Skip to main content
Log in

Edoxaban and the Issue of Drug-Drug Interactions: From Pharmacology to Clinical Practice

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Edoxaban, a direct factor Xa inhibitor, is the latest of the non-vitamin K antagonist oral anticoagulants (NOACs). Despite being marketed later than other NOACs, its use is now spreading in current clinical practice, being indicated for both thromboprophylaxis in patients with non-valvular atrial fibrillation (NVAF) and for the treatment and prevention of venous thromboembolism (VTE). In patients with multiple conditions, the contemporary administration of several drugs can cause relevant drug-drug interactions (DDIs), which can affect drugs’ pharmacokinetics and pharmacodynamics. Usually, all the NOACs are considered to have significantly fewer DDIs than vitamin K antagonists; notwithstanding, this is actually not true, all of them are affected by DDIs with drugs that can influence the activity (induction or inhibition) of P-glycoprotein (P-gp) and cytochrome P450 3A4, both responsible for the disposition and metabolism of NOACs to a different extent. In this review/expert opinion, we focused on an extensive report of edoxaban DDIs. All the relevant drugs categories have been examined to report on significant DDIs, discussing the impact on edoxaban pharmacokinetics and pharmacodynamics, and the evidence for dose adjustment. Our analysis found that, despite a restrained number of interactions, some strong inhibitors/inducers of P-gp and drug-metabolising enzymes can affect edoxaban concentration, just as it happens with other NOACs, implying the need for a dose adjustment. However, our analysis of edoxaban DDIs suggests that given the small propensity for interactions of this agent, its use represents an acceptable clinical decision. Still, DDIs can be significant in certain clinical situations and a careful evaluation is always needed when prescribing NOACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Salazar et al. [58]

Similar content being viewed by others

References

  1. Boriani G, Diemberger I, Martignani C, Biffi M, Branzi A. The epidemiological burden of atrial fibrillation: a challenge for clinicians and health care systems. Eur Heart J. 2006;27:893–4.

    Article  PubMed  Google Scholar 

  2. Lip GY, Laroche C, Ioachim PM, Rasmussen LH, Vitali-Serdoz L, Petrescu L, et al. Prognosis and treatment of atrial fibrillation patients by European cardiologists: one year follow-up of the EURObservational Research Programme-Atrial Fibrillation General Registry Pilot Phase (EORP-AF Pilot registry). Eur Heart J. 2014;35(47):3365–76.

    Article  PubMed  CAS  Google Scholar 

  3. Boriani G, Proietti M, Laroche C, Fauchier L, Marin F, Nabauer M, et al. Contemporary stroke prevention strategies in 11 096 European patients with atrial fibrillation: a report from the EURObservational Research Programme on Atrial Fibrillation (EORP-AF) Long-Term General Registry. Europace. 2018;20(5):747–57.

    Article  PubMed  Google Scholar 

  4. Boriani G, et al. Asymptomatic atrial fibrillation: clinical correlates, management and outcomes in the EORP-AF Pilot General Registry. Am J Med. 2014;128:509–18.

    Article  PubMed  Google Scholar 

  5. Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood. 2013;122(10):1712–23.

    Article  PubMed  CAS  Google Scholar 

  6. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39(16):1330–933.

    Article  PubMed  CAS  Google Scholar 

  7. Lip GYH, Banerjee A, Boriani G, Chiang CE, Fargo R, Freedman B, et al. Antithrombotic therapy for atrial fibrillation: CHEST guideline and expert panel report. Chest. 2018;154(5):1121–201.

    Article  PubMed  Google Scholar 

  8. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA. 2001;285(18):2370–5.

    Article  PubMed  CAS  Google Scholar 

  9. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110(9):1042–6.

    Article  PubMed  Google Scholar 

  10. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114(2):119–25.

    Article  PubMed  Google Scholar 

  11. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.

    PubMed  Google Scholar 

  12. Coppens M, Eikelboom JW, Hart RG, Yusuf S, Lip GY, Dorian P, et al. The CHA2DS2-VASc score identifies those patients with atrial fibrillation and a CHADS2 score of 1 who are unlikely to benefit from oral anticoagulant therapy. Eur Heart J. 2013;34(3):170–6.

    Article  PubMed  CAS  Google Scholar 

  13. Nutescu EA, Shapiro NL, Ibrahim S, West P. Warfarin and its interactions with foods, herbs and other dietary supplements. Expert Opin Drug Saf. 2006;5(3):433–51.

