Skip to main content

Advertisement

Log in

Rowing Injuries: An Updated Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Although traditionally seen as a sport for elite schools and colleges, rowing is a founding Olympic event and is increasingly enjoyed by people of all ages and abilities. The sport’s rapidly changing demographics shows significant growth in masters (age 27 years and above) and para-rowing populations. It has further expanded beyond its traditional flatwater format to include the discipline of open-water or coastal rowing, and an increased focus on indoor rowing. Rowing-specific injury research has similarly increased over the last decade since our last review, revealing areas of improved understanding in pre-participation screening, training load, emerging concepts surrounding back and rib injury, and relative energy deficiency in sport. Through a better understanding of the nature of the sport and mechanisms of injury, physicians and other healthcare providers will be better equipped to treat and prevent injuries in rowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(credit: V. Nolte)

Fig. 2

(credit: S. Di Ciacca)

Fig. 3

Reproduced from Kleshnev V et al. [48] with permission

Fig. 4

(credit: M. Sechser)

Fig. 5

Reproduced from Evans and Redgrave [70], with permission

Fig. 6

Reprinted from Lebrun CM [109], with permission from Elsevier

Fig. 7

Reproduced from Smoljanovic et al. [138] with permission from British Rowing

Fig. 8

(credit: C. Lebrun)

Similar content being viewed by others

References

  1. Rumball JS, Lebrun CM. Chapter 83: rowing. In: Madden CC, Putukian M, Young CC, McCarty EC, editors. Netter’s sports medicine. Philadelphia: Saunders (Elsevier); 2010. p. 679–85.

    Google Scholar 

  2. Secher NH. Physiological and biomechanical aspects of rowing: implications for training. Sports Med. 1993;15(1):24–42.

    Article  CAS  PubMed  Google Scholar 

  3. Karlson KA. Rib stress fractures in elite rowers: a case series and proposed mechanism. Am J Sports Med. 1998;26(4):516–9.

    CAS  PubMed  Google Scholar 

  4. Hagerman FMC. Physiology and nutrition for rowing. In: Lamb D, et al., editors. Perspectives in exercise science and sports medicine. Carmel: Cooper Publishing Group; 1994. p. 221–302.

    Google Scholar 

  5. Jensen K. Performance assessment. In: Secher NH, Voliannitis S, editors. Rowing. London: Blackwell; 2007. p. 96–102.

    Chapter  Google Scholar 

  6. McDonnell LK, Hume PA, Nolte V. Rib stress fractures among rowers: definition, epidemiology, mechanisms, risk factors and effectiveness of injury prevention strategies. Sports Med. 2011;41:883–901.

    Article  PubMed  Google Scholar 

  7. Holsgaard-Larsen A, Jensen K. Ergometer rowing with and without slides. Int J Sports Med. 2010;31(12):870–4.

    Article  CAS  PubMed  Google Scholar 

  8. Benson A, Abendroth J, King D, et al. Comparison of rowing on a Concept 2 stationary and dynamic ergometer. J Sports Sci Med. 2011;10:267–73.

    PubMed  PubMed Central  Google Scholar 

  9. Greene AJ, Sinclair PJ, Dickson MH, et al. The effect of ergometer design on rowing stroke mechanics. Scand J Med Sci Sports. 2013;23(4):468–77.

    Article  CAS  PubMed  Google Scholar 

  10. Vinther A, Alkjaer T, Kanstrup IL, et al. Slide-based ergometer rowing: effects on force production and neuromuscular activity. Scand J Med Sci Sports. 2013;23(5):635–44.

    CAS  PubMed  Google Scholar 

  11. Colloud F, Bahuaud P, Doriot N, et al. Fixed versus free-floating stretcher mechanism in rowing ergometers: mechanical aspects. J Sports Sci. 2006;24:479–93.

    Article  CAS  PubMed  Google Scholar 

  12. Bernstein IA, Webber O, Woledge R. An ergonomic comparison of rowing machine designs: possible implications for safety. Br J Sports Med. 2002;36:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Campos Mello F, Bertuzzi R, Franchini E, et al. Rowing ergometer with the slide is more specific to rowers’ physiological evaluation. Res Sports Med. 2014;22(2):136–46.

    Article  Google Scholar 

  14. Wilson F, Gissane C, Gormley J, Simms C. A 12-month prospective cohort study of injury in international rowers. Br J Sport Med. 2010;44(3):207–14.

