Skip to main content
Log in

Strategies of Dietary Carbohydrate Manipulation and Their Effects on Performance in Cycling Time Trials

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The relationship between carbohydrate (CHO) availability and exercise performance has been thoroughly discussed. CHO improves performance in both prolonged, low-intensity and short, high-intensity exercises. Most studies have focused on the effects of CHO supplementation on the performance of constant-load, time-to-exhaustion exercises. Nevertheless, in the last 20 years, there has been a consistent increase in research on the effects of different forms of CHO supplementation (e.g. diet manipulation, CHO supplementation before or during exercise) on performance during closed-loop exercises, such as cycling time trials (TTs). A TT is a highly reproducible exercise and reflects a more realistic scenario of competition compared with the time-to-exhaustion test. CHO manipulation has been performed in various time periods, such as days before, minutes before, during a TT or in a matched manner (e.g. before and during a TT). The purpose of this review is to address the possible effects of these different forms of CHO manipulation on the performance during a cycling TT. Previous data suggest that when a high-CHO diet (~70 % of CHO) is consumed before a TT (24–72 h before), the mean power output increases and reduces the TT time. When participants are supplemented with CHO (from 45 to 400 g) prior to a TT (from 2 min to 6 h before the TT), mean power output and time seem to improve due to an increase in CHO oxidation. Similarly, this performance also seems to increase when participants ingest CHO during a TT because such consumption maintains plasma glucose levels. A CHO mouth rinse also improves performance by activating several brain areas related to reward and motor control through CHO receptors in the oral cavity. However, some studies reported controversial results concerning the benefits of CHO on TT performance. Methodological issues such as time of supplementation, quantity, concentration and type of CHO ingested, as well as the TT duration and intensity, should be considered in future studies because small variations in any of these factors may have beneficial or adverse effects on TT performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergström J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.

    Article  PubMed  Google Scholar 

  2. Vandenberghe K, Hespel P, Eynde BV, et al. No effect of glycogen level on glycogen metabolism during high intensity exercise. Med Sci Sports Exerc. 1995;27(9):1278–83.

    PubMed  CAS  Google Scholar 

  3. Baldwin J, Snow RJ, Gibala MJ, et al. Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. J Appl Physiol. 2003;94(6):2181–7.

    PubMed  CAS  Google Scholar 

  4. Johnson NA, Stannard SR, Chapman PG, et al. Effect of altered pre-exercise carbohydrate availability on selection and perception of effort during prolonged cycling. Eur J Appl Physiol. 2006;98(1):62–70.

    Article  PubMed  CAS  Google Scholar 

  5. Lima-Silva AE, De-Oliveira FR, Nakamura FY, et al. Effect of carbohydrate availability on time to exhaustion in exercise performed at two different intensities. Br J Med Biol Res. 2009;42(5):404–12.

    CAS  Google Scholar 

  6. Lima-Silva AE, Bertuzzi RC, Pires FO, et al. A low carbohydrate diet affects autonomic modulation during heavy but not moderate exercise. Eur J Appl Physiol. 2010;108(6):1133–40.

    Article  PubMed  CAS  Google Scholar 

  7. Lima-Silva AE, Pires FO, Bertuzzi RC, et al. Low carbohydrate diet affects the oxygen uptake on-kinetics and rating of perceived exertion in high intensity exercise. Psychophysiology. 2011;48(2):277–84.

    Article  Google Scholar 

  8. Rauch HG, St Clair Gibson A, Lambert EV, et al. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–8.

    Article  PubMed  CAS  Google Scholar 

  9. Neufer PD, Costill DL, Flynn MG, et al. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62(3):983–8.

    PubMed  CAS  Google Scholar 

  10. Sherman WM, Brodowicz G, Wright DA, et al. Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc. 1989;21(5):598–604.

    PubMed  CAS  Google Scholar 

  11. Sherman WM, Peden MC, Wright DA. Carbohydrate feedings 1 h before exercise improves cycling performance. Am J Clin Nutr. 1991;54(5):866–70.

    PubMed  CAS  Google Scholar 

  12. el-Sayed MS, Balmer J, Rattu AJ. Carbohydrate ingestion improves endurance performance during a 1 h simulated cycling time trial. J Sports Sci. 1997;15(2):223–30.

    Article  PubMed  CAS  Google Scholar 

  13. Below PR, Mora-Rodríguez R, González-Alonso J, et al. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Med Sci Sports Exerc. 1995;27(2):200–10.

    PubMed  CAS  Google Scholar 

  14. Angus DJ, Hargreaves M, Dancey J, et al. Effect of carbohydrate or carbohydrate plus medium-chain triglyceride ingestion on cycling time trial performance. J Appl Physiol. 2000;88(1):113–9.

    PubMed  CAS  Google Scholar 

  15. van Essen M, Gibala MJ. Failure of protein to improve time trial performance when added to a sports drink. Med Sci Sports Exerc. 2006;38(8):1476–83.

