Skip to main content
Log in

Cancer Immunotherapies: Are They as Effective in the Elderly?

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Almost two-thirds of all new cancer diagnoses are made in persons over the age of 65 years, yet it is unclear if age affects patient responsiveness to immunotherapy, which is increasingly becoming first-line therapy in advanced stages of different tumor types. Preclinical animal studies may be difficult to translate into humans since they frequently use young mice (2–3 months of age) equivalent to adolescent human subjects. Nevertheless, ex vivo studies from humans are concordant with mice tissue findings—older patients have an increased density of circulating regulatory immune cells and a decreased ratio of naïve-to-memory T cells. A review of different immunotherapy trials reveals that contrary to expectations, advanced age generally does not hinder safety and clinical response to different treatment modalities. A growing number of immune checkpoint inhibitor immunotherapy trials have been published with basic safety and clinical response data stratified by age. We present the clinical response data from 21 phase II/III clinical trials based on age stratification into young and old subgroups. Data from these trials indicate that these agents have an overall low toxicity profile and that they are similarly well-tolerated in young and old patient subgroups. However, drug-specific differences exist for immune checkpoint inhibition in elderly subjects when comparing overall survival and progression-free survival hazard ratios with those of young subjects. Additional work is needed to better stratify ‘responders’ and ‘nonresponders’ within the elderly age group in order to optimize immunotherapy use in a heterogeneous patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beaver JA, Theoret MR, Mushti S, He K, Libeg M, Goldberg K, et al. FDA approval of nivolumab for the first-line treatment of patients with BRAFV600 wild-type unresectable or metastatic melanoma. Clin Cancer Res. 2017. doi:10.1158/1078-0432.CCR-16-0714

  2. Jotte RM, Socinski MA, Reck M, Papadimitrakopoulou V, West HJ, Mok T, et al. PS01.53: First-line atezolizumab plus chemotherapy in chemotherapy-naive patients with advanced NSCLC: a phase III clinical program: topic: medical oncology. J Thorac Oncol. 2016;11(11S):S302–3.

    Article  PubMed  Google Scholar 

  3. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  4. Hazarika M, Chuk MK, Theoret MR, Mushti S, He K, Weis SL, et al. US FDA approval summary: nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumab. Clin Cancer Res. 2017. doi:10.1158/1078-0432.CCR-16-0712

  5. Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Discov Med. 2011;11(61):537–50.

    PubMed  Google Scholar 

  6. Lewis JH, Kilgore ML, Goldman DP, Trimble EL, Kaplan R, Montello MJ, et al. Participation of patients 65 years of age or older in cancer clinical trials. J Clin Oncol. 2003;21(7):1383–9.

    Article  PubMed  Google Scholar 

  7. Saurwein-Teissl M, Romani N, Grubeck-Loebenstein B. Dendritic cells in old age–neglected by gerontology? Mech Ageing Dev. 2000;121(1–3):123–30.

    CAS  PubMed  Google Scholar 

  8. Song L, Kim YH, Chopra RK, Proust JJ, Nagel JE, Nordin AA, et al. Age-related effects in T cell activation and proliferation. Exp Gerontol. 1993;28(4–5):313–21.

    Article  CAS  PubMed  Google Scholar 

  9. Haynes BF, Sempowski GD, Wells AF, Hale LP. The human thymus during aging. Immunol Res. 2000;22(2–3):253–61.

    Article  CAS  PubMed  Google Scholar 

  10. Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, Kasten-Sportes C, et al. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest. 2005;115(4):930–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taub DD, Longo DL. Insights into thymic aging and regeneration. Immunol Rev. 2005;205:72–93.

    Article  CAS  PubMed  Google Scholar 

  12. Koch S, Larbi A, Derhovanessian E, Ozcelik D, Naumova E, Pawelec G. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing. 2008;5:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, et al. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood. 2000;95(9):2860–8.

    CAS  PubMed  Google Scholar 

  14. Myers CE, Mirza NN, Lustgarten J. Immunity, cancer and aging: lessons from mouse models. Aging Dis. 2011;2(6):512–23.

    PubMed  PubMed Central  Google Scholar 

  15. Gravekamp C, Kim SH, Castro F. Cancer vaccination: manipulation of immune responses at old age. Mech Ageing Dev. 2009;130(1–2):67–75.