    Article  CAS  Google Scholar 

  15. Wilson F, Gissane C, Gormley J, et al. Sagittal plane motion of the lumbar spine during ergometer and single scull rowing. Sports Biomech. 2013;12:132–42.

    Article  PubMed  Google Scholar 

  16. Kleshnev V. Rowing biomechanics newsletter 3. 2003. Available from: http://www.biorow.com. Accessed 20 Mar 2016.

  17. Kleshnev V. Rowing biomechanics newsletter 5. 2005. Available from: http://www.biorow.com. Accessed 20 Mar 2016.

  18. Karlson KA. Rowing injuries. Phys Sports Med. 2000;28:40–50.

    Article  CAS  Google Scholar 

  19. Redgrave S. Injuries: prevention/cure. In: Redgrave S, editor. Steven Redgrave’s complete book of rowing. London: Partridge Press; 1992. p. 200–17.

    Google Scholar 

  20. Hannafin JA. Rowing. In: Drinkwater B, editor. The encyclopedia of sports medicine, vol 8. Women in sport. Oxford: Blackwell Science; 2000. p. 486–93.

    Google Scholar 

  21. Hickey GJ, Fricker PA, McDonald WA. Injuries to elite rowers over a 10-yr period. Med Sci Sports Exerc. 1997;29(12):1567–72.

    Article  CAS  PubMed  Google Scholar 

  22. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50:273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Devereaux MD, Lachman SM. Athletes attending a sports injury clinic, a review. Br J Sports Med. 1983;17:137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bahr R, Andersen S, Loken S, et al. Low back pain among endurance athletes with and without specific back loading: a cross-sectional survey of cross-country skiers, rowers, orienteers and nonathletic controls. Spine. 2004;29:449–54.

    Article  PubMed  Google Scholar 

  25. Teitz C, O’Kane J, Lind B. Back pain in former intercollegiate rowers. Am J Sports Med. 2003;30:674–9.

    Google Scholar 

  26. Newlands C, Reid D, Parmar P. The prevalence, incidence and severity of low back pain among international level rowers. Br J Sports Med. 2015;49(14):951–6. doi:10.1126/bjsports-2014-093889.

    Article  PubMed  Google Scholar 

  27. Ng L, Perich D, Burnett A, et al. Self reported prevalence, pain intensity and risk factors for low back pain in adolescent rowers. J Sci Med Sport. 2014;17:266–70.

    Article  PubMed  Google Scholar 

  28. Morris FL, Smith RM, Payne WL, et al. Compressive and shear force generated in the lumbar spine of female rowers. Int J Sports Med. 2000;21:518–23.

    Article  CAS  PubMed  Google Scholar 

  29. Solomonow M, Zhou B, Baratta R, et al. Biomechanics of increased exposure to lumbar injury caused by cyclic loading: part 1. Loss of reflexive muscular stablisation. Spine. 1999;24:2426–34.

    Article  CAS  PubMed  Google Scholar 

  30. Wilson F, Gormley J, Gissane C, et al. The effect of rowing to exhaustion on frontal plane angular changes in the lumbar spine of elite rowers. J Sports Sci. 2012;30:481–9.

    Article  Google Scholar 

  31. King K, Davidson B, Zhou B, et al. High magnitude cyclic load triggers inflammatory response in lumbar ligaments. Clin Biomech. 2009;24:792–8.

    Article  Google Scholar 

  32. Bull A, McGregor A. Measuring spinal motion in rowers; the use of an electromagnetic device. Clin Biomech. 2000;15:72–6.

    Article  Google Scholar 

  33. Holt P, Bull A, Cashman P, et al. Kinematics of spinal motion during prolonged rowing. Int J Sports Med. 2003;24:597–602.

    Article  CAS  PubMed  Google Scholar 

  34. McGregor A, Anderton L, Gedroyc W. The assessment of intersegmental motion and pelvic tilt in elite oarsmen. Med Sci Sports Exerc. 2002;34:1143–9.

    Article  PubMed  Google Scholar 

  35. Buckeridge E, Hislop S, Bull A, et al. Kinematic asymmetries of the lower limbs during ergometer rowing. Med Sci Sports Exerc. 2012;44:2147–53.

    Article  PubMed  Google Scholar 

  36. McGregor A, Pantakar Z, Bull A. Longitudinal changes in the spinal kinematics of oarswomen during step testing. J Sports Sci Med. 2007;6:29–35.