    Article  PubMed  CAS  Google Scholar 

  14. Teklay G, Shiferaw N, Legesse B, Bekele ML. Drug-drug interactions and risk of bleeding among inpatients on warfarin therapy: a prospective observational study. Thromb J. 2014;12:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. [Internet] Sde. Lixiana 60mg Film-Coated Tablets. Summary of Product Characteristics (SPC)d(eMC) [Internet]. Last Updated on eMC 31 July 2017. https://www.medicinesorguk/emc/product/6905. Accessed 4 Jan 2018.

  16. LIXIANA. 2018. https://www.emaeuropaeu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002629/WC500189045.pdf.

  17. Ay C, Pabinger I, Cohen AT. Cancer-associated venous thromboembolism: burden, mechanisms, and management. Thromb Haemost. 2017;117(2):219–30.

    Article  PubMed  Google Scholar 

  18. Firkins R, Eisfeld H, Keinki C, Buentzel J, Hochhaus A, Schmidt T, et al. The use of complementary and alternative medicine by patients in routine care and the risk of interactions. J Cancer Res Clin Oncol. 2018;144(3):551–7.

    Article  PubMed  CAS  Google Scholar 

  19. Davis EL, Oh B, Butow PN, Mullan BA, Clarke S. Cancer patient disclosure and patient-doctor communication of complementary and alternative medicine use: a systematic review. Oncologist. 2012;17(11):1475–81.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mosher DF. Blood coagulation and fibrinolysis: an overview. Clin Cardiol. 1990;13(4 Suppl 6):VI5–VI11.

    Article  PubMed  CAS  Google Scholar 

  21. Eriksson BI, Quinlan DJ, Weitz JI. Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor xa inhibitors in development. Clin Pharmacokinet. 2009;48(1):1–22.

    Article  PubMed  CAS  Google Scholar 

  22. Furugohri T, Isobe K, Honda Y, Kamisato-Matsumoto C, Sugiyama N, Nagahara T, et al. DU-176b, a potent and orally active factor Xa inhibitor: in vitro and in vivo pharmacological profiles. J Thromb Haemost. 2008;6(9):1542–9.

    PubMed  CAS  Google Scholar 

  23. Matsushima N, Lee F, Sato T, Weiss D, Mendell J. Bioavailability and safety of the factor Xa inhibitor edoxaban and the effects of quinidine in healthy subjects. Clin Pharmacol Drug Dev. 2013;2(4):358–66.

    Article  PubMed  CAS  Google Scholar 

  24. Ogata K, Mendell-Harary J, Tachibana M, Masumoto H, Oguma T, Kojima M, et al. Clinical safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel factor Xa inhibitor edoxaban in healthy volunteers. J Clin Pharmacol. 2010;50(7):743–53.

    Article  PubMed  CAS  Google Scholar 

  25. Parasrampuria DA, Kanamaru T, Connor A, Wilding I, Ogata K, Shimoto Y, et al. Evaluation of regional gastrointestinal absorption of edoxaban using the enterion capsule. J Clin Pharmacol. 2015;55(11):1286–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hakeam HA, Al-Sanea N. Effect of major gastrointestinal tract surgery on the absorption and efficacy of direct acting oral anticoagulants (DOACs). J Thromb Thrombolysis. 2017;43(3):343–51.

    Article  PubMed  CAS  Google Scholar 

  27. Mendell J, Tachibana M, Shi M, Kunitada S. Effects of food on the pharmacokinetics of edoxaban, an oral direct factor Xa inhibitor, in healthy volunteers. J Clin Pharmacol. 2011;51(5):687–94.

    Article  PubMed  CAS  Google Scholar 

  28. Logrippo S, Ricci G, Sestili M, Cespi M, Ferrara L, Palmieri GF, et al. Oral drug therapy in elderly with dysphagia: between a rock and a hard place! Clin Interv Aging. 2017;12:241–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Coluzzi PH, Fairbairn BS. The management of pain in terminally ill cancer patients with difficulty swallowing. Am J Hosp Palliat Care. 1999;16(6):731–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ferreira Silva R, Novaes MRCG. Interactions between drugs and drug-nutrient in enteral nutrition: a review based on evidences. Nutr Hosp. 2014;30(3):514–8.

    PubMed  Google Scholar 

  31. Duchin K, Duggal A, Atiee GJ, Kidokoro M, Takatani T, Shipitofsky NL, et al. An Open-label crossover study of the pharmacokinetics of the 60-mg edoxaban tablet crushed and administered either by a nasogastric tube or in apple puree in healthy adults. Clin Pharmacokinet. 2018;57(2):221–8.

