Skip to main content
Log in

Periodization: Variation in the Definition and Discrepancies in Study Design

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Over the past several decades, periodization has been widely accepted as the gold standard of training theory. Within the literature, there are numerous definitions for periodization, which makes it difficult to study. When examining the proposed definitions and related studies on periodization, problems arise in the following domains: (1) periodization has been proposed to serve as the macro-management of the training process concerning the annual plan, yet research on long-term effects is scarce; (2) periodization and programming are being used interchangeably in research; and (3) training is not periodized alongside other stressors such as sport (i.e., only resistance training is being performed without the inclusion of sport). Overall, the state of the literature suggests that the inability to define periodization makes the statement of its superiority difficult to experimentally test. This paper discusses the proposed definitions of periodization and the study designs which have been employed to examine the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Matveyev LP. Problem of periodization the sport training. Moscow: FiS Publisher; 1964.

    Google Scholar 

  2. Stone MH, O’Bryant H, Garhammer J. A hypothetical model for strength training. J Sports Med Phys Fitness. 1981;21(4):342–51.

    CAS  PubMed  Google Scholar 

  3. Prestes J, De Lima C, Frollini AB, Donatto FF, Conte M. Comparison of linear and reverse linear periodization effects on maximal strength and body composition. J Strength Cond Res. 2009;23(1):266–74.

    PubMed  Google Scholar 

  4. Bartolomei S, Hoffman JR, Merni F, Stout JR. A comparison of traditional and block periodized strength training programs in trained athletes. J Strength Cond Res. 2014;28(4):990–7.

    PubMed  Google Scholar 

  5. Apel JM, Lacey RM, Kell RT. A comparison of traditional and weekly undulating periodized strength training programs with total volume and intensity equated. J Strength Cond Res. 2011;25(3):694–703.

    PubMed  Google Scholar 

  6. Selye H. Experimental evidence supporting the conception of “adaptation energy.” Am J Physiol. 1938;123(3):758–65.

    Google Scholar 

  7. Buckner SL, Mouser JG, Dankel SJ, Jessee MB, Mattocks KT, Loenneke JP. The general adaptation syndrome: potential misapplications to resistance exercise. J Sci Med Sport. 2017;20(11):1015–7.

    PubMed  Google Scholar 

  8. Cunanan AJ, DeWeese BH, Wagle JP, Hornsby WG III, Carroll KM, Sausaman R, et al. The general adaptation syndrome: a foundation for the concept of periodization. Sports Med. 2018;4:787.

    Google Scholar 

  9. Buckner SL, Jessee MB, Dankel SJ, Mouser JG, Mattocks KT, Loenneke JP. Comment on: “the general adaptation syndrome: a foundation for the concept of periodization.” Sports Med. 2018;48(7):1751–3.

    PubMed  Google Scholar 

  10. Cunanan AJ, DeWeese BH, Wagle JP, Carroll KM, Sausaman R, Hornsby WG, et al. Authors’ reply to Buckner et al.: ‘comment on: “the general adaptation syndrome: a foundation for the concept of periodization.” Sports Med. 2018;48(7):1755–7.

    PubMed  Google Scholar 

  11. Stone MH, O’Bryant H, Garhammer J, McMillan J, Rozenek R. A theoretical model of strength training. Strength Cond J. 1982;4(4):36–9.

    Google Scholar 

  12. Buckner SL, Jessee MB, Mouser JG, Dankel SJ, Mattocks KT, Bell ZW, et al. The basics of training for muscle size and strength: a brief review on the theory. Med Sci Sports Exerc. 2020;52(3):645–53.

    PubMed  Google Scholar 

  13. Williams TD, Tolusso DV, Fedewa MV, Esco MR. Comparison of periodized and non-periodized resistance training on maximal strength: a meta-analysis. Sports Med. 2017;47(10):2083–100.

    PubMed  Google Scholar 

  14. Kiely J. Periodization paradigms in the 21st century: evidence-led or tradition-driven? Int J Sports Physiol Perform. 2012;7(3):242–50.

    PubMed  Google Scholar 

  15. Plisk SS, Stone MH. Periodization strategies. Strength Cond J. 2003;25(6):19–37.

    Google Scholar 

  16. Harries SK, Lubans DR, Callister R. Systematic review and meta-analysis of linear and undulating periodized resistance training programs on muscular strength. J Strength Cond Res. 2015;29(4):1113–25.

    PubMed  Google Scholar 

  17. DeWeese BH, Hornsby GW, Stone MH, Stone MH. The training process: planning for strength—power training in track and field. part 1: theoretical aspects. J Sport Health Sci. 2015;4:308–17.

    Google Scholar 

  18. Fleck SJ, Kraemer WJ, Kraemer PHDW. Designing resistance training programs. 3rd ed. Human Kinetics; 2004.

  19. Brown LE, Bradley-Popovich G, Haff G. Nonlinear versus linear periodization models. Strength Cond J. 2001;23(1):42–4.

