Skip to main content
Log in

Detecting and Targeting NTRK Fusions in Cancer in the Era of Tumor Agnostic Oncology

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Gene rearrangements involving the neurotrophic receptor kinase genes NTRK1, NTRK2, and NTRK3 (referred to as TRK, encoding TRKA, TRKB, and TRKC, respectively) result in highly oncogenic fusions. TRK fusions are rare, with a prevalence of < 1% in solid tumors. Detection of TRK fusions can be based on fluorescence in-situ hybridization (FISH), immunohistochemistry (IHC), and next-generation sequencing (NGS), where RNA sequencing is the most sensitive method. Inhibition of TRK fusions with highly selective small-molecule TRK inhibitors (TRKi) such as entrectinib and larotrectinib, results in profound responses in most cancer patients, regardless of cancer histology. Even response in CNS metastases is relatively common. Although responses are often durable, many patients develop resistance to TRKi due to mutations in one of the TRK genes, or due to genetic alterations conferring activation of alternative oncogenic signaling pathways. Second-generation TRKi have been developed, which can overcome some of the TRK resistance mutations. TRKi are well tolerated, with most common adverse events being related to on-target/off-tumor inhibition of TRKs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dienstmann R, Rodon J, Barretina J, Tabernero J. Genomic medicine frontier in human solid tumors: prospects and challenges. J Clin Oncol. 2013;31:1874–84.

    PubMed  Google Scholar 

  2. Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. J Clin Oncol. 2013;31:1806–14.

    PubMed  Google Scholar 

  3. Macconaill LE, Garraway LA. Clinical implications of the cancer genome. J Clin Oncol. 2010;28:5219–28.

    PubMed  PubMed Central  Google Scholar 

  4. Meador CB, Micheel CM, Levy MA, Lovly CM, Horn L, Warner JL, et al. Beyond histology: translating tumor genotypes into clinically effective targeted therapies. Clin Cancer Res. 2014;20:2264–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    CAS  PubMed  Google Scholar 

  6. Capmatinib DS. First Approval. Drugs. 2020;80:1125–31.

    Google Scholar 

  7. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI, et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Engl J Med. 2020;383:1207–17.

    CAS  PubMed  Google Scholar 

  8. Diamond EL, Subbiah V, Lockhart AC, Blay J-Y, Puzanov I, Chau I, et al. Vemurafenib for BRAF V600-mutant Erdheim-Chester disease and Langerhans cell histiocytosis: analysis of data from the histology-independent, phase 2, open-label VE-BASKET study. JAMA Oncol. 2018;4:384–8.

    PubMed  Google Scholar 

  9. Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay J-Y, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373:726–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Raje N, Chau I, Hyman DM, Ribrag V, Blay J-Y, Tabernero J, et al. Vemurafenib in patients with relapsed refractory multiple myeloma harboring BRAFV600 mutations: a cohort of the histology-independent VE-BASKET Study. JCO Precis Oncol. 2018;2:1–9.

    Google Scholar 

  11. Subbiah V, Puzanov I, Blay J-Y, Chau I, Lockhart AC, Raje NS, et al. Pan-Cancer Efficacy of Vemurafenib in BRAFV600-Mutant Non-Melanoma Cancers. Cancer Discov. 2020;10:657–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Subbiah V, Gervais R, Riely G, Hollebecque A, Blay J-Y, Felip E, et al. Efficacy of vemurafenib in patients with non-small-cell lung cancer with BRAF V600 mutation: an open-label, single-arm cohort of the histology-independent VE-BASKET study. JCO Precis Oncol. 2019;3:1–9.

    Google Scholar 

  13. Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland Å, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18:1307–16.

    CAS  PubMed  Google Scholar 

  14. Planchard D, Besse B, Groen HJM, Souquet P-J, Quoix E, Baik CS, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17:984–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36:7–13.

    CAS  PubMed  Google Scholar 

  16. Kreitman RJ, Moreau P, Hutchings M, Gazzah A, Blay J-Y, Wainberg ZA, et al. Treatment with combination of dabrafenib and trametinib in patients with recurrent/refractory BRAF V600E-mutated hairy cell leukemia (HCL). Blood. 2018;132:391–391.