    Article  PubMed  CAS  Google Scholar 

  32. Mikkaichi T, Yoshigae Y, Masumoto H, Imaoka T, Rozehnal V, Fischer T, et al. Edoxaban transport via P-glycoprotein is a key factor for the drug's disposition. Drug Metab Dispos. 2014;42(4):520–8.

    Article  PubMed  CAS  Google Scholar 

  33. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323(5922):1718–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Parasrampuria DA, Truitt KE. Pharmacokinetics and pharmacodynamics of edoxaban, a non-vitamin K antagonist oral anticoagulant that inhibits clotting factor Xa. Clin Pharmacokinet. 2016;55(6):641–55.

    Article  PubMed  CAS  Google Scholar 

  35. Steffel J, Giugliano RP, Braunwald E, Murphy SA, Mercuri M, Choi Y, et al. Edoxaban versus warfarin in atrial fibrillation patients at risk of falling: ENGAGE AF-TIMI 48 analysis. J Am Coll Cardiol. 2016;68(11):1169–78.

    Article  PubMed  CAS  Google Scholar 

  36. Toda Kato E, Giugliano RP, Ruff CT. Efficacy and safety of edoxaban for the management of elderly patients with atrial fibrillation: engage AF-TIMI 48. Circulation. 2014;130:A16612.

    Article  Google Scholar 

  37. Kato ET, Giugliano RP, Ruff CT, Koretsune Y, Yamashita T, Kiss RG, et al. Efficacy and safety of edoxaban in elderly patients with atrial fibrillation in the ENGAGE AF-TIMI 48 trial. J Am Heart Assoc. 2016;5(5):e003432.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62.

    Article  PubMed  CAS  Google Scholar 

  39. Bohula EA, Giugliano RP, Ruff CT, Kuder JF, Murphy SA, Antman EM, et al. Impact of renal function on outcomes with edoxaban in the ENGAGE AF-TIMI 48 trial. Circulation. 2016;134(1):24–36.

    Article  PubMed  CAS  Google Scholar 

  40. Krekels EH, Niebecker R, Karlsson MO, Miller R, Shimizu T, Karlsson KE, et al. Population pharmacokinetics of edoxaban in patients with non-valvular atrial fibrillation in the ENGAGE AF-TIMI 48 study, a phase III clinical trial. Clin Pharmacokinet. 2016;55(9):1079–90.

    Article  PubMed  CAS  Google Scholar 

  41. Grundvold I, et al. Body weight and risk of atrial fibrillation in 7,169 patients with newly diagnosed type 2 diabetes; an observational study. Cardiovasc Diabetol. 2015;14:5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Adeli K, Taghibiglou C, Van Iderstine SC, Lewis GF. Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance. Trends Cardiovasc Med. 2001;11(5):170–6.

    Article  PubMed  CAS  Google Scholar 

  43. Lindner SM, Fordyce CB, Hellkamp AS, Lokhnygina Y, Piccini JP, Breithardt G, et al. Treatment consistency across levels of baseline renal function with rivaroxaban or warfarin: a ROCKET AF (rivaroxaban once-daily, oral, direct factor Xa Inhibition Compared With Vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation) analysis. Circulation. 2017;135(10):1001–3.

    Article  PubMed  CAS  Google Scholar 

  44. Bathala MS, Masumoto H, Oguma T, He L, Lowrie C, Mendell J. Pharmacokinetics, biotransformation, and mass balance of edoxaban, a selective, direct factor Xa inhibitor, in humans. Drug Metab Dispos. 2012;40(12):2250–5.

    Article  PubMed  CAS  Google Scholar 

  45. Jonsson S, Simonsson US, Miller R, Karlsson MO. Population pharmacokinetics of edoxaban and its main metabolite in a dedicated renal impairment study. J Clin Pharmacol. 2015;55(11):1268–79.

    Article  PubMed  CAS  Google Scholar 

  46. Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, Hacke W, et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2015;17(10):1467–507.

    Article  PubMed  Google Scholar 

  47. Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80.

    Article  PubMed  CAS  Google Scholar 

  48. Gosselin RC, Adcock DM, Bates SM, Douxfils J, Favaloro EJ, Gouin-Thibault I, et al. International Council for Standardization in Haematology (ICSH) recommendations for laboratory measurement of direct oral anticoagulants. Thromb Haemost. 2018;118(3):437–50.

    Article  PubMed  Google Scholar 

  49. Testa S, Tripodi A, Legnani C, Pengo V, Abbate R, Dellanoce C, et al. Plasma levels of direct oral anticoagulants in real life patients with atrial fibrillation: results observed in four anticoagulation clinics. Thromb Res. 2016;137:178–83.