    Article  CAS  PubMed  Google Scholar 

  16. Dominguez AL, Lustgarten J. Implications of aging and self-tolerance on the generation of immune and antitumor immune responses. Can Res. 2008;68(13):5423–31.

    Article  CAS  Google Scholar 

  17. Fulop T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013;4:271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang SQ, Parker P, Ma KY, He C, Shi Q, Cui Z, et al. Direct measurement of T cell receptor affinity and sequence from naive antiviral T cells. Sci Transl Med. 2016;8(341):341ra77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hurez V, Padron AS, Svatek RS, Curiel TJ. Considerations for successful cancer immunotherapy in aged hosts. Clin Exp Immunol. 2017;187(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  20. Vasto S, Carruba G, Lio D, Colonna-Romano G, Di Bona D, Candore G, et al. Inflammation, ageing and cancer. Mech Ageing Dev. 2009;130(1–2):40–5.

    Article  CAS  PubMed  Google Scholar 

  21. Bruunsgaard H, Pedersen BK. Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am. 2003;23(1):15–39.

    Article  PubMed  Google Scholar 

  22. Spano J, Chaïbi P, Vignot S, Thery JC, de La Motte Rouge T, Gil-Delgado M, Khayat D, Mouawad R. Age-related changes in plasma levels of inflammatory and angiogenic cytokins in patients with cancer. J Clin Oncol. 2011;29(15_suppl):e19699.

    Article  Google Scholar 

  23. Jackaman C, Radley-Crabb HG, Soffe Z, Shavlakadze T, Grounds MD, Nelson DJ. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell. 2013;12(3):345–57.

    Article  CAS  PubMed  Google Scholar 

  24. Weiss SA, Han J, Darvishian F, Tchack J, Han SW, Malecek K, et al. Impact of aging on host immune response and survival in melanoma: an analysis of 3 patient cohorts. J Transl Med. 2016;14(1):299.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G, Hildeman DA, et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol. 2008;181(3):1835–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharma S, Dominguez AL, Lustgarten J. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J Immunol. 2006;177(12):8348–55.

    Article  CAS  PubMed  Google Scholar 

  27. Lim SJ KJ, Lee WS, Kwon WS, Kim TS, Park KH, Chung HC, Rha SY. Immune checkpoint protein expression is up-regulated in tumor-bearing elderly mice. In: Proceedings: AACR 106th Annual Meeting 2015; April 18–22, 2015; Philadelphia, PA

  28. Lafuente-Sanchis A, Zuniga A, Estors M, Martinez-Hernandez NJ, Cremades A, Cuenca M, et al. Association of PD-1, PD-L1, and CTLA-4 gene expression and clinicopathologic characteristics in patients with non-small-cell lung cancer. Clin Lung Cancer. 2017;18(2):e109–16.

    Article  CAS  PubMed  Google Scholar 

  29. Tomihara K, Curiel TJ, Zhang B. Optimization of immunotherapy in elderly cancer patients. Crit Rev Oncog. 2013;18(6):573–83.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bouchlaka MN, Sckisel GD, Chen M, Mirsoian A, Zamora AE, Maverakis E, et al. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy. J Exp Med. 2013;210(11):2223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy WJ, Welniak L, Back T, Hixon J, Subleski J, Seki N, et al. Synergistic anti-tumor responses after administration of agonistic antibodies to CD40 and IL-2: coordination of dendritic and CD8+ cell responses. J Immunol. 2003;170(5):2727–33.

    Article  CAS  PubMed  Google Scholar 

  32. Ruby CE, Weinberg AD. OX40-enhanced tumor rejection and effector T cell differentiation decreases with age. J Immunol. 2009;182(3):1481–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hurez V, Daniel BJ, Sun L, Liu AJ, Ludwig SM, Kious MJ, et al. Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Can Res. 2012;72(8):2089–99.

    Article  CAS  Google Scholar 

  34. Lustgarten J, Dominguez AL, Thoman M. Aged mice develop protective antitumor immune responses with appropriate costimulation. J Immunol. 2004;173(7):4510–5.

