Skip to main content
Log in

Skeletal Muscle Loading Changes its Regenerative Capacity

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Whenever skeletal muscle insults occur, both by functional impositions or other injury forms, skeletal muscle repair (SMR) follows. The SMR succeeds when proper skeletal muscle regeneration and limited fibrosis ensue. Muscle fiber replenishment by fibrosis negatively affects the tissue quality and functionality and, furthermore, represents the worst post-injury phenotypic adaptation. Acute muscle injury treatment commonly follows the RICE method—rest, ice, compression, and elevation. This immediate immobilization seems to be beneficial to preserving the tissue structure and avoiding further destruction; however, if these interventions are delayed, the risk of muscle atrophy and its deleterious-related effects increase, with resultant impaired SMR. Moreover, a growing body of evidence shows positive skeletal muscle loading (SML) effects during SMR since it seems to effectively increase satellite cells (SCs) in their activation, proliferation, self-renewal, and differentiation capacities. Additionally, recent data show that SML may also influence the functions of other participants in SMR, compelling SMR to achieve less fibrotic accretion and accelerated muscle mass recovery. Moreover, given the SML effects on SCs, it is plausible to consider that these can increase the myofibers’ basal myogenic potential. Thus, it seems relevant to scrutinize the possible acute and chronic SML therapeutic and prophylactic effects regarding the SMR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otto A, Collins-Hooper H, Patel K. The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat. 2009;215(5):477–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Biressi S, Rando TA. Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol. 2010;21(8):845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bentzinger CF, Wang YX, Dumont NA, et al. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 2013;14(12):1062–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moyer AL, Wagner KR. Regeneration versus fibrosis in skeletal muscle. Curr Opin Rheumatol. 2011;23(6):568–73.

    Article  PubMed  Google Scholar 

  7. Sciorati C, Clementi E, Manfredi AA, et al. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell Mol Life Sci. 2015;72(11):2135–56.

    Article  CAS  PubMed  Google Scholar 

  8. Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209–38.

    Article  CAS  PubMed  Google Scholar 

  9. Pillon NJ, Bilan PJ, Fink LN, et al. Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab. 2013;304(5):E453–65.

    Article  CAS  PubMed  Google Scholar 

  10. Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2010;298(5):R1173–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sicari BM, Rubin JP, Dearth CL, et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med. 2014;6(234):234ra58.

  12. Urciuolo A, Quarta M, Morbidoni V, et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun. 2013;4:1964.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kjaer M, Magnusson P, Krogsgaard M, et al. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat. 2006;208(4):445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Danna NR, Beutel BG, Campbell KA, et al. Therapeutic approaches to skeletal muscle repair and healing. Sports Health. 2014;6(4):348–55.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jarvinen TA, Jarvinen TL, Kaariainen M, et al. Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol. 2007;21(2):317–31.

    Article  PubMed  Google Scholar 

  16. Powers SK, Kavazis AN, DeRuisseau KC. Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R337–44.

    Article  CAS  PubMed  Google Scholar 

  17. Richard-Bulteau H, Serrurier B, Crassous B, et al. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am J Physiol Cell Physiol. 2008;294(2):C467–76.

    Article  CAS  PubMed  Google Scholar 

  18. Snijders T, Verdijk LB, Beelen M, et al. A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Exp Physiol. 2012;97(6):762–73.

    Article  CAS  PubMed  Google Scholar 

  19. Mackey AL, Esmarck B, Kadi F, et al. Enhanced satellite cell proliferation with resistance training in elderly men and women. Scand J Med Sci Sports. 2007;17(1):34–42.

    CAS  PubMed  Google Scholar 

  20. Smith HK, Merry TL. Voluntary resistance wheel exercise during post-natal growth in rats enhances skeletal muscle satellite cell and myonuclear content at adulthood. Acta Physiol (Oxf). 2012;204(3):393–402.

    Article  CAS  PubMed  Google Scholar 

  21. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development. 2012;139(16):2845–56.