    Google Scholar 

  17. Subbiah V, Lassen U, Élez E, Italiano A, Curigliano G, Javle M, et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020;21:1234–43.

    CAS  PubMed  Google Scholar 

  18. Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, Shapiro GI, et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature. 2018;554:189–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Smyth LM, Piha-Paul SA, Won HH, Schram AM, Saura C, Loi S, et al. Efficacy and determinants of response to HER kinase inhibition in HER2-mutant metastatic breast cancer. Cancer Discov. 2020;10:198–213.

    CAS  PubMed  Google Scholar 

  20. Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994;77:627–38.

    PubMed  Google Scholar 

  21. Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169:107–14.

    CAS  PubMed  Google Scholar 

  22. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000;10:381–91.

    CAS  PubMed  Google Scholar 

  23. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5:25–34.

    CAS  PubMed  Google Scholar 

  24. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15:731–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hempel D, Wieland T, Solfrank B, Grossmann V, Steinhard J, Frick A, et al. Antitumor activity of larotrectinib in esophageal carcinoma with NTRK gene amplification. Oncologist. 2020;25:e881–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in trk fusion-positive cancers in adults and children. N Engl J Med. 2018;378:731–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong DS, DuBois SG, Kummar S, Farago AF, Albert CM, Rohrberg KS, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncology. 2020;21(4):531–40.

    CAS  PubMed  Google Scholar 

  29. Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D, et al. Pan-trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol. 2017;41:1547–51.

    PubMed  PubMed Central  Google Scholar 

  30. Taylor J, Pavlick D, Yoshimi A, Marcelus C, Chung SS, Hechtman JF, et al. Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. J Clin Invest. 2018;128:3819–25.

    PubMed  PubMed Central  Google Scholar 

  31. Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020;33:38–46.

    CAS  PubMed  Google Scholar 

  32. Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L, Kurzrock R. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol. 2018;2:PO.18.00183.

  33. Rosen EY, Goldman DA, Hechtman JF, Benayed R, Schram AM, Cocco E, et al. TRK fusions are enriched in cancers with uncommon histologies and the absence of canonical driver mutations. Clin Cancer Res. 2020;26:1624–32.

    CAS  PubMed  Google Scholar 

  34. Davis JL, Lockwood CM, Stohr B, Boecking C, Al-Ibraheemi A, DuBois SG, et al. Expanding the spectrum of pediatric NTRK-rearranged mesenchymal tumors. Am J Surg Pathol. 2019;43:435–45.

    PubMed  Google Scholar 

  35. Marchiò C, Scaltriti M, Ladanyi M, Iafrate AJ, Bibeau F, Dietel M, et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol. 2019;30:1417–27.

    PubMed  Google Scholar 

  36. Pfarr N, Kirchner M, Lehmann U, Leichsenring J, Merkelbach-Bruse S, Glade J, et al. Testing NTRK testing: wet-lab and in silico comparison of RNA-based targeted sequencing assays. Genes Chromosomes Cancer. 2020;59:178–88.

    CAS  PubMed  Google Scholar 

  37. Gullapalli RR, Desai KV, Santana-Santos L, Kant JA, Becich MJ. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics. J Pathol Inform. 2012;3:40.

    PubMed  PubMed Central  Google Scholar 

  38. Menichincheri M, Ardini E, Magnaghi P, Avanzi N, Banfi P, Bossi R, et al. Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor. J Med Chem. 2016;59:3392–408.

    CAS  PubMed  Google Scholar 

  39. Doebele RC, Davis LE, Vaishnavi A, Le AT, Estrada-Bernal A, Keysar S, et al. An oncogenic NTRK fusion in a soft tissue sarcoma patient with response to the tropomyosin-related kinase (TRK) inhibitor LOXO-101. Cancer Discov. 2015;5:1049–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lassen U. Entrectinib for ROS1 fusion-positive NSCLC and NTRK fusion-positive solid tumours. Lancet Oncol. 2020;21:193–4.