    PubMed  PubMed Central  Google Scholar 

  37. Mackenzie H, Bull A, McGregor A. Changes in rowing technique over a routine one hour low intensity high volume training session. J Sports Sci Med. 2008;7:486–91.

    PubMed  PubMed Central  Google Scholar 

  38. Caldwell JS, McNair PJ, Williams M. The effects of repetitive motion on lumbar flexion and erector spinae muscle activity in rowers. Clin Biomech. 2003;18:704–11.

    Article  Google Scholar 

  39. Wilson F, Gissane C, McGregor A. Ergometer training volume and previous injury predict back pain in rowing; strategies for injury prevention and rehabilitation. Br J Sports Med. 2014;48:1534–7.

    Article  PubMed  Google Scholar 

  40. McGregor A, Bull A, Byng-Maddick R. A comparison of rowing technique at different stroke rates; a description of sequencing, force production and kinematics. Int J Sports Med. 2004;25:465–70.

    Article  CAS  PubMed  Google Scholar 

  41. Manning TS, Plowman SA, Drake G, et al. Intra-abdominal pressure and rowing: the effects of inspiring versus expiring during the drive. J Sports Med Phys Fitness. 2000;40(3):223–32.

    CAS  PubMed  Google Scholar 

  42. Shah N, Fernandes R, Thakrar A, et al. Diaphragmatic hernia: an unusual presentation. BMJ Case Rep. 2013. doi:10.1136/bcr-2013-00869.

    Google Scholar 

  43. Parkin S, Nowicky AV, Rutherfor AM, et al. Do oarsmen have asymmetries in the strength of their back and leg muscles? J Sports Sci. 2001;19:521–6.

    Article  CAS  PubMed  Google Scholar 

  44. Pollock CL, Jenkyn T, Jones I, et al. Electromyography and kinematics of the trunk during rowing in elite female rowers. Med Sci Sports Exerc. 2009;41:628–36.

    Article  PubMed  Google Scholar 

  45. Reide N, Rosso V, Rainoldi A, et al. Do sweep rowers activate their low back muscles during ergometer rowing? Scand J Med Sci Sports. 2014;25(4):e339–52.

    Google Scholar 

  46. Ng L, Burnett A, Smith A, et al. Spinal kinematics of adolescent male rowers with back pain in comparison with matched controls during ergometer rowing. J App Biomech. 2015;31(6):459–68.

    Article  Google Scholar 

  47. Aspden RM. The spine as an arch; a new mathematical model. Spine. 1989;14(3):266–74.

    Article  CAS  PubMed  Google Scholar 

  48. Kleshnev V. Rowing biomechanics newsletter 107 (vol 10) 2010. Available from: http://www.biorow.com. Accessed 20 Mar 2016.

  49. Taimela S, Kankaanpaa M, Luoto S. The effect of lumbar fatigue on the ability to sense a change in lumbar position. Spine. 1999;13:1322–32.

    Article  Google Scholar 

  50. Wilson F. Low back pain in rowing an evolution of understanding. 2015. Available from: www.worldrowing.com. Accessed 20 Mar 2016.

  51. O’Kane JW, Teitz CC, Lind BK. Effect of preexisting back pain on the incidence and severity of back pain in intercollegiate rowers. Am J Sports Med. 2003;31(1):80–2.

    PubMed  Google Scholar 

  52. Dolan P, Adams MA. Recent advances in lumbar spinal mechanics and their significance for modelling. Spine. 2001;16:S8–16.

    Google Scholar 

  53. Hedman T, Ferney G. Mechanical response of the lumbar spine to seated postural loads. Spine. 1997;22:734–43.

    Article  CAS  PubMed  Google Scholar 

  54. Heuer F, Schmitt H, Schmidt H, et al. Creep associated changes in intervertebral disc bulging obtained with a laser scanning device. Clin Biomech. 2007;22:737–44.

    Article  Google Scholar 

  55. Callaghan M, McGill S. Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech. 2001;16:28–37.

    Article  CAS  Google Scholar 

  56. Little J, Khalsa P. Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics and facet joiny capsule strain. Ann Biomed Eng. 2005;33:391–401.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Van Dieen J, Hoozemans M, Van Der Beek A, et al. Precision of estimates of mean and peak spinal loads in lifting. J Biomech. 2002;35:979–82.