    Google Scholar 

  20. Buford TW, Rossi SJ, Smith DB, Warren AJ. A comparison of periodization models during nine weeks with equated volume and intensity for strength. J Strength Cond Res. 2007;21(4):1245–50.

    PubMed  Google Scholar 

  21. Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48(4):765–85.

    PubMed  Google Scholar 

  22. Hoffman JR, National S, Conditioning A. NSCA’s guide to program design. Champaign: Human Kinetics; 2012.

    Google Scholar 

  23. Bompa T. Primer on periodization. Olympic Coach. 2004;16(2):4–7.

    Google Scholar 

  24. Zatsiorsky V, Kraemer W. Science and practice of strength training. 2nd Ed. Human Kinetics; 2006.

  25. Haff G, Triplett NT, National Strength & Conditioning Association. Essentials of strength training and conditioning. 4th Ed. Human Kinetics; 2016.

  26. DeWeese BH, Hornsby GW, Stone MH, Stone MH. The training process: planning for strength–power training in track and field. Part 2: practical and applied aspects. J Sport Health Sci. 2015;4:318–24.

    Google Scholar 

  27. Zaryski C, Smith DJ. Training principles and issues for ultra-endurance athletes. Curr Sports Med Rep. 2005;4(3):165–70.

    PubMed  Google Scholar 

  28. Painter KB, Haff GG, Ramsey MW, McBride J, Triplett T, Sands WA, et al. Strength gains: block versus daily undulating periodization weight training among track and field athletes. Int J Sports Physiol Perform. 2012;7(2):161–9.

    PubMed  Google Scholar 

  29. Chandler TJ, Brown LE. Conditioning for strength and human performance. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  30. Issurin VB. New horizons for the methodology and physiology of training periodization. Sports Med. 2010;40(3):189–206.

    PubMed  Google Scholar 

  31. Tonnessen E, Svendsen IS, Ronnestad BR, Hisdal J, Haugen TA, Seiler S. The annual training periodization of 8 world champions in orienteering. Int J Sports Physiol Perform. 2015;10(1):29–38.

    PubMed  Google Scholar 

  32. Kiely J. Periodization theory: confronting an inconvenient truth. Sports Med. 2017;48(4):753–64.

    PubMed Central  Google Scholar 

  33. Grgic J, Mikulic P, Podnar H, Pedisic Z. Effects of linear and daily undulating periodized resistance training programs on measures of muscle hypertrophy: a systematic review and meta-analysis. PeerJ. 2017;5:e3695.

    PubMed  PubMed Central  Google Scholar 

  34. Willoughby DS. The Effects of mesocycle-length weight training programs involving periodization and partially equated volumes on upper and lower body strength. J Strength Cond Res. 1993;7(1):2–8.

    Google Scholar 

  35. Stone MH, Potteiger JA, Pierce KC, Proulx CM, O’Bryant HS, Johnson RL, et al. Comparison of the effects of three different weight-training programs on the one repetition maximum squat. J Strength Cond Res. 2000;14(3):332–7.

    Google Scholar 

  36. Pinto R, Angarten V, Santos V, Melo X, Santa-Clara H. The effect of an expanded long-term periodization exercise training on physical fitness in patients with coronary artery disease: study protocol for a randomized controlled trial. Trials. 2019;20(1):208.

    PubMed  PubMed Central  Google Scholar 

  37. Kibler WB, Chandler TJ. Sport-specific conditioning. Am J Sports Med. 1994;22(3):424–32.

    CAS  PubMed  Google Scholar 

  38. Haff GG. Roundtable discussion: periodization of training—part 1. Strength Cond J. 2004;26(1):50–69.

    Google Scholar 

  39. Fisher PJ, Steele J, Smith D, Gentil P. Periodization for optimizing strength and hypertrophy; the forgotten variables. J Trainol. 2018;7(1):10–5.

  40. Marx JO, Ratamess NA, Nindl BC, Gotshalk LA, Volek JS, Dohi K, et al. Low-volume circuit versus high-volume periodized resistance training in women. Med Sci Sports Exerc. 2001;33(4):635–43.

    CAS  PubMed  Google Scholar 

  41. Herrick AB, Stone WJ. The effects of periodization versus progressive resistance exercise on upper and lower body strength in women. J Strength Cond Res. 1996;10(2):72–6.

    Google Scholar 

  42. DeBeliso M, Harris C, Spitzer-Gibson T, Adams KJ. A comparison of periodised and fixed repetition training protocol on strength in older adults. J Sci Med Sport. 2005;8(2):190–9.

    CAS  PubMed  Google Scholar 

  43. Prestes J, Frollini AB, de Lima C, Donatto FF, Foschini D, de Cassia MR, et al. Comparison between linear and daily undulating periodized resistance training to increase strength. J Strength Cond Res. 2009;23(9):2437–42.

    PubMed  Google Scholar 

  44. Foschini D, Araujo RC, Bacurau RF, De Piano A, De Almeida SS, Carnier J, et al. Treatment of obese adolescents: the influence of periodization models and ACE genotype. Obesity. 2010;18(4):766–72.

