Skip to main content
Log in

Prevalence of Low Bone Mineral Density in Female Dancers

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background and Objective

While some authors report that dancers have reduced bone mineral density (BMD) and increased risk of osteoporosis, others have stressed the positive effects of dance training on developing healthy BMD. Given the existing controversy, the aim of this systematic review was to examine the best evidence-based information available in relation to female dancers.

Methods

Four databases (Web of Science, PubMed, EBSCO, Scopus) and two dance science journals (Journal of Dance Medicine and Science and Medical Problems of Performing Artists) were searched for relevant material using the keywords “dance”, “ballet”, “BMD”, “bone density”, “osteoporosis” and “female athlete triad syndrome”. A total of 257 abstracts were screened using selected inclusion (studies involving bone measurements in dancers) and exclusion (editorials, opinion papers, chapters in books, narrative reviews and non-English language papers) criteria according to PRISMA guidelines. Following the above screening, a total of 108 abstracts were identified as potentially relevant. After the exclusion of conference proceedings, review papers, studies focusing only in male dancers and studies in which dancers’ information were combined with other athletes, the eligible papers were subsequently assessed using the GRADE system and grouped according to: (1) prevalence of low BMD and associated factors, (2) incidence of low BMD and risk factors, (3) prevention/treatment of low BMD in dancers, and (4) other studies.

Results

Of the 257 abstracts that were initially screened, only 35 studies were finally considered. Only one of these 35 was of high quality, while the remaining 34 were of relatively low quality. Seven studies reported prevalence of low BMD and associated factors, 10 reported associated factors with no prevalence data, while one reported prevalence with no associated factors data. One study cited risk factors, while another one elaborated on the treatment of low BMD in dancers. The remaining 15 studies were classified as “other studies”.

Conclusions

It remains unclear whether low BMD is prevalent in female dancers. The present review highlights the need for high-quality BMD research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures: the study of Osteoporotic Fractures Research Group. Lancet. 1993;341:72–5.

    Article  CAS  PubMed  Google Scholar 

  2. Melton LJ, Atkinson EJ, O’Fallon WM, et al. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res. 1993;8:1227–33.

    Article  PubMed  Google Scholar 

  3. Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res. 1993;8:1–9.

    Article  CAS  PubMed  Google Scholar 

  4. Naganathan V, Macgregor A, Snieder H, et al. Gender differences in the genetic factors responsible for variation in bone density and ultrasound. J Bone Miner Res. 2002;17:725–33.

    Article  PubMed  Google Scholar 

  5. Guadalupe-Grau A, Fuentes T, Guerra B, et al. Exercise and bone mass in adults. Sports Med. 2009;39(6):439–68.

    Article  PubMed  Google Scholar 

  6. Nurmi-Lawton JA, Baxter-Jones AD, Mirwald RL, et al. Evidence of sustained skeletal benefits from impact-loading exercise in young females: a 3-year longitudinal study. J Bone Miner Res. 2004;9(2):314–22.

    Google Scholar 

  7. Vicente-Rodríguez G. How does exercise affect bone development during growth? Sports Med. 2006;36(7):561–9.

    Article  PubMed  Google Scholar 

  8. Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000;67:10–8.

    Article  CAS  PubMed  Google Scholar 

  9. Snow-Harter C, Bouxsein ML, Lewis BT, et al. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res. 2009;7(7):761–9.

    Article  Google Scholar 

  10. Greene DA, Naughton GA. Adaptive skeletal responses to mechanical loading during adolescence. Sports Med. 2006;36(9):723–32.

    Article  PubMed  Google Scholar 

  11. Calbet JAL, Moysi JS, Dorado C, et al. Bone mineral content and density in professional tennis players. Calcif Tissue Int. 1998;62:491–6.

    Article  CAS  PubMed  Google Scholar 

  12. Castelo-Branco C, Reina F, Montivero AD, et al. Influence of high-intensity training and of dietetic and anthropometric factors on menstrual cycle disorders in ballet dancers. Gynecol Endocrinol. 2006;22(1):31–5.

    Article  PubMed  Google Scholar 

  13. Vescovi JD, Jamal SA, De Souza MJ. Strategies to reverse bone loss in women with functional hypothalamic amenorrhea: a systematic review of the literature. Osteoporos Int. 2008;19:465–78.

    Article  CAS  PubMed  Google Scholar 

  14. Nattiv A, Loucks A, Manore M. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  15. Koutedakis Y, Jamurtas A. The dancer as a performing athlete: physiological considerations. Sports Med. 2004;34(10):651–61.