    Article  PubMed  Google Scholar 

  58. Brinjikji W, Luetmer B, Comstock BW, et al. Systematic review of imaging features of spinal degeneration in asymptomatic populations. Am J Neurorad. 2015;36:811–6.

    Article  CAS  Google Scholar 

  59. Soler T, Calderon C. The prevalence of spondylolysis in the Spanish elite athlete. Am J Sports Med. 2000;28(1):57–62.

    CAS  PubMed  Google Scholar 

  60. Kalichmman PT, Kim DH, Hunter DJ. Spondylolisis and spondylolisthesis: prevalence and association with low back pain in the adult community based population. Spine. 2009;34(2):199–205.

    Article  Google Scholar 

  61. Maurer M, Soder RB, Baldisserotto M. Spine abnormalities depicted by magnetic resonance imaging in adolescent rowers. Am J Sports Med. 2011;39(2):392–7.

    Article  PubMed  Google Scholar 

  62. Stallard MC. Backache in oarsmen. Br J Sports Med. 1980;14(2–3):105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lawrence KJ, Elser T, Stromberg R. Lumbar spondylolysis in the adolescent athlete. Phys Ther Sport. 2016;20:56–60.

    Article  PubMed  Google Scholar 

  64. Alqarni AM, Schneiders AG, Cook CE, Hendrick PA. Clinical test to diagnosis lumbar spondylolysis and spondylolisthesis: a systematic review. Phys Ther Sport. 2015;16(3):268–75.

    Article  PubMed  Google Scholar 

  65. Grodahl LH, Fawcett L, Nazareth M, et al. Diagnostic utility of patient history and physical examination data to detect spondylolysis and spondylolisthesis in athletes with low back pain: a systematic review. Man Ther. 2016;24:7–17.

    Article  PubMed  Google Scholar 

  66. Standaert CJ, Herring SA. Expert opinion and controversy in sports and musculoskeletal medicine: the diagnosis and treatment of spondylolysis in adolescent athletes. Arch Phys Med Rehab. 2007;88:537–40.

    Article  Google Scholar 

  67. Trout AT, Sharp SE, Anton CG, et al. Spondylolysis and beyond: value of SPECT/CT in evaluation of low back pain in children and young adults. RadioGraphics. 2015;35:819–34.

    Article  PubMed  Google Scholar 

  68. Warden SJ, Gutschlag FR, Wajswelner H, et al. Aetiology of rib stress fractures in rowers. Sports Med. 2002;32:819–36.

    Article  PubMed  Google Scholar 

  69. Evans G, Redgrave A. Great Britain Rowing Team guideline for diagnosis and management of rib stress injury: part 1. Br J Sports Med. 2016;50(5):266–9.

    Article  PubMed  Google Scholar 

  70. Evans G, Redgrave A. Great Britain Rowing Team guideline for diagnosis and management of rib stress injury: part 2. The guideline itself. Br J Sports Med. 2016;50(5):270–2.

    Article  PubMed  Google Scholar 

  71. Wajswelner H, Bennell K, Story I, et al. Muscle action and stress forces on the ribs in rowing. Phys Ther Sport. 2000;1:75–84.

    Article  Google Scholar 

  72. Vinther A, Kanstrup IL, Christiansen E, et al. Exercise-induced rib stress fractures: potential risk factors related to thoracic muscle co-contraction and movement pattern. Scand J Med Sci Sports. 2006;16:188–96.

    Article  CAS  PubMed  Google Scholar 

  73. Hosea TM, Hannafin JA. Rowing injuries. Sports Health. 2012;4(3):236–45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rodriguez RJ, Rodriguez RP, Cook SD, et al. Electromyographic analysis rowing stroke biomechanics. J Sports Med Phys Fitness. 1990;30:103–8.

    CAS  PubMed  Google Scholar 

  75. Nowicky AV, Horne S, Burdett R. The impact of ergometer design on hip and trunk muscle activity patterns in elite rowers: an electromyographic assessment. J Sports Sci Med. 2005;4(1):18–28.

    PubMed  PubMed Central  Google Scholar 

  76. Turpin NA, Guével A, Durand S, et al. Effect of power output on muscle coordination during rowing. Eur J Appl Physiol. 2011;111(12):3017–29.