    Article  PubMed  Google Scholar 

  16. Clark VR, Hopkins WG, Hawley JA, et al. Placebo effect of carbohydrate feedings during a 40-km cycling time trial. Med Sci Sports Exerc. 2000;32(9):1642–7.

    PubMed  CAS  Google Scholar 

  17. Jeukendrup AE, Hopkins S, Aragón-Vargas LF, et al. No effect of carbohydrate feeding on 16 km cycling time trial performance. Eur J Appl Physiol. 2008;104(5):831–7.

    Article  PubMed  CAS  Google Scholar 

  18. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.

    Article  PubMed  CAS  Google Scholar 

  19. Acker-Hewitt TL, Shafer BM, Saunders MJ, Goh Q, Luden ND. Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl Physiol Nutr Metab. 2012;37(2):276–83.

    Article  PubMed  CAS  Google Scholar 

  20. Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36(12):2107–11.

    PubMed  CAS  Google Scholar 

  21. Beelen M, Berghuis J, Bonaparte B, et al. Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial performance. Int J Sport Nutr Exerc Metab. 2009;19(4):400–9.

    PubMed  CAS  Google Scholar 

  22. Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587(Pt 8):1779–94.

    Article  PubMed  CAS  Google Scholar 

  23. Pottier A, Bouckaert J, Gilis W, et al. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports. 2010;20(1):105–11.

    Article  PubMed  CAS  Google Scholar 

  24. Coyle EF, Coggan AR, Hemmert MK, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.

    PubMed  CAS  Google Scholar 

  25. Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63(6):2388–95.

    PubMed  CAS  Google Scholar 

  26. Jeukendrup A, Brouns F, Wagenmakers AJ, et al. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18(2):125–9.

    Article  PubMed  CAS  Google Scholar 

  27. Palmer GS, Clancy MC, Hawley JA, et al. Carbohydrate ingestion immediately before exercise does not improve 20 km time trial performance in well trained cyclists. Int J Sports Med. 1998;19(6):415–8.

    Article  PubMed  CAS  Google Scholar 

  28. Hulston CJ, Jeukendrup AE. No placebo effect from carbohydrate intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2009;19(3):275–84.

    PubMed  CAS  Google Scholar 

  29. Slivka D, Hailes W, Cuddy J, et al. Caffeine and carbohydrate supplementation during exercise when in negative energy balance: effects on performance, metabolism, and salivary cortisol. Appl Physiol Nutr Metab. 2008;33(6):1079–85.

    Article  PubMed  CAS  Google Scholar 

  30. Laursen PB, Francis GT, Abbiss CR, et al. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med Sci Sports Exerc. 2007;39(8):1374–9.

    Article  PubMed  Google Scholar 

  31. Jeukendrup A, Saris WH, Brouns F, et al. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28(2):266–70.

    Article  PubMed  CAS  Google Scholar 

  32. Atkinson G, Peacock O, St Clair Gibson A, et al. Distribution of power output during cycling: impact and mechanisms. Sports Med. 2007;37(8):647–67.

    Article  PubMed  Google Scholar 

  33. Burke LM, Hawley JA, Schabort EJ, et al. Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. J Appl Physiol. 2000;88(4):1284–90.

    CAS  Google Scholar 

  34. Hawley JA, Palmer GS, Noakes TD. Effects of 3 days of carbohydrate supplementation on muscle glycogen content and utilisation during a 1-h cycling performance. Eur J Appl Physiol Occup Physiol. 1997;75(5):407–12.

    Article  PubMed  CAS  Google Scholar 

  35. Bishop NC, Walsh NP, Haines DL, et al. Pre-exercise carbohydrate status and immune responses to prolonged cycling: I. Effect on neutrophil degranulation. Int J Sport Nutr Exerc Metab. 2001;11(4):490–502.

    PubMed  CAS  Google Scholar 

  36. Bishop NC, Walsh NP, Haines DL, et al. Pre-exercise carbohydrate status and immune responses to prolonged cycling: II. Effect on plasma cytokine concentration. Int J Sport Nutr Exerc Metab. 2001;11(4):503–12.

    PubMed  CAS  Google Scholar 

  37. el-Sayed MS, Rattu AJ, Roberts I. Effects of carbohydrate feeding before and during prolonged exercise on subsequent maximal exercise performance capacity. Int J Sport Nutr. 1995;5(3):215–24.

    PubMed  CAS  Google Scholar 

  38. Hulston CJ, Jeukendrup AE. Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Med Sci Sports Exerc. 2008;40(12):2096–104.

    Article  PubMed  CAS  Google Scholar 

  39. Rauch LH, Rodger I, Wilson GR, et al. The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr. 1995;5(1):25–36.

    PubMed  CAS  Google Scholar 

  40. Lambert EV, Speechly DP, Dennis SC, et al. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol. 1994;69(4):287–93.

    Article  PubMed  CAS  Google Scholar 

  41. Jentjens RL, Cale C, Gutch C, et al. Effects of pre-exercise ingestion of differing amounts of carbohydrate on subsequent metabolism and cycling performance. Eur J Appl Physiol. 2003;88(4–5):444–52.