    CAS  PubMed  Google Scholar 

  45. Mann JB, Thyfault JP, Ivey PA, Sayers SP. The effect of autoregulatory progressive resistance exercise vs. linear periodization on strength improvement in college athletes. J Strength Cond Res. 2010;24(7):1718–23.

    PubMed  Google Scholar 

  46. Fleck SJ. Non-linear periodization for general fitness & athletes. J Hum Kinet. 2011;29a:41–5.

    PubMed  PubMed Central  Google Scholar 

  47. Lorenz D, Morrison S. Current concepts in periodization of strength and conditioning for the sports physical therapist. Int J Sports Phys Ther. 2015;10(6):734–47.

    PubMed  PubMed Central  Google Scholar 

  48. Ullrich B, Holzinger S, Soleimani M, Pelzer T, Stening J, Pfeiffer M. Neuromuscular responses to 14 weeks of traditional and daily undulating resistance training. Int J Sports Med. 2015;36(7):554–62.

    CAS  PubMed  Google Scholar 

  49. Bradbury DG, Landers GJ, Benjanuvatra N, Goods PSR. Comparison of linear and reverse linear periodized programs with equated volume and intensity for endurance running performance. J Strength Cond Res. 2018;34(5):1345–53.

    Google Scholar 

  50. Fleck SJ, Kraemer WJ. Periodization breakthrough!: the ultimate training system. 1st Ed. Advanced Research Press; 1996.

  51. Schiotz MK, Potteiger JA, Huntsinger PG, Donald C, Denmark LC. The short-term effects of periodized and constant-intensity training on body composition, strength, and performance. J Strength Cond Res. 1998;12(3):173–8.

    Google Scholar 

  52. Graham J. Periodization research and an example application. Strength Cond J. 2002;24:62–70.

    Google Scholar 

  53. Kraemer WJ, Hakkinen K, Triplett-Mcbride NT, Fry AC, Koziris LP, Ratamess NA, et al. Physiological changes with periodized resistance training in women tennis players. Med Sci Sports Exerc. 2003;35(1):157–68.

    CAS  PubMed  Google Scholar 

  54. Plisk S. Periodization: fancy name for a basic concept. Olympic Coach. 2004;16(2):14–7.

    Google Scholar 

  55. Jiménez A. Undulating periodization models for strength training & conditioning. Motricidade. 2009;5:1–5.

    Google Scholar 

  56. Tammam A, Hashem E. Comparison between daily and weekly undulating periodized resistance training to increase muscular strength for volleyball players. J Appl Sports Sci. 2015;5(3):27–36.

    Google Scholar 

  57. Klemp A, Dolan C, Quiles JM, Blanco R, Zoeller RF, Graves BS, et al. Volume-equated high- and low-repetition daily undulating programming strategies produce similar hypertrophy and strength adaptations. Appl Physiol Nutr Metab. 2016;41(7):699–705.

    PubMed  Google Scholar 

  58. Housh TJ, Housh DJ, deVries HA. Applied exercise and sport physiology, with labs. 3rd Ed. Taylor & Francis; 2011.

  59. Vargas A. Tiered vs. traditional daily undulating periodization for improving powerlifting performance in trained males. Graduate Theses and Dissertations, University of South Florida; 2017. https://scholarcommons.usf.edu/etd/6770.

  60. Stowers T, McMillan J, Scala D, Davis V, Wilson D, Stone M. The short-term effects of three different strength-power training methods. Strength Cond J. 1983;5(3):24–7.

    Google Scholar 

  61. Harries SK, Lubans DR, Callister R. Comparison of resistance training progression models on maximal strength in sub-elite adolescent rugby union players. J Sci Med Sport. 2016;19(2):163–9.

    PubMed  Google Scholar 

  62. Hoffman JR, Wendell M, Cooper J, Kang J. Comparison between linear and nonlinear in-season training programs in freshman football players. J Strength Cond Res. 2003;17(3):561–5.

    PubMed  Google Scholar 

  63. Kok LY, Hamer PW, Bishop DJ. Enhancing muscular qualities in untrained women: linear versus undulating periodization. Med Sci Sports Exerc. 2009;41(9):1797–807.

    PubMed  Google Scholar 

  64. Rhea MR, Ball SD, Phillips WT, Burkett LN. A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. J Strength Cond Res. 2002;16(2):250–5.

    PubMed  Google Scholar 

  65. Bartolomei S, Stout JR, Fukuda DH, Hoffman JR, Merni F. Block vs. weekly undulating periodized resistance training programs in women. J Strength Cond Res. 2015;29(10):2679–87.

    PubMed  Google Scholar 

  66. O’Bryant HS, Byrd R, Stone MH. Cycle ergometer performance and maximum leg and hip strength adaptations to two different methods of weight-training. J Strength Cond Res. 1988;2(2):27–30.

    Google Scholar 

  67. Monteiro AG, Aoki MS, Evangelista AL, Alveno DA, Monteiro GA, Picarro Ida C, et al. Nonlinear periodization maximizes strength gains in split resistance training routines. J Strength Cond Res. 2009;23(4):1321–6.