    Article  PubMed  Google Scholar 

  77. Warden SJ, Rath DA, Smith M, et al. Rib bone strain and muscle activity in the aetiology of rib stress fractures in rowers [abstract]. In: Proceedings of the 14th International Congress of the World Confederation for Physical Therapy 2003; RR-PL-1514.

  78. Smoljanović T, Bojanić I. Ewing’s sarcoma in the rib of a rower: a case report. Clin J Sport Med. 2007;17:510–2.

    Article  PubMed  Google Scholar 

  79. Rumball JS, Lebrun CM, Di Ciacca S, Orlando K. Rowing injuries. Sports Med. 2005;35(6):537–55.

    Article  PubMed  Google Scholar 

  80. Vinther A, Thornton JS. Management of rib pain in rowers: emerging issues. Br J Sports Med. 2016;50(3):141–2.

    Article  PubMed  Google Scholar 

  81. Christiansen E, Kanstrup IL. Increased risk of stress fractures in elite rowers. Scand J Med Sci Sports. 1997;7:49–52.

    Article  CAS  PubMed  Google Scholar 

  82. Palierne C, Lacoste A, Souveton D. Stress fractures in high-performance oarsmen and oarswomen: a series of 12 rib fractures. J Traumatol Sport. 1997;14:227–34.

    Google Scholar 

  83. Warden SJ, Davis IS, Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J Orthop Sports Phys Ther. 2014;44(10):749–65.

    Article  PubMed  Google Scholar 

  84. D’Ailly PN, Sluiter JK, Kuijer PP. Rib stress fractures among rowers: a systematic review on return to sports, risk factors and prevention. J Sports Med Phys Fitness. 2016;56(6):744–53.

  85. Page P, Frank C, Lardner R, editors. Assessment and treatment of muscle imbalance: the Janda approach. In: Pathomechanics of musculoskeletal pain and muscle imbalance. Human kinetics. Windsor; 2009. p. 52–5.

  86. Mohseni-Bandpei M, Keshavarz R, Minoonejhad H, et al. Shoulder pain in Iranian elite athletes: the prevalence and risk factors. J Manipulative Physiol Ther. 2012;35(7):541–8.

    Article  PubMed  Google Scholar 

  87. Richardson C, Jull G. Muscle control: what exercises would you prescribe? Man Ther. 1995;1(1):2–10.

    Article  CAS  PubMed  Google Scholar 

  88. Watson L. The shoulder. Hawthorn: Australian Clinical Educators; 1996. p. 135.

    Google Scholar 

  89. Kibler WB, Uhl TL, Maddox JW, et al. Qualitative clinical evaluation of scapular dysfunction: a reliable study. J Shoulder Elbow Surg. 2002;11:550–6.

    Article  PubMed  Google Scholar 

  90. Abbott AE, Hannafin JA. Stress fracture of the clavicle in a female lightweight rower. Am J Sports Med. 2001;29(3):370–2.

    Google Scholar 

  91. Nogushi M, Chopp J, Borgs S, et al. Scapular orientation following repetitive prone rowing: implications for potential subacromial impingement mechanisms. J Electromyogr Kinesiol. 2013;23:1356–61.

    Article  Google Scholar 

  92. Karlson K. Rowing: sport-specific concerns for the team physician. Curr Sports Med Rep. 2012;11(5):257–61.

    Article  PubMed  Google Scholar 

  93. Smoljanovic T, Bohacek I, Hannafin JA, et al. Acute and chronic injuries among senior international rowers: a cross-sectional study. Int Orthop. 2015;39(8):1623–30.

    Article  PubMed  Google Scholar 

  94. Smoljanovic T, Bojanic I, Hannafin JA, et al. Traumatic and overuse injuries among international elite junior rowers. Am J Sports Med. 2009;37(6):1193–9.

    Article  PubMed  Google Scholar 

  95. Fairclough J, Hayashi K, Toumi H, et al. The functional anatomy of the iliotibial band during flexion and extension of the knee: implications for understanding iliotibial band syndrome. J Anat. 2006;208(3):309–16.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Waryasz G, McDermott A. Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors. Dyn Med. 2008;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Brosh S, Jenner JR. Injuries to rowers. Br J Sports Med. 1988;22:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barton C, Balachandar V, Lack S, Morrissey D. Patellar taping for patellofemoral pain: a systematic review and meta-analysis to evaluate clinical outcomes and biomechanical mechanisms. Br J Sports Med. 2014;48:417–24.