    Article  CAS  PubMed  Google Scholar 

  35. Jackaman C, Nelson DJ. Are macrophages, myeloid derived suppressor cells and neutrophils mediators of local suppression in healthy and cancerous tissues in aging hosts? Exp Gerontol. 2014;54:53–7.

    Article  CAS  PubMed  Google Scholar 

  36. Marvel D, Gabrilovich DI. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest. 2015;125(9):3356–64.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, et al. Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93(4):633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods. 2012;381(1–2):14–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Enioutina EY, Bareyan D, Daynes RA. A role for immature myeloid cells in immune senescence. J Immunol. 2011;186(2):697–707.

    Article  CAS  PubMed  Google Scholar 

  40. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17(6):717–26.

    Article  CAS  PubMed  Google Scholar 

  41. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65.

    Article  CAS  PubMed  Google Scholar 

  42. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med. 2016;374(26):2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  44. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  45. Balar A, Bellmunt O’Donnell PH, Castellano D, Grivas P, Vuky T, et al. Pembrolizumab (pembro) as first-line therapy for advanced/unresectable or metastatic urothelial cancer: preliminary results from the phase 2 KEYNOTE-052 study. Ann Oncol. 2016;27(suppl_6):2892–7.

    Article  Google Scholar 

  46. Nishijima TF, Muss HB, Shachar SS, Moschos SJ. Comparison of efficacy of immune checkpoint inhibitors (ICIs) between younger and older patients: a systematic review and meta-analysis. Cancer Treat Rev. 2016;45:30–7.

    Article  CAS  PubMed  Google Scholar 

  47. Mullard A. FDA approvals for the first 6 months of 2016. Nat Rev Drug Discov. 2016;15(8):523.

    Google Scholar 

  48. Blumenthal GM, Pazdur R. Approvals in 2016: the march of the checkpoint inhibitors. Nat Rev Clin Oncol. 2017;14(3):131–2.

    Article  PubMed  Google Scholar 

  49. Yang Y, Pang Z, Ding N, Dong W, Ma W, Li Y, et al. The efficacy and potential predictive factors of PD-1/PD-L1 blockades in epithelial carcinoma patients: a systematic review and meta analysis. Oncotarget. 2016;7(45):74350–61.

    PubMed  PubMed Central  Google Scholar 

  50. Landre T, Taleb C, Nicolas P, Des Guetz G. Is there a clinical benefit of anti-PD-1 in patients older than 75 years with previously treated solid tumour? J Clin Oncol. 2016;34(suppl; abstr 3070).

  51. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.

    Article  CAS  PubMed  Google Scholar 

  53. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  56. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  57. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18.

    Article  CAS  PubMed  Google Scholar 

  58. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J med. 2015;373(19):1803–13.

    Article  CAS  PubMed  Google Scholar 

  59. Escudier B, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, et al. CheckMate 025 randomized phase 3 study: outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol. 2017. doi:10.1016/j.eururo.2017.02.010.

  60. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J med. 2015;373(17):1627–39.

    Article  CAS  PubMed  Google Scholar 

  61. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17(11):1558–68.

    Article  CAS  PubMed  Google Scholar 

  63. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

    Article  CAS  PubMed  Google Scholar 

  64. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46.

    Article  CAS  PubMed  Google Scholar 

  65. Reck M, Luft A, Szczesna A, Havel L, Kim SW, Akerley W, et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J Clin Oncol. 2016;34:3740–8.

    Article  Google Scholar 

  66. Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35(1):40–7.

    Article  PubMed  Google Scholar 

  67. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    Article  PubMed  CAS  Google Scholar 

  68. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.

    Article  PubMed  Google Scholar 

  69. Ascierto PA, Del Vecchio M, Robert C, Mackiewicz A, Chiarion-Sileni V, Arance A, et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2017;18:611–22.

    Article  CAS  PubMed  Google Scholar 

  70. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  PubMed  Google Scholar 

  71. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33(18):2004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.

    Article  CAS  PubMed  Google Scholar 

  74. Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, Wong DJ, et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 2017;18:599–610.

    Article  CAS  PubMed  Google Scholar 

  75. Kotsakis A, Georgoulias V. Avelumab, an anti-PD-L1 monoclonal antibody, shows activity in various tumour types. Lancet Oncol. 2017;18:556–7.