    Article  CAS  PubMed  Google Scholar 

  22. Wang YX, Rudnicki MA. Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol. 2012;13(2):127–33.

    CAS  Google Scholar 

  23. Suetta C, Frandsen U, Mackey AL, et al. Ageing is associated with diminished muscle re-growth and myogenic precursor cell expansion early after immobility-induced atrophy in human skeletal muscle. J Physiol. 2013;591(Pt 15):3789–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee DA, Knight MM, Campbell JJ, et al. Stem cell mechanobiology. J Cell Biochem. 2011;112(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  25. Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech. 2010;43(1):55–62.

    Article  PubMed  Google Scholar 

  26. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–43.

    Article  CAS  PubMed  Google Scholar 

  27. Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  28. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.

    Article  CAS  PubMed  Google Scholar 

  29. Pedersen BK, Edward F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol (1985). 2009;107(4):1006–14.

    Article  CAS  Google Scholar 

  30. Pedersen BK, Fischer CP. Beneficial health effects of exercise—the role of IL-6 as a myokine. Trends Pharmacol Sci. 2007;28(4):152–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hvid LG. Early plasticity of human skeletal muscle in response to disuse. Acta Physiol (Oxf). 2014;210(3):460–1.

    Article  CAS  PubMed  Google Scholar 

  32. Persson PB. Skeletal muscle satellite cells as myogenic progenitors for muscle homoeostasis, growth, regeneration and repair. Acta Physiol (Oxf). 2015;213(3):537–8.

    Article  CAS  PubMed  Google Scholar 

  33. Parise G. Satellite cells: promoting adaptation over a lifetime. Acta Physiol (Oxf). 2014;210(3):462–4.

    Article  CAS  PubMed  Google Scholar 

  34. Verdijk LB. Satellite cell activation as a critical step in skeletal muscle plasticity. Exp Physiol. 2014;99(11):1449–50.

    Article  PubMed  Google Scholar 

  35. Mackey AL, Karlsen A, Couppe C, et al. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men. Acta Physiol (Oxf). 2014;210(3):612–27.

    Article  CAS  PubMed  Google Scholar 

  36. Verdijk LB, Snijders T, Drost M, et al. Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr). 2014;36(2):545–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petrella JK, Kim JS, Mayhew DL, et al. Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol. 2008;104(6):1736–42.

    Article  PubMed  Google Scholar 

  38. Joanisse S, Gillen JB, Bellamy LM, et al. Evidence for the contribution of muscle stem cells to nonhypertrophic skeletal muscle remodeling in humans. FASEB J. 2013;27(11):4596–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rudnicki MA, Le Grand F, McKinnell I, et al. The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol. 2008;73:323–31.

    Article  CAS  PubMed  Google Scholar 

  40. Choi S, Liu X, Li P, et al. Transcriptional profiling in mouse skeletal muscle following a single bout of voluntary running: evidence of increased cell proliferation. J Appl Physiol (1985). 2005;99(6):2406–15.

    Article  CAS  Google Scholar 

  41. Crameri RM, Langberg H, Magnusson P, et al. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol. 2004;558(Pt 1):333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cermak NM, Snijders T, McKay BR, et al. Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc. 2013;45(2):230–7.

    Article  PubMed  Google Scholar 

  43. Bellamy LM, Joanisse S, Grubb A, et al. The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS One. 2014;9(10):e109739.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hyldahl RD, Olson T, Welling T, et al. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front Physiol. 2014;5:485.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Verdijk LB, Koopman R, Schaart G, et al. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab. 2007;292(1):E151–7.

    Article  CAS  PubMed  Google Scholar 

  46. Dreyer HC, Blanco CE, Sattler FR, et al. Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve. 2006;33(2):242–53.

    Article  PubMed  Google Scholar 

  47. McKay BR, Ogborn DI, Bellamy LM, et al. Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J. 2012;26(6):2509–21.

    Article  CAS  PubMed  Google Scholar 

  48. Snijders T, Verdijk LB, Smeets JS, et al. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age (Dordr). 2014;36(4):9699.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ferreira R, Neuparth MJ, Ascensao A, et al. Skeletal muscle atrophy increases cell proliferation in mice gastrocnemius during the first week of hindlimb suspension. Eur J Appl Physiol. 2006;97(3):340–6.