    Article  PubMed  Google Scholar 

  99. Taylor T, Frankovitch R, Rumball JS. Bilateral atraumatic medial meniscal tears in a 17-year-old rower. BMJ Case Rep. 2009. doi:10.1136/bcr.11.2008.1258.

    Google Scholar 

  100. Boykin R, McFeely E, Ackerman K, et al. Labral injuries of the hip in rowers. Clin Orthop Relat Res. 2013;471(8):2517–22.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lohan DG, Seeger LL, Motamedi K, et al. Cam-type femoral-acetabular impingement: is the alpha angle the best MR arthrography has to offer? Skelet Radiol. 2009;38:855–62.

    Article  Google Scholar 

  102. Crawford J, Villar R. Current concepts in the management of femoroacetabular impingement. Bone Joint J. 2005;87(11):1459–63.

    Article  CAS  Google Scholar 

  103. Philippon M, Schenker M, Briggs K, et al. Femoroacetabular impingement in 45 professional athletes: associated pathologies and return to sport following arthroscopic decompression. Knee Surg Sports Traumatol Arthrosc. 2007;15(7):908–14.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Clohisy J, St John L, Schutz A. Surgical treatment of femoroacetabular impingement: a systematic review of the literature. Clin Orthop Relat Res. 2010;468(2):555–64.

    Article  PubMed  Google Scholar 

  105. Malloy P, Malloy M, Draovitch P. Guidelines and pitfalls for the rehabilitation following hip arthroscopy. Curr Rev Musculoskelet Med. 2013;6:235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hanlon DP, Luellen JR. Intersection syndrome: a case report and review of the literature. J Emerg Med. 1999;17(6):969–71.

    Article  CAS  PubMed  Google Scholar 

  107. Williams JGP. Surgical management of traumatic non-infective tenosynovitis of the wrist extensors. J Bone Joint Surg. 1977;59-B(4):408–10.

    CAS  Google Scholar 

  108. Chumbley EM. Evaluation of overuse elbow injuries. Am Fam Phys. 2000;61(3):691–700.

    CAS  Google Scholar 

  109. Lebrun CM. Common upper extremity issues. In: Schwenk TL, editor. Clinics in family practice. Philadelphia: W.B. Saunders; 1999. p. 147–84.

    Google Scholar 

  110. Sykora C, Grilo CM, Wilfley DR, et al. Eating, weight, and dieting disturbances in male and female lightweight and heavyweight rowers. Int J Eat Disord. 1993;14(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  111. Karlson KA, Becker CB, Merkur A. Prevalence of eating disordered behavior in collegiate lightweight women rowers and distance runners. Clin J Sport Med. 2001;11(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  112. Sundgot-Borgen J, Garthe I. Elite athletes in aesthetic and Olympic weight-class sports and the challenge of body weight and body compositions. J Sports Sci. 2011;29(Suppl 1):S101–14.

    Article  PubMed  Google Scholar 

  113. Garthe I, Raastad T, Refsnes PE, et al. Effect of two different weight-loss rates on body composition and strength and power-related performance in elite athletes. Int J Sport Nutr Exerc Metab. 2011;21(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  114. Nattiv A, Loucks AB, Manore MM, et al. American College of Sports Medicine. American College of Sports Medicine position stand: the female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  115. Chapman J, Woodman T. Disordered eating in male athletes: a meta-analysis. J Sports Sci. 2016;34(2):101–9.

    Article  PubMed  Google Scholar 

  116. Tenforde AS, Barrack MT, Nattiv A, et al. Parallels with the female athlete triad in male athletes. Sports Med. 2016;46:171–82.

    Article  PubMed  Google Scholar 

  117. Hackney AC. Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Invest. 2008;31:932–8.

    Article  CAS  PubMed  Google Scholar 

  118. Thiel A, Gottfried H, Hesse FW. Subclinical eating disorders in male athletes: a study of the low weight category in rowers and wrestlers. Acta Psychiatr Scand. 1993;88(4):259–65.

    Article  CAS  PubMed  Google Scholar 

  119. Talbott SM, Shapses SA. Fasting and energy intake influence bone turnover in lightweight male rowers. Int J Sport Nutr. 1998;8:377–87.