    PubMed  Google Scholar 

  68. McNamara JM, Stearne DJ. Flexible nonlinear periodization in a beginner college weight training class. J Strength Cond Res. 2010;24(1):17–22.

    PubMed  Google Scholar 

  69. Miranda F, Simao R, Rhea M, Bunker D, Prestes J, Leite RD, et al. Effects of linear vs. daily undulatory periodized resistance training on maximal and submaximal strength gains. J Strength Cond Res. 2011;25(7):1824–30.

    PubMed  Google Scholar 

  70. Simao R, Spineti J, de Salles BF, Matta T, Fernandes L, Fleck SJ, et al. Comparison between nonlinear and linear periodized resistance training: hypertrophic and strength effects. J Strength Cond Res. 2012;26(5):1389–95.

    PubMed  Google Scholar 

  71. de Lima C, Boullosa DA, Frollini AB, Donatto FF, Leite RD, Gonelli PR, et al. Linear and daily undulating resistance training periodizations have differential beneficial effects in young sedentary women. Int J Sports Med. 2012;33(9):723–7.

    PubMed  Google Scholar 

  72. Bakken TA. Effects of block periodization training versus traditional periodization training in trained cross country skiers. Student thesis, Swedish School of Sport and Health Sciences; 2013.

  73. Ahmadizad S, Ghorbani S, Ghasemikaram M, Bahmanzadeh M. Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. Clin Biochem. 2014;47(6):417–22.

    CAS  PubMed  Google Scholar 

  74. Zourdos MC, Jo E, Khamoui AV, Lee SR, Park BS, Ormsbee MJ, et al. Modified daily undulating periodization model produces greater performance than a traditional configuration in powerlifters. J Strength Cond Res. 2016;30(3):784–91.

    PubMed  Google Scholar 

  75. Colquhoun RJ, Gai CM, Walters J, Brannon AR, Kilpatrick MW, D’Agostino DP, et al. Comparison of powerlifting performance in trained men using traditional and flexible daily undulating periodization. J Strength Cond Res. 2017;31(2):283–91.

    PubMed  Google Scholar 

  76. Pelzer T, Ullrich B, Pfeiffer M. Periodization effects during short-term resistance training with equated exercise variables in females. Eur J Appl Physiol. 2017;117(3):441–54.

    PubMed  Google Scholar 

  77. Bartolomei S, Hoffman J, Stout J, Zini M, Stefanelli C, Merni F. Comparison of block versus weekly undulating periodization models on endocrine and strength changes in male athletes. Kinesiology. 2016;48:71–8.

    Google Scholar 

  78. Spineti J, Figueiredo T, de Salles B, Barbosa M, Oliveira L, Novaes J, et al. Comparison between different periodization models on muscular strength and thickness in a muscle group increasing sequence. Rev Bras Med Esporte. 2013;19:280–6.

    Google Scholar 

  79. Kenney WL, Wilmore JH, Costill DL. Physiology of sport and exercise. 7th Ed. Human kinetics, Incorporated; 2019.

  80. Hartmann H, Wirth K, Keiner M, Mickel C, Sander A, Szilvas E. Short-term periodization models: effects on strength and speed-strength performance. Sports Med. 2015;45(10):1373–86.

    PubMed  Google Scholar 

  81. Conlon JA, Newton RU, Tufano JJ, Banyard HG, Hopper AJ, Ridge AJ, et al. Periodization strategies in older adults: impact on physical function and health. Med Sci Sports Exerc. 2016;48(12):2426–36.

    PubMed  Google Scholar 

  82. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186–205.

    PubMed  Google Scholar 

  83. Kentta G, Hassmen P, Raglin JS. Training practices and overtraining syndrome in Swedish age-group athletes. Int J Sports Med. 2001;22(6):460–5.

    CAS  PubMed  Google Scholar 

  84. Matos NF, Winsley RJ, Williams CA. Prevalence of nonfunctional overreaching/overtraining in young English athletes. Med Sci Sports Exerc. 2011;43(7):1287–94.

    PubMed  Google Scholar 

  85. Matveev LP. Fundamentals of sports training. Moscow: Progress Publishers; 1981.

    Google Scholar 

  86. Stults-Kolehmainen MA, Bartholomew JB, Sinha R. Chronic psychological stress impairs recovery of muscular function and somatic sensations over a 96-hour period. J Strength Cond Res. 2014;28(7):2007–17.

    PubMed  Google Scholar 

  87. Kraemer WJ, Ratamess N, Fry AC, Triplett-McBride T, Koziris LP, Bauer JA, et al. Influence of resistance training volume and periodization on physiological and performance adaptations in collegiate women tennis players. Am J Sports Med. 2000;28(5):626–33.

    CAS  PubMed  Google Scholar 

  88. Painter KB, Haff GG, Triplett NT, Stuart C, Hornsby G, Ramsey MW, et al. Resting hormone alterations and injuries: block vs. DUP weight-training among D-1 track and field athletes. Sports. 2018;6(1):3.