    Article  PubMed  Google Scholar 

  50. Snijders T, Wall BT, Dirks ML, et al. Muscle disuse atrophy is not accompanied by changes in skeletal muscle satellite cell content. Clin Sci (Lond). 2014;126(8):557–66.

    Article  CAS  PubMed  Google Scholar 

  51. Dirks ML, Wall BT, Snijders T, et al. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol (Oxf). 2014;210(3):628–41.

    Article  CAS  PubMed  Google Scholar 

  52. Carlson ME, Suetta C, Conboy MJ, et al. Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med. 2009;1(8–9):381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol. 2014;5:99.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hochreiter-Hufford AE, Lee CS, Kinchen JM, et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature. 2013;497(7448):263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu SF, Baylies MK. Cell biology: death brings new life to muscle. Nature. 2013;497(7448):196–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kadi F, Thornell LE. Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol. 2000;113(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  57. Charifi N, Kadi F, Feasson L, et al. Effects of endurance training on satellite cell frequency in skeletal muscle of old men. Muscle Nerve. 2003;28(1):87–92.

    Article  PubMed  Google Scholar 

  58. Kadi F, Schjerling P, Andersen LL, et al. The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. J Physiol. 2004;558(Pt 3):1005–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Verdijk LB, Gleeson BG, Jonkers RA, et al. Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J Gerontol A Biol Sci Med Sci. 2009;64(3):332–9.

    Article  PubMed  Google Scholar 

  60. Mackey AL, Andersen LL, Frandsen U, et al. Strength training increases the size of the satellite cell pool in type I and II fibres of chronically painful trapezius muscle in females. J Physiol. 2011;589(Pt 22):5503–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mackey AL, Holm L, Reitelseder S, et al. Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity. Scand J Med Sci Sports. 2011;21(6):773–82.

    Article  CAS  PubMed  Google Scholar 

  62. Fry CS, Noehren B, Mula J, et al. Fibre type-specific satellite cell response to aerobic training in sedentary adults. J Physiol. 2014;592(Pt 12):2625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Connor RS, Pavlath GK. Point:Counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol (1985). 2007;103(3):1099–100.

    Article  Google Scholar 

  64. Jackson JR, Mula J, Kirby TJ, et al. Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. Am J Physiol Cell Physiol. 2012;303(8):C854–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McCarthy JJ, Mula J, Miyazaki M, et al. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development. 2011;138(17):3657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van der Meer SF, Jaspers RT, Degens H. Is the myonuclear domain size fixed? J Musculoskelet Neuronal Interact. 2011;11(4):286–97.

    PubMed  Google Scholar 

  67. Verney J, Kadi F, Charifi N, et al. Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle Nerve. 2008;38(3):1147–54.

    Article  PubMed  Google Scholar 

  68. Leenders M, Verdijk LB, van der Hoeven L, et al. Elderly men and women benefit equally from prolonged resistance-type exercise training. J Gerontol A Biol Sci Med Sci. 2013;68(7):769–79.

    Article  PubMed  Google Scholar 

  69. Snijders T, Verdijk LB, Hansen D, et al. Continuous endurance-type exercise training does not modulate satellite cell content in obese type 2 diabetes patients. Muscle Nerve. 2011;43(3):393–401.

    Article  PubMed  Google Scholar 

  70. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000;287(5457):1427–30.

    Article  CAS  PubMed  Google Scholar 

  71. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311(5769):1880–5.

    Article  CAS  PubMed  Google Scholar 

  72. Pannerec A, Marazzi G, Sassoon D. Stem cells in the hood: the skeletal muscle niche. Trends Mol Med. 2012;18(10):599–606.

    Article  CAS  PubMed  Google Scholar 

  73. Cornelison DD. Context matters: in vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem. 2008;105(3):663–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2008;2(1):22–31.

    Article  CAS  PubMed  Google Scholar 

  75. Pedersen BK. Muscle as a secretory organ. Compr Physiol. 2013;3(3):1337–62.

    PubMed  Google Scholar 

  76. Bonsignore MR, Morici G, Santoro A, et al. Circulating hematopoietic progenitor cells in runners. J Appl Physiol (1985). 2002;93(5):1691–7.