    Article  CAS  PubMed  Google Scholar 

  120. Hoch AZ, Papanek P, Szabo A, et al. Association between the female athlete triad and endothelial dysfunction in dancers. Clin J Sport Med. 2011;21:119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Temme KE, Hoch AZ. Recognition and rehabilitation of the female athlete triad/tetrad: a multidisciplinary approach. Curr Sports Med Rep. 2013;12(3):190–9.

    Article  PubMed  Google Scholar 

  122. Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the female athlete triad—Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48:491–7.

    Article  PubMed  Google Scholar 

  123. Dimitriou L, Weiler R, Lloyd-Smith R, et al. Bone mineral density, rib pain and other features of the female athlete triad in elite lightweight rowers. BMJ Open. 2014;4(2):e004369.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Vinther A, Kanstrup I-L, Christiansen E, et al. Exercise-induced rib stress fractures: influence of reduced bone mineral density. Scand J Med Sci Sports. 2005;15:95–9.

    Article  PubMed  Google Scholar 

  125. Smoljanovic T, Bojanic I, Pollock CL, et al. Rib stress fracture in a male adaptive rower from the arms and shoulders sport class: case report. Croat Med J. 2011;52(5):644–7.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lebrun CM, Rumball JS. Female athlete triad. J Sports Med Arthroscopy Rev. 2002;10(1):23–32.

    Article  Google Scholar 

  127. Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC relative energy deficiency in sport clinical assessment tool (RED-S CAT). Br J Sports Med. 2015;49(21):1354.

    Article  PubMed  Google Scholar 

  128. Melin A, Tornberg AB, Skouby S, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48:540–5.

    Article  PubMed  Google Scholar 

  129. Joy E, De Souza MJ, Nattiv A, et al. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad. Curr Sports Med Rep. 2014;13(4):219–32.

    Article  PubMed  Google Scholar 

  130. Koutedakis Y, Pacy PI, Quevedo RM. The effects of two different periods of weight-reduction on selected performance parameters in elite lightweight oarswomen. Int J Sports Med. 1994;5(8):472–7.

    Article  Google Scholar 

  131. Lebrun CM. The female athlete triad: what’s a doctor to do? Curr Sports Med Rep. 2007;6(6):397–404.

    PubMed  Google Scholar 

  132. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  133. Wilson F, McGregor A, Milne C, et al. Mythbusters in rowing medicine and physiotherapy: nine experts tackle five clinical conundrums. Br J Sports Med. 2014;48:1525–8. doi:10.1136/bjsports-2014-094246.

    Article  PubMed  Google Scholar 

  134. Carsen S, Moroz PJ, Rakhra K, et al. The Otto Aufranc Award. On the etiology of the cam deformity: a cross-sectional pediatric MRI study. Clin Orthop Relat Res. 2014;472:430–6.

    Article  PubMed  Google Scholar 

  135. Smoljanovic T, Pollock CL, Bojanic I. Letter to the editor: labral injuries of the hip in rowers. Clin Orthop Relat Res. 2014;472:1989–90.

    Article  PubMed  PubMed Central  Google Scholar 

  136. The World Rowing Federation, FISA (from the French, Fédération Internationale des Sociétés d’Aviron). What is para-rowing? Available from: http://www.worldrowing.com/para-rowing/#. Accessed 26 Mar 2016.

  137. Smoljanovic T, Bojanic I, Hannafin JA, et al. Complete inclusion of adaptive rowing only 1000 m ahead. Br J Sports Med. 2013;47:819–25. doi:10.1136/bjsports-2013-092157.

    Article  PubMed  Google Scholar 

  138. Goodey S. Adaptive rowing: a guide. Enabling individuals with a disability to participate in rowing. London: British Rowing; 2012.

    Google Scholar 

  139. Boland AL, Hosea TM. Rowing and sculling and the older athlete. Clin Sports Med. 1991;10(2):245–56.

    CAS  PubMed  Google Scholar 

  140. Yoshiga CC, Higuchi M, Oka J. Serum lipoprotein cholesterols in older oarsmen. Eur J Appl Physiol. 2002;87(3):228–32.

    Article  CAS  PubMed  Google Scholar 

  141. Yoshiga CC, Higuchi M, Oka J. Rowing prevents muscle wasting in older men. Eur J Appl Physiol. 2002;88(1–2):1–4.

    Article  PubMed  Google Scholar 

  142. Śliwicka E, Nowak A, Zep W, et al. Bone mass and bone metabolic indices in male master rowers. J Bone Miner Metab. 2015;33(5):540–6.