    Article  PubMed  CAS  Google Scholar 

  42. Hendelman DL, Ornstein K, Debold EP, et al. Preexercise feeding in untrained adolescent boys does not affect responses to endurance exercise or performance. Int J Sport Nutr. 1997;7(3):207–18.

    PubMed  CAS  Google Scholar 

  43. Anantaraman R, Carmines AA, Gaesser GA, et al. Effects of carbohydrate supplementation on performance during 1 hour of high-intensity exercise. Int J Sports Med. 1995;16(7):461–5.

    Article  PubMed  CAS  Google Scholar 

  44. Paul D, Jacobs KA, Geor RJ, et al. No effect of pre-exercise meal on substrate metabolism and time trial performance during intense endurance exercise. Int J Sport Nutr Exerc Metab. 2003;13(4):489–503.

    PubMed  CAS  Google Scholar 

  45. Chryssanthopoulos C, Hennessy LC, Williams C. The influence of pre-exercise glucose ingestion on endurance running capacity. Br J Sports Med. 1994;28(2):105–9.

    Article  PubMed  CAS  Google Scholar 

  46. Seifert JG, Paul GL, Eddy DE, et al. Glycemic and insulinemic response to preexercise carbohydrate feedings. Int J Sport Nutr. 1994;4(1):46–53.

    PubMed  CAS  Google Scholar 

  47. Marmy-Conus N, Fabris S, Proietto J, et al. Preexercise glucose ingestion and glucose kinetics during exercise. J Appl Physiol. 1996;81(2):853–7.

    PubMed  CAS  Google Scholar 

  48. Kuipers H, Fransen EJ, Keizer HA. Pre-exercise ingestion of carbohydrate and transient hypoglycemia during exercise. Int J Sports Med. 1999;20(4):227–31.

    Article  PubMed  CAS  Google Scholar 

  49. Madsen K, Maclean DA, Kiens B, et al. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km. J Appl Physiol. 1996;81(6):2644–50.

    PubMed  CAS  Google Scholar 

  50. Desbrow B, Anderson S, Barrett J, et al. Carbohydrate-electrolyte feedings and 1 h time trial cycling performance. Int J Sport Nutr Exerc Metab. 2004;14(5):541–9.

    PubMed  Google Scholar 

  51. Burke LM, Hawley JA. Effects of short-term fat adaptation on metabolism and performance of prolonged exercise. Med Sci Sports Exerc. 2002;34(9):1492–8.

    Article  PubMed  CAS  Google Scholar 

  52. Goedecke JH, Christie C, Wilson G, et al. Metabolic adaptations to a high-fat diet in endurance cyclists. Metabolism. 1999;48(12):1509–17.

    Article  PubMed  CAS  Google Scholar 

  53. Osterberg KL, Zachwieja JJ, Smith JW. Carbohydrate and carbohydrate + protein for cycling time-trial performance. J Sports Sci. 2008;26(3):227–33.

    Article  PubMed  Google Scholar 

  54. Coyle EF, Hagberg JM, Hurley BF, et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol. 1983;55(1 Pt 1):230–5.

    PubMed  CAS  Google Scholar 

  55. Coggan AR, Coyle EF. Metabolism and performance following carbohydrate ingestion late in exercise. Med Sci Sports Exerc. 1989;21(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  56. Coyle EF. Fluid and fuel intake during exercise. J Sports Sci. 2004;22(1):39–55.

    Article  PubMed  Google Scholar 

  57. Karelis AD, Smith JW, Passe DH, et al. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med. 2010;40(9):747–63.

    Article  PubMed  Google Scholar 

  58. Cohen D. The truth about sports drinks. BMJ. 2012;345:e4737.

    Article  PubMed  Google Scholar 

  59. Heneghan C, Perera R, Nunan D, et al. Forty years of sports performance research and little insight gained. BMJ. 2012;345:e4797.

    Article  PubMed  Google Scholar 

  60. Thompson M, Heneghan C, Cohen D. How valid is the European Food Safety Authority’s assessment of sports drinks? BMJ. 2012;345:e4753.

    Article  PubMed  Google Scholar 

  61. Heneghan C, Gill P, O’Neill B, et al. Mythbusting sports and exercise products. BMJ. 2012;345:e4848.

    Article  PubMed  Google Scholar 

  62. Phinney SD, Bistrian BR, Evans WJ, et al. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983;32(8):769–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Carlos Rafaell Correia-Oliveira is grateful to the Foundation of Aids to Scientific Research of the State of Alagoas (FAPEAL) for his Master’s scholarship. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Eduardo Lima-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correia-Oliveira, C.R., Bertuzzi, R., Dal’Molin Kiss, M.A.P. et al. Strategies of Dietary Carbohydrate Manipulation and Their Effects on Performance in Cycling Time Trials. Sports Med 43, 707–719 (2013). https://doi.org/10.1007/s40279-013-0054-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0054-9

Keywords

Navigation