    Article  PubMed  CAS  Google Scholar 

  50. Hirsh Raccah B, Rottenstreich A, Zacks N, Muszkat M, Matok I, Perlman A, et al. Drug interaction as a predictor of direct oral anticoagulant drug levels in atrial fibrillation patients. J Thromb Thrombolysis. 2018;46(4):521–7.

    Article  PubMed  CAS  Google Scholar 

  51. Stöllberger C. Drug interactions with new oral anticoagulants in elderly patients. Expert Rev Clin Pharmacol. 2017;10(11):1191–202.

    Article  PubMed  CAS  Google Scholar 

  52. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

    Article  PubMed  CAS  Google Scholar 

  53. GaBHaPMaSAaSMaSLavKRaMM R. Edoxaban for the long-term treatment of venous thromboembolism: rationale and design of the Hokusai-venous thromboembolism study–methodological implications for clinical trials. J Thromb Haemost. 2013;11(7):1287–94.

    Article  CAS  Google Scholar 

  54. Mendell J, Zahir H, Matsushima N, Noveck R, Lee F, Chen S, et al. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs. 2013;13(5):331–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Holtzman CW, Wiggins BS, Spinler SA. Role of P-glycoprotein in statin drug interactions. Pharmacotherapy. 2006;26(11):1601–7.

    Article  PubMed  CAS  Google Scholar 

  56. Steffel J, Giugliano RP, Braunwald E, Murphy SA, Atar D, Heidbuchel H, et al. Edoxaban vs. warfarin in patients with atrial fibrillation on amiodarone: a subgroup analysis of the ENGAGE AF-TIMI 48 trial. Eur Heart J. 2015;36(33):2239–45.

    Article  PubMed  CAS  Google Scholar 

  57. SAVAYSA FDA SmPC. 2015.

  58. Salazar DE, Mendell J, Kastrissios H, Green M, Carrothers TJ, Song S, et al. Modelling and simulation of edoxaban exposure and response relationships in patients with atrial fibrillation. Thromb Haemost. 2012;107(5):925–36.

    Article  PubMed  CAS  Google Scholar 

  59. [Internet] Sde. Lixiana 60mg Film-Coated Tablets. Summary of Product Characteristics (SPC)d(eMC) [Internet]. Last updated on eMC: 10 Aug 2018. https://www.medicinesorguk/emc/product/6905/smpc. Accessed 22 Oct 2018.

  60. Aisenberg J, Chatterjee-Murphy P, Friedman Flack K, Weitz JI, Ruff CT, Nordio F, et al. Gastrointestinal bleeding with edoxaban versus warfarin: results from the ENGAGE AF-TIMI 48 trial (effective anticoagulation with factor Xa next generation in atrial fibrillation-thrombolysis in myocardial infarction). Circ Cardiovasc Qual Outcomes. 2018;11(5):e003998.

    Article  PubMed  Google Scholar 

  61. Hansen ML, Sorensen R, Clausen MT, Fog-Petersen ML, Raunso J, Gadsboll N, et al. Risk of bleeding with single, dual, or triple therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch Intern Med. 2010;170(16):1433–41.

    Article  PubMed  CAS  Google Scholar 

  62. Mendell J, Lee F, Chen S, Worland V, Shi M, Samama MM. The effects of the antiplatelet agents, aspirin and naproxen, on pharmacokinetics and pharmacodynamics of the anticoagulant edoxaban, a direct factor Xa inhibitor. J Cardiovasc Pharmacol. 2013;62(2):212–21.

    Article  PubMed  CAS  Google Scholar 

  63. Xu H, Ruff CT, Giugliano RP, Murphy SA, Nordio F, Patel I, et al. Concomitant use of single antiplatelet therapy with edoxaban or warfarin in patients with atrial fibrillation: analysis from the ENGAGE AF-TIMI48 trial. J Am Heart Assoc. 2016;5(2):e002587.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013;61(25):2495–502.

    Article  PubMed  CAS  Google Scholar 

  65. Oh J, Shin D, Lim KS, Lee S, Jung KH, Chu K, et al. Aspirin decreases systemic exposure to clopidogrel through modulation of P-glycoprotein but does not alter its antithrombotic activity. Clin Pharmacol Ther. 2014;95(6):608–16.

    Article  PubMed  CAS  Google Scholar 

  66. Teng R, Butler K. A pharmacokinetic interaction study of ticagrelor and digoxin in healthy volunteers. Eur J Clin Pharmacol. 2013;69(10):1801–8.