    PubMed Central  Google Scholar 

  89. Pedemonte J. Updated acquisitions about training periodization: part one. Strength Cond J. 1982;4(5):56–60.

    Google Scholar 

  90. Freeman WH. Peak when it counts: periodization for American track and field. 4th Ed. Tafnews Press; 2001.

  91. Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med. 2003;33(15):1103–26.

    PubMed  Google Scholar 

  92. Gambetta V. Periodization and the systematic sport development process. Olympic Coach. 2004;16(2):8–13.

    Google Scholar 

  93. Cissik J, Hedrick A, Barnes M. Challenges applying the research on periodization. Strength Cond J. 2008;30(1):45–51.

    Google Scholar 

  94. Issurin V. Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness. 2008;48(1):65–75.

    CAS  PubMed  Google Scholar 

  95. Peterson MD, Dodd DJ, Alvar BA, Rhea MR, Favre M. Undulation training for development of hierarchical fitness and improved firefighter job performance. J Strength Cond Res. 2008;22(5):1683–95.

    PubMed  Google Scholar 

  96. Ratamess N, Alvar B, Evetoch TK, Housh TJ, Kibler WB, Kraemer W. Progression models in resistance training for healthy adults [ACSM position stand]. Med Sci Sports Exerc. 2009;41:687–708.

    Google Scholar 

  97. Kell RT. The influence of periodized resistance training on strength changes in men and women. J Strength Cond Res. 2011;25(3):735–44.

    PubMed  Google Scholar 

  98. Turner A. The science and practice of periodization: a brief review. Strength Cond J. 2011;33(1):34–46.

    Google Scholar 

  99. Naclerio F, Moody J, Chapman M. Applied periodization: a methodological approach. J Hum Sport Exerc. 2013;8(2):S350–66.

    Google Scholar 

  100. DeWeese BH, Gray H, Sams M, Scruggs S, Serrano AJ. Revising the definition of periodization: merging historical principles with modern concern. Olympic Coach. 2013;24:5–18.

    Google Scholar 

  101. Horschig AD, Neff TE, Serrano AJ. Utilization of autoregulatory progressive resistance exercise in transitional rehabilitation periodization of a high school football-player following anterior cruciate ligament reconstruction: a case report. Int J Sports Phys Ther. 2014;9(5):691–8.

    PubMed  PubMed Central  Google Scholar 

  102. Carter J, Potter A, Brooks K. Overtraining syndrome: causes, consequences, and methods for prevention. J Sport Human Perf. 2014;2:1–4.

    Google Scholar 

  103. Hoover DL, VanWye WR, Judge LW. Periodization and physical therapy: bridging the gap between training and rehabilitation. Phys Ther Sport. 2016;18:1–20.

    PubMed  Google Scholar 

  104. Eifler C. Short-term effects of different loading schemes in fitness-related resistance training. J Strength Cond Res. 2016;30(7):1880–9.

    PubMed  Google Scholar 

  105. Loturco I, Nakamura F. Training periodisation: an obsolete methodology? Aspetar Sports Med J. 2016.

  106. Fairman CM, Zourdos MC, Helms ER, Focht BC. A scientific rationale to improve resistance training prescription in exercise oncology. Sports Med. 2017;47(8):1457–65.

    PubMed  Google Scholar 

  107. Conlon JA, Newton RU, Tufano JJ, Penailillo LE, Banyard HG, Hopper AJ, et al. The efficacy of periodised resistance training on neuromuscular adaptation in older adults. Eur J Appl Physiol. 2017;117(6):1181–94.

    PubMed  Google Scholar 

  108. Mujika I, Halson S, Burke LM, Balague G, Farrow D. An integrated, multifactorial approach to periodization for optimal performance in individual and team sports. Int J Sports Physiol Perform. 2018;13(5):538–61.

    PubMed  Google Scholar 

  109. Boggenpoel BY, Nel S, Hanekom S. The use of periodized exercise prescription in rehabilitation: a systematic scoping review of literature. Clin Rehabil. 2018;32(9):1235–48.

    PubMed  Google Scholar 

  110. Afonso J, Rocha T, Nikolaidis PT, Clemente FM, Rosemann T, Knechtle B. A systematic review of meta-analyses comparing periodized and non-periodized exercise programs: why we should go back to original research. Front Physiol. 2019;10:1023.

    PubMed  PubMed Central  Google Scholar 

  111. Evans JW. Periodized resistance training for enhancing skeletal muscle hypertrophy and strength: a mini-review. Front Physiol. 2019;10:13.

    PubMed  PubMed Central  Google Scholar 

  112. Hellard P, Avalos-Fernandes M, Lefort G, Pla R, Mujika I, Toussaint J-F, et al. Elite swimmers’ training patterns in the 25 weeks prior to their season’s best performances: insights into periodization from a 20-years cohort. Front Physiol. 2019;10:363.