    Article  PubMed  Google Scholar 

  16. Valentino R, Savastano S, Tommaselli A, et al. The influence of intense ballet training on trabecular bone mass, hormone status, and gonadotropin structure in young women. J Clin Endocrinol Metab. 2001;86:4674–8.

    Article  CAS  PubMed  Google Scholar 

  17. Keay N, Fogelman I, Blake G. Bone mineral density in professional female dancers. Br J Sports Med. 1997;31:143–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dolyle-Lucas AF, Akers JD, Davy BM. Energetic efficiency, menstrual irregularity, and bone mineral density in elite professional female ballet dancers. J Dance Med Sci. 2010;14(4):146–54.

    Google Scholar 

  19. Armann S, Wells C, Cheung S, et al. Bone mass, menstrual abnormalities, dietary intake, and body composition in classical ballerinas. Kinesiol Med Dance. 1990;13(1):1–15.

    Google Scholar 

  20. Warren MP, Brooks-Gunn J, Fox RP, et al. Lack of bone accretion and amenorrhea: evidence for a relative osteopenia in weight-bearing bones. J Clin Endocrinol Metab. 1991;72(4):847–53.

    Article  CAS  PubMed  Google Scholar 

  21. Pearce G, Bass S, Young N, et al. Does weight-bearing exercise protect against the effects of exercise-induced oligomenorrhea on bone density? Osteoporosis Int. 1996;6:448–52.

    Article  CAS  Google Scholar 

  22. Burckhardt P, Wynn E, Krieg MA, et al. The effects of nutrition, puberty and dancing on bone density in adolescent ballet dancers. J Dance Med Sci. 2011;15(2):51–60.

    PubMed  Google Scholar 

  23. IADMS (2008–2010). International Association for Dance Medicine and Science [online]. http://www.iadms.org/displaycommon.cfm?an=1&subarticlenbr=212. Accessed 18 Nov 2011.

  24. Litchtenbelt WD, Fogelholm M, Otteenheijm R, et al. Physical activity, body composition and bone density in ballet dancers. Br J Nutr. 1995;74:439–51.

    Article  Google Scholar 

  25. Khan KM, Green RM, Saul A, et al. Retired elite female ballet dancers and nonathletic controls have similar bone mineral density at weightbearing sites. J Bone Miner Res. 1996;11(10):1566–74.

    Article  CAS  PubMed  Google Scholar 

  26. To W, Wong M. Does oligomenorrhea/amenorrhea and underweight imply athlete female trial syndrome in young female dancers? Eur J Sport Sci. 2011;11(5):335–40.

    Article  Google Scholar 

  27. Slavin RE. Best evidence synthesis: an intelligent alternative to meta-analysis. J Clin Epidemiol. 1995;48(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  28. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 1998;336:924–6.

    Article  Google Scholar 

  29. Moher D, Liberati A, Tetzlaff T, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med. 2009;6(7):1–6.

    Article  Google Scholar 

  30. Hoch AZ, Papanek P, Szabo A, et al. Association between the female athlete triad and endothelial dysfunction in dancers. Clin J Sport Med. 2011;21(2):119–25.

    Article  PubMed Central  PubMed  Google Scholar 

  31. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporosis Int. 1994;4:368–381.

  32. Yang LC, Lan Y, Hu J, et al. Relatively high bone mineral density in Chinese adolescent dancers despite lower energy intake and menstrual disorder. Biomed Environ Sci. 2010;23:130–6.

    Article  CAS  PubMed  Google Scholar 

  33. Yannakoulia M, Keramopoulos A, Matalas A. Bone mineral density in young active dancers: the case of dancers. Int J Sport Nutr Exerc Metab. 2004;14:285–97.

    CAS  PubMed  Google Scholar 

  34. Karlsson MK, Johnell O, Obrant KJ. Bone mineral density in professional ballet dancers. Bone Miner. 1993;21:163–9.

    Article  CAS  PubMed  Google Scholar 

  35. Bass S, Pearce G, Young N, et al. Bone mass during growth: the effects of exercise. Exercise and mineral accrual. Acta Univ Carol Med (Praha). 1994;40(1–4):3–6.

    CAS  Google Scholar 

  36. To WWK, Wong MWN, Lam IYM. Bone mineral density differences between adolescent dancers and non-exercising adolescent females. J Pediatr Adolesc Gynecol. 2005;18:337–42.