    PubMed  Google Scholar 

  41. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21:271–82.

    CAS  PubMed  Google Scholar 

  42. Fischer H, Ullah M, de la Cruz CC, Hunsaker T, Senn C, Wirz T, et al. Entrectinib, a TRK/ROS1 inhibitor with anti-CNS tumor activity: differentiation from other inhibitors in its class due to weak interaction with P-glycoprotein. Neuro Oncol. 2020;22:819–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ziegler DS, Wong M, Mayoh C, Kumar A, Tsoli M, Mould E, et al. Brief Report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br J Cancer. 2018;119:693–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Drilon AE, DuBois SG, Farago AF, Geoerger B, Grilley-Olson JE, Hong DS, et al. Activity of larotrectinib in TRK fusion cancer patients with brain metastases or primary central nervous system tumors. J Clin Oncol. 2019;37:2006–2006.

    Google Scholar 

  45. Drilon A, Nagasubramanian R, Blake JF, Ku N, Tuch B, Ebata K, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. 2017;7:963–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Russo M, Misale S, Wei G, Siravegna G, Crisafulli G, Lazzari L, et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov. 2016;6:36–44.

    CAS  PubMed  Google Scholar 

  47. Cocco E, Schram AM, Kulick A, Misale S, Won HH, Yaeger R, et al. Resistance to TRK inhibition mediated by convergent MAP kinase pathway activation. Nat Med. 2019;25:1422–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Drilon A, Ou S-HI, Cho BC, Kim D-W, Lee J, Lin JJ, et al. Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently Inhibits ROS1/TRK/ALK Solvent- Front Mutations. Cancer Discov. 2018;8:1227–36.

    CAS  PubMed  Google Scholar 

  49. Zhai D, Deng W, Huang J, Rogers E, Cui JJ. Abstract 3161: TPX-0005, an ALK/ROS1/TRK inhibitor, overcomes multiple resistance mechanisms by targeting SRC/FAK signaling. Cancer Res. 2017;77:3161.

    Google Scholar 

  50. Drilon A, Cho BC, Kim D-W, Lee JJ, Lin JJ, Zhu VW, et al. Abstract 444PD: Safety and preliminary clinical activity of repotrectinib in patients with advanced ROS1/TRK fusion-positive solid tumors (TRIDENT-1 study). Ann Oncol. 2019;30:v162.

    Google Scholar 

  51. Hyman D, Kummar S, Farago A, Geoerger B, Mau-Sorensen M, Taylor M, et al. Abstract CT127: Phase I and expanded access experience of LOXO-195 (BAY 2731954), a selective next-generation TRK inhibitor (TRKi). Cancer Res. 2019;79:CT127.

    Google Scholar 

  52. Drilon A, Siena S, Ou S-HI, Patel M, Ahn MJ, Lee J, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017;7:400–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu D, Flory J, Lin A, Offin M, Falcon CJ, Murciano-Goroff YR, et al. Characterization of on-target adverse events caused by TRK inhibitor therapy. Ann Oncol. 2020;31:1207–15.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik Lassen.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest/Competing interests

Dr. Rohrberg reports grants, non-financial support, and other support from Roche, grants and non-financial support from Loxo Oncology, Bayer, Orion Pharma, Pfizer, PUMA, Cantargia, Genmab, Novartis, Incyte, Symphogen, Astra-Zeneca, Alligator, Merck, Pierre Fabre, and BMS, outside the submitted work. Dr. Lassen reports Advisory Board and honorarium from Bayer, Pfizer, and Novartis Research, and funding from BMS, Roche, Pfizer, and GSK, outside the submitted work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

KSR and UL contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohrberg, K.S., Lassen, U. Detecting and Targeting NTRK Fusions in Cancer in the Era of Tumor Agnostic Oncology. Drugs 81, 445–452 (2021). https://doi.org/10.1007/s40265-020-01459-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01459-w

Navigation