    PubMed  PubMed Central  Google Scholar 

  113. Myakinchenko EB, Kriuchkov AS, Adodin NV, Feofilaktov V. The annual periodization of training volumes of international-level cross-country skiers and biathletes. Int J Sports Physiol Perform. 2020;1:1–8.

    Google Scholar 

  114. Baker D, Wilson G, Carlyon R. Periodization: the effect on strength of manipulating volume and intensity. J Strength Cond Res. 1994;8(4):235–42.

    Google Scholar 

  115. Hoffman JR, Ratamess NA, Klatt M, Faigenbaum AD, Ross RE, Tranchina NM, et al. Comparison between different off-season resistance training programs in Division III American college football players. J Strength Cond Res. 2009;23(1):11–9.

    PubMed  Google Scholar 

  116. Reiman MP, Lorenz DS. Integration of strength and conditioning principles into a rehabilitation program. Int J Sports Phys Ther. 2011;6(3):241–53.

    PubMed  PubMed Central  Google Scholar 

  117. Moraes E, Fleck SJ, Ricardo Dias M, Simao R. Effects on strength, power, and flexibility in adolescents of nonperiodized vs. daily nonlinear periodized weight training. J Strength Cond Res. 2013;27(12):3310–21.

    PubMed  Google Scholar 

  118. Souza EO, Ugrinowitsch C, Tricoli V, Roschel H, Lowery RP, Aihara AY, et al. Early adaptations to six weeks of non-periodized and periodized strength training regimens in recreational males. J Sports Sci Med. 2014;13(3):604–9.

    PubMed  PubMed Central  Google Scholar 

  119. Smith RA, Martin GJ, Szivak TK, Comstock BA, Dunn-Lewis C, Hooper DR, et al. The effects of resistance training prioritization in NCAA Division I Football summer training. J Strength Cond Res. 2014;28(1):14–22.

    PubMed  Google Scholar 

  120. Inoue DS, De Mello MT, Foschini D, Lira FS, De Piano GA, Da Silveira Campos RM, et al. Linear and undulating periodized strength plus aerobic training promote similar benefits and lead to improvement of insulin resistance on obese adolescents. J Diabetes Complicat. 2015;29(2):258–64.

    Google Scholar 

  121. Androulakis-Korakakis P, Fisher JP, Kolokotronis P, Gentil P, Steele J. Reduced volume ‘daily max’’ training compared to higher volume periodized training in powerlifters preparing for competition-a pilot study.’ Sports (Basel). 2018;6(3):86.

    Google Scholar 

  122. Issurin VB. Biological background of block periodized endurance training: a review. Sports Med. 2019;49(1):31–9.

    PubMed  Google Scholar 

  123. Ronnestad BR, Hansen J, Ellefsen S. Block periodization of high-intensity aerobic intervals provides superior training effects in trained cyclists. Scand J Med Sci Sports. 2014;24(1):34–42.

    CAS  PubMed  Google Scholar 

  124. Ronnestad BR, Hansen J, Thyli V, Bakken TA, Sandbakk O. 5-week block periodization increases aerobic power in elite cross-country skiers. Scand J Med Sci Sports. 2016;26(2):140–6.

    CAS  PubMed  Google Scholar 

  125. Caldwell AM. A comparison of linear and daily undulating periodizied strength training programs [Student thesis]; 2004.

  126. Loturco I, Nakamura FY, Kobal R, Gil S, Pivetti B, Pereira LA, et al. Traditional periodization versus optimum training load applied to soccer players: effects on neuromuscular abilities. Int J Sports Med. 2016;37(13):1051–9.

    CAS  PubMed  Google Scholar 

  127. Ronnestad BR, Ofsteng SJ, Ellefsen S. Block periodization of strength and endurance training is superior to traditional periodization in ice hockey players. Scand J Med Sci Sports. 2019;29(2):180–8.

    PubMed  Google Scholar 

  128. Ullrich B, Pelzer T, Pfeiffer M. Neuromuscular effects to 6 weeks of loaded countermovement jumping with traditional and daily undulating periodization. J Strength Cond Res. 2018;32(3):660–74.

    PubMed  Google Scholar 

  129. Gonelli P, Braz T, Verlengia R, Pellegrinotti Í, Cesar M, Sindorf M, et al. Effect of linear and undulating training periodization models on the repeated sprint ability and strength of soccer players. Motriz Revista de Educação Física. 2018;24:1–7.

    Google Scholar 

  130. McGee D, Jessee TC, Stone MH, Blessing D. Leg and hip endurance adaptations to three weight-training programs. J Strength Cond Res. 1992;6(2):92–5.

    Google Scholar 

  131. Sabido R, Hernández-Davó J, Botella Ruiz J, Jiménez-Leiva A, Fernandez-Fernandez J. Effects of block and daily undulating periodization on neuromuscular performance in young male handball players. Kinesiology. 2018;50:97–103.

    Google Scholar 

  132. Fink J, Kikuchi N, Yoshida S, Terada K, Nakazato K. Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus. 2016;5(1):698.