    Article  Google Scholar 

  77. Ribeiro F, Ribeiro IP, Alves AJ, et al. Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review. Am J Phys Med Rehabil. 2013;92(11):1020–30.

    Article  PubMed  Google Scholar 

  78. Christov C, Chretien F, Abou-Khalil R, et al. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell. 2007;18(4):1397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan Z, Okutsu M, Akhtar YN, et al. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol (1985). 2011;110(1):264–74.

    Article  CAS  PubMed Central  Google Scholar 

  80. Arsic N, Zacchigna S, Zentilin L, et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther. 2004;10(5):844–54.

    Article  CAS  PubMed  Google Scholar 

  81. Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci. 2013;70(21):4117–30.

    Article  CAS  PubMed  Google Scholar 

  82. Musaro A, Giacinti C, Borsellino G, et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci USA. 2004;101(5):1206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grounds MD. The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol. 2014;56:56–65.

    Article  CAS  PubMed  Google Scholar 

  84. Hatade T, Takeuchi K, Fujita N, et al. Effect of heat stress soon after muscle injury on the expression of MyoD and myogenin during regeneration process. J Musculoskelet Neuronal Interact. 2014;14(3):325–33.

    CAS  PubMed  Google Scholar 

  85. Mason DL, Dickens VA, Vail A. Rehabilitation for hamstring injuries. Cochrane Database Syst Rev. 2012;(12):Art.No:CD004575. doi:10.1002/14651858.CD004575.pub3.

  86. Askling CM, Tengvar M, Tarassova O, et al. Acute hamstring injuries in Swedish elite sprinters and jumpers: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2014;48(7):532–9.

    Article  PubMed  Google Scholar 

  87. Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953–9.

    Article  PubMed  Google Scholar 

  88. Ambrosio F, Ferrari RJ, Distefano G, et al. The synergistic effect of treadmill running on stem-cell transplantation to heal injured skeletal muscle. Tissue Eng Part A. 2010;16(3):839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Palermo AT, LaBarge MA, Doyonnas R, et al. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol. 2005;279(2):336–44.

    Article  CAS  PubMed  Google Scholar 

  90. Hwang JH, Ra YJ, Lee KM, et al. Therapeutic effect of passive mobilization exercise on improvement of muscle regeneration and prevention of fibrosis after laceration injury of rat. Arch Phys Med Rehabil. 2006;87(1):20–6.

    Article  PubMed  Google Scholar 

  91. Rullman E, Norrbom J, Stromberg A, et al. Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol (1985). 2009;106(3):804–12.

    Article  CAS  Google Scholar 

  92. Silveira EM, Rodrigues MF, Krause MS, et al. Acute exercise stimulates macrophage function: possible role of NF-kappaB pathways. Cell Biochem Funct. 2007;25(1):63–73.

    Article  CAS  PubMed  Google Scholar 

  93. Woods J, Lu Q, Ceddia MA, et al. Special feature for the Olympics: effects of exercise on the immune system: exercise-induced modulation of macrophage function. Immunol Cell Biol. 2000;78(5):545–53.

    Article  CAS  PubMed  Google Scholar 

  94. Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  95. Guo BS, Cheung KK, Yeung SS, et al. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One. 2012;7(1):e30348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang BT, Yeung SS, Liu Y, et al. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension. BMC Cell Biol. 2010;11:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Teixeira.

Ethics declarations

Funding

The Research Center in Physical Activity, Health and Leisure is supported by the Portuguese Foundation for Science and Technology (FCT; UID/DTP/00617/2013). Eduardo Teixeira benefits from an FCT grant (SFRH/BD/76740/2011).

Conflict of interest

Eduardo Teixeira and José Alberto Duarte declare that they have no conflicts of interest directly relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, E., Duarte, J.A. Skeletal Muscle Loading Changes its Regenerative Capacity. Sports Med 46, 783–792 (2016). https://doi.org/10.1007/s40279-015-0462-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0462-0

Keywords

Navigation