    Article  CAS  PubMed  Google Scholar 

  76. Rai R, McQuade JL, Wang DY, Park JJ, Nahar K, Sosman JA, Beckermann KE, Haydu LE, Lo S, Rubinstein S, Beckerman KE, McKean M, Matthew S, Guminski A, Carlino MS, Davies M, Johnson DB, Long GV, Menzies AM. Safety and efficacy of anti-PD-1 antibodies in elderly patients with metastatic melanoma. Ann Oncol. 2016;27(suppl_6):1113PD.

    Article  Google Scholar 

  77. Johnson DB, Sullivan RJ, Menzies AM. Immune checkpoint inhibitors in challenging populations. Cancer. 2017;123(11):1904–1911.

    Article  PubMed  Google Scholar 

  78. Johnpulle RAN, Conry RM, Sosman JA, Puzanov I, Johnson DB. Responses to immune checkpoint inhibitors in nonagenarians. OncoImmunology. 2016;5(11):e1234572.

    Article  PubMed  CAS  Google Scholar 

  79. Chiarion Sileni V, Pigozzo J, Ascierto PA, Grimaldi AM, Maio M, Di Guardo L, et al. Efficacy and safety of ipilimumab in elderly patients with pretreated advanced melanoma treated at Italian centres through the expanded access programme. J Exp Clin Cancer Res. 2014;33:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. De Velasco G, Je Y, Bosse D, Awad MM, Ott PA, Moreira RB, et al. Comprehensive meta-analysis of key immune-related adverse events from CTLA-4 and PD-1/PD-L1 inhibitors in cancer patients. Cancer Immunol Res. 2017;5(4):312–8.

    Article  PubMed  CAS  Google Scholar 

  81. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6.

    Article  CAS  PubMed  Google Scholar 

  82. Boross P, Leusen JH. Mechanisms of action of CD20 antibodies. Am J Cancer Res. 2012;2(6):676–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Laurenti L, Innocenti I, Autore F, Vannata B, Efremov DG, Ciolli S, et al. Bendamustine in combination with rituximab for elderly patients with previously untreated B-cell chronic lymphocytic leukemia: a retrospective analysis of real-life practice in Italian hematology departments. Leuk Res. 2015;39(10):1066–70.

    Article  CAS  PubMed  Google Scholar 

  84. Huhn D, von Schilling C, Wilhelm M, Ho AD, Hallek M, Kuse R, et al. Rituximab therapy of patients with B-cell chronic lymphocytic leukemia. Blood. 2001;98(5):1326–31.

    Article  CAS  PubMed  Google Scholar 

  85. Itala M, Geisler CH, Kimby E, Juvonen E, Tjonnfjord G, Karlsson K, et al. Standard-dose anti-CD20 antibody rituximab has efficacy in chronic lymphocytic leukaemia: results from a Nordic multicentre study. Eur J Haematol. 2002;69(3):129–34.

    Article  CAS  PubMed  Google Scholar 

  86. O’Brien SM, Kantarjian H, Thomas DA, Giles FJ, Freireich EJ, Cortes J, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol. 2001;19(8):2165–70.

    Article  PubMed  Google Scholar 

  87. Visco C, Chiappella A, Nassi L, Patti C, Ferrero S, Barbero D, et al. Rituximab, bendamustine, and low-dose cytarabine as induction therapy in elderly patients with mantle cell lymphoma: a multicentre, phase 2 trial from Fondazione Italiana Linfomi. Lancet Haematol. 2017;4(1):e15–23.

    Article  PubMed  Google Scholar 

  88. Park SI, Grover NS, Olajide O, Asch AS, Wall JG, Richards KL, et al. A phase II trial of bendamustine in combination with rituximab in older patients with previously untreated diffuse large B-cell lymphoma. Br J Haematol. 2016;175(2):281–9.

    Article  CAS  PubMed  Google Scholar 

  89. Castellino A, Santambrogio E, Nicolosi M, Botto B, Boccomini C, Vitolo U. Follicular lymphoma: the management of elderly patient. Mediterr J Hematol Infect Dis. 2017;9(1):e2017009.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Peyrade F, Jardin F, Thieblemont C, Thyss A, Emile JF, Castaigne S, et al. Attenuated immunochemotherapy regimen (R-miniCHOP) in elderly patients older than 80 years with diffuse large B-cell lymphoma: a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2011;12(5):460–8.