    Article  PubMed  CAS  Google Scholar 

  143. McNally E, Wilson D, Seiler S. Rowing injuries. Semin Musculoskelet Radiol. 2005;9:379–96.

    Article  PubMed  Google Scholar 

  144. Schmitt-Sody M, Pilger V, Gerdesmeyer L. Rehabilitation and sport following total hip replacement. Orthopade. 2011;40(6):513–9.

    Article  CAS  PubMed  Google Scholar 

  145. Steinbrück K, Gärtner BM. Total hip prosthesis and sport (author’s transl). MMW Munch Med Wochenschr. 1979;121(39):1247–50.

    PubMed  Google Scholar 

  146. Contostavlos DL. Transection of the thoracic aorta with exsanguination to insignificant trauma during a rowing exercise. J Trauma. 1998;44(1):240.

    Article  CAS  PubMed  Google Scholar 

  147. Krajcar Z, Gupta K, Dougherty KG. Mechanical trauma as a cause of late complications: after AneuRx Stent Graft repair of abdominal aortic aneurysms. Tex Heart Inst J. 2003;30(3):186–93.

    PubMed  Google Scholar 

  148. Sheridan RL, Velmahos G, Smith RM, et al. Case records of the Massachusetts General Hospital. Case 10-2007: a 55-year-old man impaled in a rowing accident. N Engl J Med. 2007;356(13):1353–60.

    Article  CAS  PubMed  Google Scholar 

  149. Tinkoff GH, Sabbagh R, Fulda GJ, et al. Thoracic aortic rupture during vigorous exercise. J Trauma. 1997;42(1):137–40.

    Article  CAS  PubMed  Google Scholar 

  150. Tomecki KJ, Mikesell JF. Rower’s rump. J Am Acad Derm. 1987;16(4):890–1.

    Article  CAS  PubMed  Google Scholar 

  151. Roach MC, Chretien JH. Common hand warts in athletes: association with trauma to the hand. J Am Coll Health. 1995;44(3):125–6.

    Article  CAS  PubMed  Google Scholar 

  152. Giesbrecht GG, Hayward JS. Problems and complications with cold-water rescue. Wilderness Environ Med. 2006;17(1):26–30.

    Article  PubMed  Google Scholar 

  153. Lacoste A, Hannafin J, Wilkinson M, et al. Athlete health and safety in rowing. Br J Sports Med. 2014;48:1523–4.

    Article  PubMed  Google Scholar 

  154. The World Rowing Federation, FISA (from the French, Fédération Internationale des Sociétés d’Aviron). FISA Medical recommendations for the Rio 2016 Olympic Games. Available from: http://www.worldrowing.com/mm//Document/General/General/12/22/77/RioMedicalRecommendationsat220216_Neutral.pdf. Accessed 10 Apr 2016.

  155. Rumball JS, Lebrun CM. Use of the preparticipation physical examination form to screen for the female athlete triad in Canadian interuniversity sport universities. Clin J Sport Med. 2005;15(5):320–5.

    Article  PubMed  Google Scholar 

  156. The World Rowing Federation, FISA (from the French, Fédération Internationale des Sociétés d’Aviron). FISA Pre-Competition Health Screening. Available from: http://www.worldrowing.com/athletes/medical-and-antidoping/fisa-pre-competition-health-screening. Accessed 10 Apr 2016.

  157. Wilhelm M. Atrial fibrillation in endurance athletes. Eur J Prev Cardiol. 2014;21(8):1040–8. doi:10.1177/2047487313476414 (Epub 2013 Jan 30).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane S. Thornton.

Ethics declarations

Funding

No financial support was received for the conduct of this study or preparation of this manuscript.

Informed consent

Consent for the publication of the figures was obtained from each the athletes depicted.

Conflict of interest

Jane Thornton, Tomislav Smoljanovic, Steve Di Ciacca, Karen Orlando, Mike Wilkinson, Anders Vinther, and Fiona Wilson declare that they have no conflicts of interest. Constance Lebrun has received honoraria from Rowing Canada as a team physician.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thornton, J.S., Vinther, A., Wilson, F. et al. Rowing Injuries: An Updated Review. Sports Med 47, 641–661 (2017). https://doi.org/10.1007/s40279-016-0613-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0613-y

Keywords

Navigation