    Article  PubMed  CAS  Google Scholar 

  67. Teng R, Mitchell P, Butler K. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of ticagrelor in healthy subjects. Eur J Clin Pharmacol. 2013;69(4):877–83.

    Article  PubMed  Google Scholar 

  68. Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T, et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010;376(9749):1312–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Gelosa P, Castiglioni L, Tenconi M, Baldessin L, Racagni G, Corsini A, et al. Pharmacokinetic drug interactions of the non-vitamin K antagonist oral anticoagulants (NOACs). Pharmacol Res. 2018;135:60–79.

    Article  PubMed  CAS  Google Scholar 

  70. Wiggins BS, Saseen JJ, Page RL 2nd, Reed BN, Sneed K, Kostis JB, et al. Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: a scientific statement from the American heart association. Circulation. 2016;134(21):e468–e495495.

    Article  PubMed  Google Scholar 

  71. Antoniou T, Macdonald EM, Yao Z, Hollands S, Gomes T, Tadrous M, et al. Association between statin use and ischemic stroke or major hemorrhage in patients taking dabigatran for atrial fibrillation. CMAJ Can Med Assoc J. 2017;189(1):E4–E10.

    Article  Google Scholar 

  72. Boyd RA, Stern RH, Stewart BH, Wu X, Reyner EL, Zegarac EA, et al. Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol. 2000;40(1):91–8.

    Article  PubMed  CAS  Google Scholar 

  73. Schelleman H, Bilker WB, Brensinger CM, Wan F, Yang YX, Hennessy S. Fibrate/Statin initiation in warfarin users and gastrointestinal bleeding risk. Am J Med. 2010;123(2):151–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Corsini A, Bellosta S, Davidson MH. Pharmacokinetic interactions between statins and fibrates. Am J Cardiol. 2005;96(9A):44K–K49 (discussion 34K–5K).

    Article  PubMed  CAS  Google Scholar 

  75. Prueksaritanont T, Tang C, Qiu Y, Mu L, Subramanian R, Lin JH. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos. 2002;30(11):1280–7.

    Article  PubMed  CAS  Google Scholar 

  76. Ehrhardt M, Lindenmaier H, Burhenne J, Haefeli WE, Weiss J. Influence of lipid lowering fibrates on P-glycoprotein activity in vitro. Biochem Pharmacol. 2004;67(2):285–92.

    Article  PubMed  CAS  Google Scholar 

  77. Yamazaki M, Li B, Louie SW, Pudvah NT, Stocco R, Wong W, et al. Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica. 2005;35(7):737–53.

    Article  PubMed  CAS  Google Scholar 

  78. Henry CA, Lyon RA, Ling H. Clinical efficacy and safety of evolocumab for low-density lipoprotein cholesterol reduction. Vasc Health Risk Manag. 2016;12:163–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Gouin-Thibault I, Delavenne X, Blanchard A, Siguret V, Salem JE, Narjoz C, et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017;15(2):273–83.

    Article  PubMed  CAS  Google Scholar 

  80. Hughes J, Crowe A. Inhibition of P-glycoprotein-mediated efflux of digoxin and its metabolites by macrolide antibiotics. J Pharmacol Sci. 2010;113(4):315–24.

    Article  PubMed  CAS  Google Scholar 

  81. Parasrampuria DA, Mendell J, Shi M, Matsushima N, Zahir H, Truitt K. Edoxaban drug-drug interactions with ketoconazole, erythromycin, and cyclosporine. Br J Clin Pharmacol. 2016;82(6):1591–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig. 1999;104(2):147–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Schuetz EG, Schinkel AH, Relling MV, Schuetz JD. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci USA. 1996;93(9):4001–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Mendell J, Chen S, He L, Desai M, Parasramupria DA. The effect of rifampin on the pharmacokinetics of edoxaban in healthy adults. Clin Drug Investig. 2015;35(7):447–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Roedler R, Neuhauser MM, Penzak SR. Does metronidazole interact with CYP3A substrates by inhibiting their metabolism through this metabolic pathway? Or should other mechanisms be considered? Ann Pharmacother. 2007;41(4):653–8.

    Article  PubMed  CAS  Google Scholar 

  86. Michalets EL, Williams CR. Drug interactions with cisapride: clinical implications. Clin Pharmacokinet. 2000;39(1):49–75.

    Article  PubMed  CAS  Google Scholar 

  87. Kim KA, Park JY. Effect of metronidazole on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy male volunteers. Eur J Clin Pharmacol. 2010;66(7):721–5.