    PubMed  PubMed Central  Google Scholar 

  133. Franchini E, Branco BM, Agostinho MF, Calmet M, Candau R. Influence of linear and undulating strength periodization on physical fitness, physiological, and performance responses to simulated judo matches. J Strength Cond Res. 2015;29(2):358–67.

    PubMed  Google Scholar 

  134. Marques M, Casimiro F, Marinho D, Costa A. Training and detraining effects on strength parameters in young volleyball players: volume distribution implications. Motriz. 2011;17:235–43.

    Google Scholar 

  135. Schoenfeld BJ, Contreras B, Ogborn D, Galpin A, Krieger J, Sonmez GT. Effects of varied versus constant loading zones on muscular adaptations in trained men. Int J Sports Med. 2016;37(6):442–7.

    CAS  PubMed  Google Scholar 

  136. Pliauga V, Lukonaitiene I, Kamandulis S, Skurvydas A, Sakalauskas R, Scanlan AT, et al. The effect of block and traditional periodization training models on jump and sprint performance in collegiate basketball players. Biol Sport. 2018;35(4):373–82.

    PubMed  PubMed Central  Google Scholar 

  137. Javaloyes A, Sarabia JM, Lamberts RP, Plews D, Moya-Ramon M. Training prescription guided by heart rate variability vs. block periodization in well-trained cyclists. J Strength Cond Res. 2019;34(6):1511–8.

    Google Scholar 

  138. Harris GR, Stone MH, O’bryant HS, Proulx CM, Johnson RL. Short-term performance effects of high power, high force, or combined weight-training methods. J Strength Cond Res. 2000;14(1):14–20.

    Google Scholar 

  139. Clemente-Suarez VJ, Ramos-Campo DJ. Effectiveness of reverse vs. traditional linear training periodization in triathlon. Int J Environ Res Public Health. 2019;16(15):2807.

    CAS  PubMed Central  Google Scholar 

  140. Medeiros LHL, Sandbakk SB, Bertazone TMA, Bueno Junior CR. Comparison of periodization models of concurrent training in recreationally active postmenopausal women. J Strength Cond Res. 2020. https://doi.org/10.1519/JSC.0000000000003559 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  141. Pacobahyba N, Vale R, Legey S, Simão R, Santos E, Dantas E. Muscle strength, serum basal levels of testosterone and urea in soccer athletes submitted to non-linear periodization program. Rev Bras Med Esporte. 2012;18:130–3.

    Google Scholar 

  142. Storer TW, Dolezal BA, Berenc MN, Timmins JE, Cooper CB. Effect of supervised, periodized exercise training vs self-Directed training on lean body mass and other fitness variables in health club members. J Strength Cond Res. 2014;28(7):1995–2006.

    PubMed  Google Scholar 

  143. Garcia-Pallares J, Sanchez-Medina L, Carrasco L, Diaz A, Izquierdo M. Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. Eur J Appl Physiol. 2009;106(4):629–38.

    PubMed  Google Scholar 

  144. Ronnestad BR, Ellefsen S, Nygaard H, Zacharoff EE, Vikmoen O, Hansen J, et al. Effects of 12 weeks of block periodization on performance and performance indices in well-trained cyclists. Scand J Med Sci Sports. 2014;24(2):327–35.

    CAS  PubMed  Google Scholar 

  145. Sylta Ø, Tønnessen E, Hammarström D, Danielsen J, Skovereng K, Ravn T, et al. The effect of different high-intensity periodization models on endurance adaptations. Med Sci Sports Exerc. 2016;48(11):2165–74.

    PubMed  Google Scholar 

  146. De Souza EO, Tricoli V, Rauch J, Alvarez MR, Laurentino G, Aihara AY, et al. Different patterns in muscular strength and hypertrophy adaptations in untrained individuals undergoing nonperiodized and periodized strength regimens. J Strength Cond Res. 2018;32(5):1238–44.

    PubMed  Google Scholar 

  147. Gavanda S, Geisler S, Quittmann OJ, Schiffer T. The effect of block versus daily undulating periodization on strength and performance in adolescent football players. Int J Sports Physiol Perform. 2019;14(6):814–21.

    PubMed  Google Scholar 

  148. Harries SK, Lubans DR, Buxton A, MacDougall THJ, Callister R. Effects of 12-week resistance training on sprint and jump performances in mompetitive adolescent rugby union players. J Strength Cond Res. 2018;32(10):2762–9.

    PubMed  Google Scholar 

  149. Rodrigues JAL, Santos BC, Medeiros LH, Goncalves TCP, Junior CRB. Effects of different periodization strategies of combined aerobic and strength training on heart rate variability in older women. J Strength Cond Res. 2019. https://doi.org/10.1519/JSC.0000000000003013 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  150. Boidin M, Trachsel LD, Nigam A, Juneau M, Tremblay J, Gayda M. Non-linear is not superior to linear aerobic training periodization in coronary heart disease patients. Eur J Prev Cardiol. 2019. https://doi.org/10.1177/2047487319891778.