    Article  CAS  PubMed  Google Scholar 

  91. Alinari L, Lapalombella R, Andritsos L, Baiocchi RA, Lin TS, Byrd JC. Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene. 2007;26(25):3644–53.

    Article  CAS  PubMed  Google Scholar 

  92. Stanglmaier M, Reis S, Hallek M. Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann Hematol. 2004;83(10):634–45.

    Article  CAS  PubMed  Google Scholar 

  93. Mone AP, Cheney C, Banks AL, Tridandapani S, Mehter N, Guster S, et al. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia. 2006;20(2):272–9.

    Article  CAS  PubMed  Google Scholar 

  94. Golay J, Manganini M, Rambaldi A, Introna M. Effect of alemtuzumab on neoplastic B cells. Haematologica. 2004;89(12):1476–83.

    CAS  PubMed  Google Scholar 

  95. Crowe JS, Hall VS, Smith MA, Cooper HJ, Tite JP. Humanized monoclonal antibody CAMPATH-1H: myeloma cell expression of genomic constructs, nucleotide sequence of cDNA constructs and comparison of effector mechanisms of myeloma and Chinese hamster ovary cell-derived material. Clin Exp Immunol. 1992;87(1):105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cortelezzi A, Gritti G, Laurenti L, Cuneo A, Ciolli S, Di Renzo N, et al. An Italian retrospective study on the routine clinical use of low-dose alemtuzumab in relapsed/refractory chronic lymphocytic leukaemia patients. Br J Haematol. 2012;156(4):481–9.

    Article  CAS  PubMed  Google Scholar 

  97. Robak T, Blonski JZ, Robak P. Antibody therapy alone and in combination with targeted drugs in chronic lymphocytic leukemia. Semin Oncol. 2016;43(2):280–90.

    Article  CAS  PubMed  Google Scholar 

  98. Peyrade F, Bologna S, Delwail V, Emile JF, Pascal L, Ferme C, et al. Combination of ofatumumab and reduced-dose CHOP for diffuse large B-cell lymphomas in patients aged 80 years or older: an open-label, multicentre, single-arm, phase 2 trial from the LYSA group. Lancet Haematol. 2017;4(1):e46–55.

    Article  PubMed  Google Scholar 

  99. Barth MJ, Czuczman MS. Ofatumumab: a novel, fully human anti-CD20 monoclonal antibody for the treatment of chronic lymphocytic leukemia. Future Oncol. 2013;9(12):1829–39.

    Article  CAS  PubMed  Google Scholar 

  100. Costa LJ, Fanning SR, Stephenson J Jr, Afrin LB, Kistner-Griffin E, Bentz TA, et al. Sequential ofatumumab and lenalidomide for the treatment of relapsed and refractory chronic lymphocytic leukemia and small lymphocytic lymphoma. Leuk Lymphoma. 2015;56(3):645–9.

    Article  CAS  PubMed  Google Scholar 

  101. Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD, Hellmann A, et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol. 2010;28(10):1749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.

    Article  CAS  PubMed  Google Scholar 

  103. Ravaud A, Legrand E, Delaunay MM, Bussieres E, Coulon V, Cany L, et al. A phase I trial of repeated tumour-infiltrating lymphocyte (TIL) infusion in metastatic melanoma. Br J Cancer. 1995;71(2):331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Topalian SL, Solomon D, Avis FP, Chang AE, Freerksen DL, Linehan WM, et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol. 1988;6(5):839–53.

    Article  CAS  PubMed  Google Scholar 

  105. Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg. 1989;210(4):474–84 (discussion 84–5).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst. 1993;85(8):622–32.

    Article  CAS  PubMed  Google Scholar 

  107. Law TM, Motzer RJ, Mazumdar M, Sell KW, Walther PJ, O’Connell M, et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer. 1995;76(5):824–32.

    Article  CAS  PubMed  Google Scholar 

  108. Bar MH, Sznol M, Atkins MB, Ciobanu N, Micetich KC, Boldt DH, et al. Metastatic malignant melanoma treated with combined bolus and continuous infusion interleukin-2 and lymphokine-activated killer cells. J Clin Oncol. 1990;8(7):1138–47.