    Article  PubMed  CAS  Google Scholar 

  88. Heit JA, Silverstein MD, Mohr DN, Petterson TM, O'Fallon WM, Melton LJ 3rd. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med. 2000;160(6):809–15.

    Article  PubMed  CAS  Google Scholar 

  89. Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378(7):615–24.

    Article  PubMed  CAS  Google Scholar 

  90. Wiczer TE, Levine LB, Brumbaugh J, Coggins J, Zhao Q, Ruppert AS, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 2017;1(20):1739–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Thorp BC, Badoux X. Atrial fibrillation as a complication of ibrutinib therapy: clinical features and challenges of management. Leukemia Lymphoma. 2018;59(2):311–20.

    Article  PubMed  CAS  Google Scholar 

  92. Boriani G, Corradini P, Cuneo A, Falanga A, Foa R, Gaidano G, et al. Practical management of ibrutinib in the real life: focus on atrial fibrillation and bleeding. Hematol Oncol. 2018;36:624–32.

    Article  PubMed  CAS  Google Scholar 

  93. Gilad R. Management of seizures following a stroke: what are the options? Drugs Aging. 2012;29(7):533–8.

    Article  PubMed  CAS  Google Scholar 

  94. Stollberger C, Finsterer J. Interactions between non-vitamin K oral anticoagulants and antiepileptic drugs. Epilepsy Res. 2016;126:98–101.

    Article  PubMed  CAS  Google Scholar 

  95. Giessmann T, May K, Modess C, Wegner D, Hecker U, Zschiesche M, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76(3):192–200.

    Article  PubMed  CAS  Google Scholar 

  96. Moerman L, Wyffels L, Slaets D, Raedt R, Boon P, De Vos F. Antiepileptic drugs modulate P-glycoproteins in the brain: a mice study with (11)C-desmethylloperamide. Epilepsy Res. 2011;94(1–2):18–25.

    Article  PubMed  CAS  Google Scholar 

  97. Jing X, Liu X, Wen T, Xie S, Yao D, Liu X, et al. Combined effects of epileptic seizure and phenobarbital induced overexpression of P-glycoprotein in brain of chemically kindled rats. Br J Pharmacol. 2010;159(7):1511–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Alvariza S, Fagiolino P, Vazquez M, Feria-Romero I, Orozco-Suarez S. Chronic administration of phenytoin induces efflux transporter overexpression in rats. Pharmacol Rep. 2014;66(6):946–51.

    Article  PubMed  CAS  Google Scholar 

  99. Eyal S, Lamb JG, Smith-Yockman M, Yagen B, Fibach E, Altschuler Y, et al. The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br J Pharmacol. 2006;149(3):250–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tang R, Faussat AM, Majdak P, Perrot JY, Chaoui D, Legrand O, et al. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia. 2004;18(7):1246–51.

    Article  PubMed  CAS  Google Scholar 

  101. Wang-Tilz Y, Tilz C, Wang B, Tilz GP, Stefan H. Influence of lamotrigine and topiramate on MDR1 expression in difficult-to-treat temporal lobe epilepsy. Epilepsia. 2006;47(2):233–9.

    Article  PubMed  CAS  Google Scholar 

  102. Lewer D, O'Reilly C, Mojtabai R, Evans-Lacko S. Antidepressant use in 27 European countries: associations with sociodemographic, cultural and economic factors. Br J Psychiatry. 2015;207(3):221–6.

    Article  PubMed  Google Scholar 

  103. Maurer-Spurej E, Pittendreigh C, Solomons K. The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb Haemost. 2004;91(1):119–28.

    Article  PubMed  CAS  Google Scholar 

  104. Schalekamp T, Klungel OH, Souverein PC, de Boer A. Increased bleeding risk with concurrent use of selective serotonin reuptake inhibitors and coumarins. Arch Intern Med. 2008;168(2):180–5.

    Article  PubMed  Google Scholar 

  105. [Internet] Sde. Pradaxa 150 mg hard capsules. Summary of Product Characteristics (SPC)d(eMC) [Internet]. Last Updated on eMC 30-Jan-2015. Last Updated on eMC 30-Jan-2015. https://www.medicinesorguk/emc/medicine/24839. Accessed 18 May 2015.

  106. Xarelto 20mg film-coated tablets—Summary of Product Characteristics (SmPC)—(eMC). Date of first authorisation: 30 September 2008. Date of latest renewal: 22 May 2018. https://www.medicines.org.uk/emc/product/2793/smpc.