    Article  PubMed  Google Scholar 

  37. Kaufman BA, Warren MP, Dominguez JE, et al. Bone density and amenorrhea in ballet dancers are related to a decreased resting metabolic rate and lower leptin levels. J Clin Endocrinol Metab. 2002;87:2777–83.

    Article  CAS  PubMed  Google Scholar 

  38. Quintas ME, Ortega RM, López-Sobaler AM, et al. Influence of dietetic and anthropometric factors and of the type of sport practiced on bone density in different groups of women. Eur J Clin Nutr. 2003;57(Suppl 1):S58–62.

    Article  CAS  PubMed  Google Scholar 

  39. Young N, Formica C, Szmukler G, et al. Bone density at weight-bearing and non weight-bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab. 1994;78(2):449–54.

    CAS  PubMed  Google Scholar 

  40. Warren MP, Brooks-Gunn J, Fox RP, et al. Osteopenia in exercise-associated amenorrhea using ballet dancers as a model: a longitudinal study. J Clin Endocrinol Metab. 2002;87:3162–8.

    Article  CAS  PubMed  Google Scholar 

  41. Warren MP, Brooks-Gunn J, Fox RP, et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormonal therapy: a longitudinal study. Fertil Steril. 2003;80(2):398–404.

    Article  PubMed  Google Scholar 

  42. Wolman RL, Faulmann L, Clark P, et al. Different training patterns and bone mineral density of the femoral shaft in elite, female athletes. Ann Rheum Dis. 1991;50:487–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Frederick L, Hawkins ST. A comparison of knowledge and attitudes, dietary practices, and bone densities of postmenopausal women, female college athletes, and nonathletic college women. J Am Diet Assoc. 1992;93(3):299–305.

    Google Scholar 

  44. Munoz M, Piedra C, Barrios V, et al. Changes in bone density and bone markets in rhythmic gymnasts and ballet dancers: implications for puberty and leptin levels. Eur J Endocrinol. 2004;151:491–6.

    Article  CAS  PubMed  Google Scholar 

  45. Hinrichs T, Chae EH, Lehmann R, et al. Bone mineral density in athletes of different disciplines: a cross-sectional study. Open Sports Sci J. 2010;3:129–33.

    Article  Google Scholar 

  46. Friesen KJ, Rozenek R, Clippinger K, et al. Bone mineral density and body composition of collegiate modern dancers. J Dance Med Sci. 2011;15(1):31–6.

    PubMed  Google Scholar 

  47. Kilicarslan A, Isildak M, Guven GS, et al. The influence of ballet training on bone mass in Turkish ballet dancers. Endocrinologist. 2007;17(2):85–8.

    Article  Google Scholar 

  48. Cuesta A, Revilla M, Villa LF, et al. Total and regional bone mineral content in Spanish professional ballet dancers. Calcif Tissue. 1996;58:150–4.

    Article  CAS  Google Scholar 

  49. Foldes A, Danziger A, Constantini N, et al. Reduced ultrasound velocity in tibial bone of young ballet dancers. Int J Sports Med. 1997;18(4):296–9.

    Article  CAS  PubMed  Google Scholar 

  50. Tsai S, Hsu H, Fong Y, et al. Bone mineral density in young female Chinese dancers. Int Orthop. 2001;25:283–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bennell K, Khan K, Matthews B, et al. Activity-associated differences in bone mineral are evident before puberty: a cross-sectional study of 130 female novice dancers and controls. Pediatr Exerc Sci. 2000;12:371–81.

    Google Scholar 

  52. Matthews BL, Bennell KL, Mckay HA, et al. Dancing for bone health: a 3-year longitudinal study of bone mineral accrual across puberty in female non-elite dancers and controls. Osteoporos Int. 2006;17:1043–54.

    Article  CAS  PubMed  Google Scholar 

  53. Yang LC, Lan Y, Hu J, et al. Correlation of serum leptin level with bone mineral density and bone turnover markers in Chinese adolescent dancers. Biomed Environ Sci. 2009;22:369–73.

    Article  CAS  PubMed  Google Scholar 

  54. Oral A, Tarakçi D, Disci R. Calcaneal quantitative ultrasound measurements in young male and female professional ballet dancers. J Strength Cond Res. 2006;20(3):572–8.

    PubMed  Google Scholar 

  55. Myburgh KH, Hutchins J, Fataar AB, et al. Low bone density is an etiologic factor for stress factors in athletes. Ann Intern Med. 1990;113:754–9.