    Article  CAS  PubMed  Google Scholar 

  109. Foon KA, Walther PJ, Bernstein ZP, Vaickus L, Rahman R, Watanabe H, et al. Renal cell carcinoma treated with continuous-infusion interleukin-2 with ex vivo-activated killer cells. J Immunother (1991). 1992;11(3):184–90.

    Article  CAS  Google Scholar 

  110. Kono K, Takahashi A, Ichihara F, Amemiya H, Iizuka H, Fujii H, et al. Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial. Clin Cancer Res. 2002;8(6):1767–71.

    CAS  PubMed  Google Scholar 

  111. Dreno B, Nguyen JM, Khammari A, Pandolfino MC, Tessier MH, Bercegeay S, et al. Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma. Cancer Immunol Immunother. 2002;51(10):539–46.

    Article  CAS  PubMed  Google Scholar 

  112. Mackensen A, Meidenbauer N, Vogl S, Laumer M, Berger J, Andreesen R. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol. 2006;24(31):5060–9.

    Article  CAS  PubMed  Google Scholar 

  113. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298(5594):850–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173(12):7125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol. 2005;175(10):7046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Suzuki N, Hazama S, Ueno T, Matsui H, Shindo Y, Iida M, et al. A phase I clinical trial of vaccination with KIF20A-derived peptide in combination with gemcitabine for patients with advanced pancreatic cancer. J Immunother. 2014;37(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  117. Nabhan C, Sartor O, Cooperberg MR, Armstrong AJ, Vacirca JL, Concepcion RS, et al.  Sipuleucel-T in metastatic castration-resistant prostate cancer (mCRPC) patients $80 years-old: data from PROCEED. J Clin Oncol. 2014;32 Suppl 4:64.

  118. Miles D, Roche H, Martin M, Perren TJ, Cameron DA, Glaspy J, et al. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist. 2011;16(8):1092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vansteenkiste J, Zielinski M, Linder A, Dahabreh J, Gonzalez EE, Malinowski W, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol. 2013;31(19):2396–403.

    Article  CAS  PubMed  Google Scholar 

  120. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9.

    Article  CAS  PubMed  Google Scholar 

  121. Park JKRI, Wang X, Bartido S, Sadelain M, Brentjens RJ. Phase I trial of autologous CD19-targeted CAR-modified t cells as consolidation after purine analog-based first-line therapy in patients with previously untreated CLL. J Clin Oncol. 2014;32(15):7020.

    Google Scholar 

  122. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017;25(1):285–95.

    Article  CAS  PubMed  Google Scholar 

  124. Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med. 2016;8(320):320ra3.

    Article  PubMed  CAS  Google Scholar 

  125. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol. 2009;27(34):5763–71.

    Article  CAS  PubMed  Google Scholar 

  127. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    Article  CAS  PubMed  Google Scholar 

  128. Harrington KJ, Andtbacka RH, Collichio F, Downey G, Chen L, Szabo Z, et al. Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVM1a melanoma: subanalysis of the Phase III OPTiM trial. Onco Targets Ther. 2016;9:7081–93.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, et al. Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an Oncolytic and immunotherapeutic vaccinia virus in colorectal cancer. Mol Ther. 2015;23(9):1532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Noonan AM, Farren MR, Geyer SM, Huang Y, Tahiri S, Ahn D, et al. Randomized phase 2 trial of the oncolytic virus pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther. 2016;24(6):1150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Atzpodien J, Wandert T, Reitz A. Age does not impair the efficacy of immunochemotherapy in patients with metastatic renal carcinoma. Crit Rev Oncol Hemat. 2005;55(3):193–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Conflict of interest

Jeffery Sosman has received consulting fees or honorarium from Genentech, BMS, and Merck. All other authors declare no conflict of interest.

Funding

The research was in part supported by National Institutes of Health grant CA149669, a Cancer Center Support Grant (NCI CA060553), and the Walter S. and Lucienne Driskill Immunotherapy Research fund.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poropatich, K., Fontanarosa, J., Samant, S. et al. Cancer Immunotherapies: Are They as Effective in the Elderly?. Drugs Aging 34, 567–581 (2017). https://doi.org/10.1007/s40266-017-0479-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-017-0479-1

Navigation