  107. Weiss J, Dormann SM, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305(1):197–204.

    Article  PubMed  CAS  Google Scholar 

  108. Kapoor A, Iqbal M, Petropoulos S, Ho HL, Gibb W, Matthews SG. Effects of sertraline and fluoxetine on p-glycoprotein at barrier sites: in vivo and in vitro approaches. PLoS ONE. 2013;8(2):e56525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sansone RA, Sansone LA. Warfarin and antidepressants: happiness without hemorrhaging. Psychiatry. 2009;6(7):24–9.

    PubMed  PubMed Central  Google Scholar 

  110. Spina E, de Leon J. Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol. 2007;100(1):4–22.

    Article  PubMed  CAS  Google Scholar 

  111. Wang JS, Zhu HJ, Markowitz JS, Donovan JL, DeVane CL. Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter P-glycoprotein. Psychopharmacology. 2006;187(4):415–23.

    Article  PubMed  CAS  Google Scholar 

  112. Moons T, de Roo M, Claes S, Dom G. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics. 2011;12(8):1193–211.

    Article  PubMed  CAS  Google Scholar 

  113. Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22(17):R741–R752752.

    Article  PubMed  CAS  Google Scholar 

  115. Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. J Neural Transm. 2017;124(8):901–5.

    Article  PubMed  Google Scholar 

  116. Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harbor Perspect Med. 2012;2(8):a006239.

    Article  Google Scholar 

  117. Mittur A, Gupta S, Modi NB. Pharmacokinetics of Rytary((R)), an extended-release capsule formulation of carbidopa-levodopa. Clin Pharmacokinet. 2017;56(9):999–1014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Vautier S, Milane A, Fernandez C, Buyse M, Chacun H, Farinotti R. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood-brain barrier in a rat brain endothelial cell model. Neurosci Lett. 2008;442(1):19–23.

    Article  PubMed  CAS  Google Scholar 

  119. Wynalda MA, Wienkers LC. Assessment of potential interactions between dopamine receptor agonists and various human cytochrome P450 enzymes using a simple in vitro inhibition screen. Drug Metab Dispos. 1997;25(10):1211–4.

    PubMed  CAS  Google Scholar 

  120. Muller T. ABCB1: is there a role in the drug treatment of Parkinson's disease? Expert Opin Drug Metab Toxicol. 2018;14(2):127–9.

    Article  PubMed  CAS  Google Scholar 

  121. Pingili R, Vemulapalli S, Mullapudi SS, Nuthakki S, Pendyala S, Kilaru N. Pharmacokinetic interaction study between flavanones (hesperetin, naringenin) and rasagiline mesylate in wistar rats. Drug Dev Ind Pharm. 2016;42(7):1110–7.

    Article  PubMed  CAS  Google Scholar 

  122. Muller T. Pharmacokinetic drug evaluation of safinamide mesylate for the treatment of mid-to-late stage Parkinson's disease. Expert Opin Drug Metab Toxicol. 2017;13(6):693–9.

    Article  PubMed  CAS  Google Scholar 

  123. Csoti I, Storch A, Müller W, Jost WH. Drug interactions with selegiline versus rasagiline. Basal Ganglia. 2012;2:S27–S31.

    Article  Google Scholar 

  124. Bicker J, Fortuna A, Alves G, Soares-da-Silva P, Falcao A. Elucidation of the Impact of P-glycoprotein and breast cancer resistance protein on the brain distribution of catechol-O-methyltransferase inhibitors. Drug Metab Dispos. 2017;45(12):1282–91.

    Article  PubMed  CAS  Google Scholar 

  125. Dingemanse J, Meyerhoff C, Schadrack J. Effect of the catechol-O-methyltransferase inhibitor entacapone on the steady-state pharmacokinetics and pharmacodynamics of warfarin. Br J Clin Pharmacol. 2002;53(5):485–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D, Park SW. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008;49(2):399–409.

    Article  PubMed  CAS  Google Scholar 

  127. Suzuki T, Fukami T, Tomono K. Possible involvement of cationic-drug sensitive transport systems in the blood-to-brain influx and brain-to-blood efflux of amantadine across the blood-brain barrier. Biopharm Drug Dispos. 2015;36(2):126–37.

    Article  PubMed  CAS  Google Scholar 

  128. Mceneny-King A, Eginton AN, Rao PP. Investigating the binding interactions of the anti-Alzheimer's drug donepezil with CYP3A4 and P-glycoprotein. Bioorg Med Chem Lett. 2015;25(2):297–301.