    Article  CAS  PubMed  Google Scholar 

  56. Lauder TD, Dixit S, Pezzin LE, et al. The relation between stress fractures and bone mineral density: evidence from active-duty army women. Arch Phys Med Rehabil. 2000;81(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  57. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int. 1997;7:311–5.

    Article  CAS  PubMed  Google Scholar 

  58. Engelke K, Adams JE, Armbrecht G, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom. 2008;11(1):123–62.

    Article  PubMed  Google Scholar 

  59. Bailey DA. The Saskatchewan pediatric bone mineral accrual study: bone mineral acquisition during the growing years. Int J Sports Med. 1997;18:S191–4.

    Article  PubMed  Google Scholar 

  60. Baxter-Jones ADG, Faulkner RA, Forwood MR, et al. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39.

    Article  PubMed  Google Scholar 

  61. Davies JH, Evans BAJ, Gregory JW. Bone mass acquisition in healthy children. Arch Dis Child. 2005;90:373–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Specker BL, Schoenau E. Quantitative bone analysis in children: current methods and recommendations. J Pediatr. 2005;146:726–31.

    Article  PubMed  Google Scholar 

  63. Maimoun L, Sultan C. Effects of physical activity on bone remodeling. Metabolism. 2011;60(3):373–88.

    Article  CAS  PubMed  Google Scholar 

  64. Ausili E, Rigante D, Salvaggio E, et al. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, puberty, and physical activity. Rheumatol Int. 2011;32(9):2737–43.

    Article  PubMed  Google Scholar 

  65. Pollitzer WS, Anderson JJ. Ethnic and genetic differences in bone mass: a review with hereditary vs. environmental perspective. Am J Clin Nutr. 1989;50:1244–59.

    CAS  PubMed  Google Scholar 

  66. Bachrach LK, Hastie T, Wang MC, et al. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab. 1999;84:4702–12.

    CAS  PubMed  Google Scholar 

  67. Eisman JA. Genetics of osteoporosis. Endocr Rev. 1999;20(6):788–804.

    Article  CAS  PubMed  Google Scholar 

  68. Davies JH, Evans BA, Gregory JW. Bone mass acquisition in healthy children. Arch Dis Child. 2005;90:373–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Koutedakis Y, Sharp NC. Thigh-muscles strength training, dance exercise, dynamometry, and anthropometry in professional ballerinas. J Strength Cond Res. 2004;18(4):714–8.

    PubMed  Google Scholar 

  70. Twitchett T, Angioi M, Koutedakis Y, et al. Video analysis of classical ballet performance. J Dance Med Sci. 2009;13(4):124–8.

    PubMed  Google Scholar 

  71. Koutedakis Y, Hukam H, Metsios G, et al. The effects of three months of aerobic and strength training on selected performance- and fitness-related parameters in modern dance students. J Strength Cond Res. 2007;21(3):808–12.

    PubMed  Google Scholar 

  72. Allen N, Nevill AM, Brooks JH, et al. Ballet injuries: injury incidence and severity over 1 year. J Orthop Sports Phys Ther. 2012;42(9):780–90.

    Article  Google Scholar 

  73. Allen N, Nevill AM, Brooks JH, et al. The effect of a comprehensive injury audit program on injury incidence in ballet: a 3-year prospective study. Clin J Sport Med. 2013;23(5):373–8.

    Article  PubMed  Google Scholar 

  74. Koutedakis Y, Khalouha M, Pacy PJ, et al. Thigh peak torques and lower-body injuries in dancers. J Dance Med Sci. 1997;1(1):12–5.

    Google Scholar 

  75. Koutedakis Y, Dick F, Pacy PJ. Health and fitness in professional dancers. Med Probl Perform Art. 1997;12(1):23–7.

    Google Scholar 

  76. Khan KM, Bennel KL, Hopper JL, et al. Self-reported ballet classes undertaken at age 10-12 years and hip bone mineral density in later life. Osteoporosis Int. 1998;8:165–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Portuguese Foundation for Science and Technology for granting this research (SFRH/BD/88585/2012). The authors have no potential conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tânia Amorim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, T., Wyon, M., Maia, J. et al. Prevalence of Low Bone Mineral Density in Female Dancers. Sports Med 45, 257–268 (2015). https://doi.org/10.1007/s40279-014-0268-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0268-5

Keywords

Navigation