Google Scholar 

  98. Abe T, DeHoyos DV, Pollock ML, Garzarella L. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur J Appl Physiol. 2000;81(3):174–80.

    Article  CAS  PubMed  Google Scholar 

  99. Behm D, Sale D. Velocity specificity of resistance training. Sports Med. 1993;15(6):374–88.

    Article  CAS  PubMed  Google Scholar 

  100. Kawamori N, Newton RU. Velocity specificity of resistance training: actual movement velocity versus intention to move explosively. Strength Cond J. 2006;28(2):86.

    Google Scholar 

  101. Brown LE. Isokinetics in human performance. Champaign, IL: Human Kinetics; 2000.

    Google Scholar 

  102. Coyle EF, Feiring D, Rotkis T, Cote R 3rd, Roby F, Lee W, et al. Specificity of power improvements through slow and fast isokinetic training. J Appl Physiol. 1981;51(6):1437–42.

    Article  CAS  PubMed  Google Scholar 

  103. Kümmel J, Kramer A, Giboin L-S, Gruber M. Specificity of balance training in healthy individuals: a systematic review and meta-analysis. Sports Med. 2016;46(9):1261–71.

    Article  PubMed  Google Scholar 

  104. Giboin L-S, Gruber M, Kramer A. Six weeks of balance or power training induce no generalizable improvements in balance performance in healthy young adults. BMC Sports Sci Med R. 2019;11(1):31.

    Google Scholar 

  105. Le Meur Y, Hausswirth C, Mujika I. Tapering for competition: a review. Sci Sports. 2012;27(2):77–87.

    Article  Google Scholar 

  106. Pyne DB, Mujika I, Reilly T. Peaking for optimal performance: Research limitations and future directions. J Sports Sci. 2009;27(3):195–202.

    Article  PubMed  Google Scholar 

  107. Baker D. Improving vertical jump performance through general, special, and specific strength training. J Strength Cond Res. 1996;10:131–6.

    Google Scholar 

  108. Haff GG, Triplett NT, editors. Essentials of strength training and conditioning. 4th ed. Champaign, IL: Human Kinetics; 2016.

    Google Scholar 

  109. Iglesias-Soler E, Carballeira E, Sanchez-Otero T, Mayo X, Fernandez-Del-Olmo M. Performance of maximum number of repetitions with cluster-set configuration. Int J Sports Physiol Perform. 2014;9(4):637–42.

    Article  PubMed  Google Scholar 

  110. Iglesias E, Boullosa DA, Dopico X, Carballeira E. Analysis of factors that influence the maximum number of repetitions in two upper-body resistance exercises: curl biceps and bench press. J Strength Cond Res. 2010;24(6):1566–72.

    Article  PubMed  Google Scholar 

  111. Tufano JJ, Conlon JA, Nimphius S, Brown LE, Banyard HG, Williamson BD, et al. Cluster sets: permitting greater mechanical stress without decreasing relative velocity. Int J Sports Physiol Perform. 2017;12(4):463–9.

    Article  PubMed  Google Scholar 

  112. Iglesias-Soler E, Carballeira E, Sánchez-Otero T, Mayo X, Fernández-Del-Olmo M. Performance of maximum number of repetitions with cluster-set configuration. Int J Sports Physiol Perform. 2014;9(4):637–42.

    Article  PubMed  Google Scholar 

  113. Hardee JP, Lawrence MM, Zwetsloot KA, Triplett NT, Utter AC, McBride JM. Effect of cluster set configurations on power clean technique. J Sports Sci. 2013;31(5):488–96.

    Article  PubMed  Google Scholar 

  114. Hooper DR, Szivak TK, Comstock BA, Dunn-Lewis C, Apicella JM, Kelly NA, et al. Effects of fatigue from resistance training on barbell back squat biomechanics. J Strength Cond Res. 2014;28(4):1127–34.

    Article  PubMed  Google Scholar 

  115. Cowley JC, Gates DH. Inter-joint coordination changes during and after muscle fatigue. Hum Movement Sci. 2017;56:109–18.

    Article  Google Scholar 

  116. Côté JN, Mathieu PA, Levin MF, Feldman AG. Movement reorganization to compensate for fatigue during sawing. Exp Brain Res. 2002;146(3):394–8.

    Article  PubMed  Google Scholar 

  117. Stone JD, King AC, Goto S, Mata JD, Hannon J, Garrison JC, et al. Joint-level analyses of the back squat with and without intraset rest. Int J Sports Physiol Perform. 2019;14(5):583–9.

    Article  PubMed  Google Scholar 

  118. Suchomel TJ, Comfort P, Stone MH. Weightlifting pulling derivatives: Rationale for implementation and application. Sports Medicine. 2015;45(6):823–39.

    Article  PubMed  Google Scholar 

  119. Marsh CE, Thomas HJ, Naylor LH, Scurrah KJ, Green DJ. Fitness and strength responses to distinct exercise modes in twins: Studies of twin responses to understand exercise as a therapy (STRUETH) study. J Physiol. 2020;598(18):3845–58.

    Article  CAS  PubMed  Google Scholar 

  120. Jukic I, Tufano JJ. Rest redistribution functions as a free and ad-hoc equivalent to commonly used velocity-based training thresholds during clean pulls at different loads. J Hum Kinet. 2019;68:5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tufano JJ, Halaj M, Kampmiller T, Novosad A, Buzgo G. Cluster sets vs traditional sets: levelling out the playing field using a power-based threshold. PLoS ONE. 2018;13(11):e0208035.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gamble P. Periodization of training for team sports athletes. Strength Cond J. 2006;28(5):56.

    Article  Google Scholar 

  123. González-Badillo JJ, Pareja-Blanco F, Rodríguez-Rosell D, Abad-Herencia JL, del Ojo-López JJ, Sánchez-Medina L. Effects of velocity-based resistance training on young soccer players of different ages. J Strength Cond Res. 2015;29(5):1329–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Jukic.

Ethics declarations

Funding

No external sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Ivan Jukic, Bas Van Hooren, Amador García Ramos, Eric Helms, Michael McGuigan and James Tufano declare that they have no conflicts of interest relevant to the content of this review.

Ethics approval

Not applicable.

Availability of data and material

The datasets generated during and/or analysed during the current review are available from the corresponding author on reasonable request.

Consent

Not applicable.

Author contributions

IJ performed the meta-analysis and meta-regression and wrote the first draft of the manuscript. All authors edited and revised the manuscript and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jukic, I., Van Hooren, B., Ramos, A.G. et al. The Effects of Set Structure Manipulation on Chronic Adaptations to Resistance Training: A Systematic Review and Meta-Analysis. Sports Med 51, 1061–1086 (2021). https://doi.org/10.1007/s40279-020-01423-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01423-4

Navigation