    Article  PubMed  CAS  Google Scholar 

  129. Huang F, Fu Y. A review of clinical pharmacokinetics and pharmacodynamics of galantamine, a reversible acetylcholinesterase inhibitor for the treatment of Alzheimer's disease, in healthy subjects and patients. Curr Clin Pharmacol. 2010;5(2):115–24.

    Article  PubMed  CAS  Google Scholar 

  130. Kraus W, et al. The national physical activity plan: a call to action from the American heart association: a science advisory from the American heart association. Circulation. 2015;131(21):1932–40.

    Article  PubMed  Google Scholar 

  131. Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Clin Ther. 1998;20(4):634–47.

    Article  PubMed  CAS  Google Scholar 

  132. Mohamed LA, Keller JN, Kaddoumi A. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-beta brain load and related pathology in Alzheimer's disease mouse model. Biochem Biophys Acta. 2016;1862(4):778–87.

    PubMed  CAS  Google Scholar 

  133. West TA, Perram J, Holloway CJ. Use of direct oral anticoagulants for treatment of atrial fibrillation in patients with HIV: a review. Curr Opin HIV AIDS. 2017;12(6):554–60.

    Article  PubMed  CAS  Google Scholar 

  134. Caplan MR, Daar ES, Corado KC. Next generation fixed dose combination pharmacotherapies for treating HIV. Expert Opin Pharmacother. 2018;19(6):589–96.

    Article  PubMed  CAS  Google Scholar 

  135. Clumeck N, Pozniak A, Raffi F. European AIDS Clinical Society (EACS) guidelines for the clinical management and treatment of HIV-infected adults. HIV Med. 2008;9(2):65–71.

    Article  PubMed  CAS  Google Scholar 

  136. Tseng A, Foisy M. Important drug-drug interactions in HIV-infected persons on antiretroviral therapy: an update on new interactions between HIV and Non-HIV drugs. Curr Infect Dis Rep. 2012;14(1):67–82.

    Article  PubMed  Google Scholar 

  137. Mathias AA, German P, Murray BP, Wei L, Jain A, West S, et al. Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther. 2010;87(3):322–9.

    Article  PubMed  CAS  Google Scholar 

  138. Kumar P, Gordon LA, Brooks KM, George JM, Kellogg A, McManus M, et al. Differential influence of the antiretroviral pharmacokinetic enhancers ritonavir and cobicistat on intestinal P-glycoprotein transport and the pharmacokinetic/pharmacodynamic disposition of dabigatran. Antimicrob Agents Chemother. 2017;61(11):e01201-17.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Koff RS. Review article: the efficacy and safety of sofosbuvir, a novel, oral nucleotide NS5B polymerase inhibitor, in the treatment of chronic hepatitis C virus infection. Aliment Pharmacol Ther. 2014;39(5):478–87.

    Article  PubMed  CAS  Google Scholar 

  140. Garimella T, You X, Wang R, Huang SP, Kandoussi H, Bifano M, et al. A review of daclatasvir drug-drug interactions. Adv Ther. 2016;33(11):1867–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Bertz R. Bristol-Myers Squibb HCV full development portfolio overview. In: Plenary presentation presented at the 14th International Workshop on Clinical Pharmacology, April 22–24, 2014, Amsterdam, The Netherlands.

  142. Hodin S, Basset T, Jacqueroux E, Delezay O, Clotagatide A, Perek N, et al. In vitro comparison of the role of P-glycoprotein and breast cancer resistance protein on direct oral anticoagulants disposition. Eur J Drug Metab Pharmacokinet. 2018;43(2):183–91.

    Article  PubMed  CAS  Google Scholar 

  143. Garrison KL, German P, Mogalian E, Mathias A. The drug-drug interaction potential of antiviral agents for the treatment of chronic hepatitis C infection. Drug Metab Dispos. 2018;46:1212–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Proietti.

Ethics declarations

Funding

This article was developed independently by the authors following an advisory board meeting sponsored by Daiichi Sankyo SpA.

Conflict of interest

Alberto Corsini reports relationship with Bristol-Mayers, Daiichi-Sankyo and Mylan. Nicola Ferri reports relationship with Bristol-Mayers, Daiichi-Sankyo and Mylan. Marco Proietti reports relationship with Boehringer Ingelheim. Giuseppe Boriani reports relationship with Medtronic, Boston Scientific, Boehringer Ingelheim and Bayer. All relationships disclosed are outside the submitted work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corsini, A., Ferri, N., Proietti, M. et al. Edoxaban and the Issue of Drug-Drug Interactions: From Pharmacology to Clinical Practice. Drugs 80, 1065–1083 (2020). https://doi.org/10.1007/s40265-020-01328-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01328-6

Navigation