    Article  PubMed  Google Scholar 

  151. Tjønna AE, Sandbakk Ø, Skovereng K. The effects of systematic block versus traditional periodization on physiological and performance indicators of well-trained cyclists [Master Thesis]: NTNU; 2019.

  152. Buskard A, Zalma B, Cherup N, Armitage C, Dent C, Signorile JF. Effects of linear periodization versus daily undulating periodization on neuromuscular performance and activities of daily living in an elderly population. Exp Gerontol. 2018;113:199–208.

    PubMed  Google Scholar 

  153. Barjaste A, Mirzaei B. The periodization of resistance training in soccer players: changes in maximal strength, lower extremity power, body composition and muscle volume. J Sports Med Phys Fitness. 2018;58(9):1218–25.

    PubMed  Google Scholar 

  154. Bessa A, Sposito-Araujo C, Senna G, Lopes T, Godoy E, Scudese E, et al. Comparison of the Matveev periodization model and the Verkhoshansky periodization model. J Exerc Physiol Online. 2018;21:60–7.

    Google Scholar 

  155. Hartmann H, Bob A, Wirth K, Schmidtbleicher D. Effects of different periodization models on rate of force development and power ability of the upper extremity. J Strength Cond Res. 2009;23(7):1921–32.

    PubMed  Google Scholar 

  156. Kramer JB, Stone MH, O’Bryant HS, Conley MS, Johnson RL, Nieman DC, et al. Effects of single vs. multiple sets of weight training: impact of volume, intensity, and variation. J Strength Cond Res. 1997;11(3):143–7.

    Google Scholar 

  157. Rhea MR, Phillips WT, Burkett LN, Stone WJ, Ball SD, Alvar BA, et al. A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. J Strength Cond Res. 2003;17(1):82–7.

    PubMed  Google Scholar 

  158. Bezerra ES, Orssatto LBR, de Moura BM, Willardson JM, Simão R, Moro ARP. Mixed session periodization as a new approach for strength, power, functional performance, and body composition enhancement in aging adults. J Strength Cond Res. 2018;32(10):2795–806.

    PubMed  Google Scholar 

  159. de Freitas MC, de Souza Pereira CG, Batista VC, Rossi FE, Ribeiro AS, Cyrino ES, et al. Effects of linear versus nonperiodized resistance training on isometric force and skeletal muscle mass adaptations in sarcopenic older adults. J Exerc Rehabil. 2019;15(1):148–54.

    PubMed  PubMed Central  Google Scholar 

  160. Jaimes DAR, Contreras D, Jimenez AMF, Orcioli-Silva D, Barbieri FA, Gobbi LTB. Effects of linear and undulating periodization of strength training in the acceleration of skater children. Motriz Revista de Educação Física. 2019;25(1):e101955.

    Google Scholar 

  161. de Assis LA, Werneck FZ, Junior DBR, Vianna JM. Effect of periodization on the physical capacities of basketball players of a military school. Rev Bras Cineantropom Desempenho Hum. 2019;21:59818.

    Google Scholar 

  162. Ullrich B, Pelzer T, Oliveira S, Pfeiffer M. Neuromuscular responses to short-term resistance training with traditional and daily undulating periodization in adolescent elite judoka. J Strength Cond Res. 2016;30(8):2083–99.

    PubMed  Google Scholar 

  163. Manchado C, Cortell-Tormo JM, Tortosa-Martinez J. Effects of two different training periodization models on physical and physiological aspects of elite female team handball players. J Strength Cond Res. 2018;32(1):280–7.

    PubMed  Google Scholar 

  164. Kraemer WJ, Nindl BC, Ratamess NA, Gotshalk LA, Volek JS, Fleck SJ, et al. Changes in muscle hypertrophy in women with periodized resistance training. Med Sci Sports Exerc. 2004;36(4):697–708.

    PubMed  Google Scholar 

  165. Hunter GR, Wetzstein CJ, McLafferty CL Jr, Zuckerman PA, Landers KA, Bamman MM. High-resistance versus variable-resistance training in older adults. Med Sci Sports Exerc. 2001;33(10):1759–64.

    CAS  PubMed  Google Scholar 

  166. Vanni AC, Meyer F, da Veiga AD, Zanardo VP. Comparison of the effects of two resistance training regimens on muscular and bone responses in premenopausal women. Osteoporos Int. 2010;21(9):1537–44.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Buckner.

Ethics declarations

Funding

No external sources of funding were used in the preparation of this article.

Conflict of Interest

Ryo Kataoka, Ecaterina Vasenina, Jeremy Loenneke, and Samuel Buckner declare that they have no conflicts of interest that are relevant to the content of this article.

Authorship Contributions

RK, EV, SLB, and JPL wrote the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataoka, R., Vasenina, E., Loenneke, J. et al. Periodization: Variation in the Definition and Discrepancies in Study Design. Sports Med 51, 625–651 (2021). https://doi.org/10.1007/s40279-020-01414-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01414-5

Navigation