Skip to main content
Log in

Contemporary Options for the Management of Motor Complications in Parkinson’s Disease: Updated Clinical Review

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic, progressive condition affecting around 1% of the population older than 60 years. Upon long-term treatment with levodopa, the mainstay of treatment in PD, most patients, especially younger ones exposed to higher doses, will experience symptoms related to end-of-dose deterioration, peak-dose dyskinesias, and other motor fluctuations. Therapeutic strategies are grounded on modification of oral levodopa pharmacokinetics to extend levodopa benefit and development of new routes of drug delivery (e.g., levodopa/carbidopa intestinal gel infusion) or long-acting formulations of existing dopaminergic drugs to prolong the duration of striatal dopamine receptors stimulation. As our understanding of the pathophysiology of motor complications evolves, our therapeutic armamentarium is actively expanding and the focus of research is now actively pointing to the new non-dopaminergic agents acting both within the basal ganglia and in other brain regions (e.g., drugs acting on glutamate, GABA, serotonin, and calcium channels). Despite the fact that trials comparing the different therapeutic strategies are lacking, we aimed at devising practical evidence- and experience-guided suggestions for the clinical management of motor complications, emphasizing that this should always be an individualized endeavor. This review summarizes the pharmacological management of motor complications in PD, including new formulations and routes of delivery, and the newer released drugs such as istradefylline, opicapone, safinamide, and zonisamide. Advanced therapeutic strategies for selected cases such as treatment with apomorphine and surgical techniques (deep brain stimulation) are also discussed. A comprehensive knowledge of the available options and evidence is fundamental for the successful management of these challenging complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mayeux R, Marder K, Cote LJ, Denaro J, Hemenegildo N, Mejia H, et al. The frequency of idiopathic Parkinson’s disease by age, ethnic group, and sex in northern Manhattan, 1988–1993. Am J Epidemiol. 1995;142(8):820–7.

    Article  CAS  PubMed  Google Scholar 

  2. Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373(9680):2055–66. https://doi.org/10.1016/S0140-6736(09)60492-X.

    Article  CAS  PubMed  Google Scholar 

  3. Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol. 2008;15(Suppl 1):14–20. https://doi.org/10.1111/j.1468-1331.2008.02056.x.

    Article  PubMed  Google Scholar 

  4. Schapira AHV, Emre M, Jenner P, Poewe W. Levodopa in the treatment of Parkinson’s disease. Eur J Neurol. 2009;16:982–9. https://doi.org/10.1111/j.1468-1331.2009.02697.x.

    Article  CAS  PubMed  Google Scholar 

  5. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–40. https://doi.org/10.1038/42166.

    Article  CAS  PubMed  Google Scholar 

  6. Yahr M, Duvoisin R, Schear M, Barrett R, Hoehn M. Treatment of parkinsonism with levodopa. Arch Neurol. 1969;21(4):343–54.

    Article  CAS  PubMed  Google Scholar 

  7. Cotzias GC, Papavasiliou PS, Gellene R. Modification of Parkinsonism—chronic treatment with l-dopa. N Engl J Med. 1969;280(7):337–45. https://doi.org/10.1056/NEJM196902132800701.

    Article  CAS  PubMed  Google Scholar 

  8. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76. https://doi.org/10.1136/jnnp.2007.131045.

    Article  CAS  PubMed  Google Scholar 

  9. Jankovic J, Stacy M. Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs. 2007;21(8):677–92. https://doi.org/10.2165/00023210-200721080-00005.

    Article  CAS  PubMed  Google Scholar 

  10. Stocchi F, Jenner P, Obeso JA. When do levodopa motor fluctuations first appear in Parkinson’s disease? Eur Neurol. 2010;63(5):257–66. https://doi.org/10.1159/000300647.

    Article  CAS  PubMed  Google Scholar 

  11. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58. https://doi.org/10.1002/mds.1090.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma JC, Ross IN, Rascol O, Brooks D. Relationship between weight, levodopa and dyskinesia: the significance of levodopa dose per kilogram body weight. Eur J Neurol. 2008;15(5):493–6. https://doi.org/10.1111/j.1468-1331.2008.02106.x.

    Article  CAS  PubMed  Google Scholar 

  13. Warren Olanow C, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M, et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28(8):1064–71. https://doi.org/10.1002/mds.25364.

    Article  CAS  PubMed  Google Scholar 

  14. Doi H, Sakakibara R, Sato M, Masaka T, Kishi M, Tateno A, et al. Plasma levodopa peak delay and impaired gastric emptying in Parkinson’s disease. J Neurol Sci. 2012;319(1–2):86–8. https://doi.org/10.1016/j.jns.2012.05.010.

    Article  CAS  PubMed  Google Scholar 

  15. Aquino CC, Fox SH. Clinical spectrum of levodopa-induced complications. Mov Disord. 2015;30(1):80–9. https://doi.org/10.1002/mds.26125.

    Article  CAS  PubMed  Google Scholar 

  16. Antonini A, Moro E, Godeiro C, Reichmann H. Medical and surgical management of advanced Parkinson’s disease. Mov Disord. 2018;33(6):900–8. https://doi.org/10.1002/mds.27340.

    Article  PubMed  Google Scholar 

  17. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–508. https://doi.org/10.1056/NEJMoa033447.

    Article  CAS  PubMed  Google Scholar 

  18. PD Med Collaborative Group, Gray R, Ives N, Rick C, Patel S, Gray A, Jenkinson C, McIntosh E, Wheatley K, Williams A, Clarke CE. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384(9949):1196–205. https://doi.org/10.1016/s0140-6736(14)60683-8.

    Article  Google Scholar 

  19. Verschuur CVM, Suwijn SR, Boel JA, Post B, Bloem BR, van Hilten JJ, et al. Randomized delayed-start trial of levodopa in Parkinson’s disease. N Engl J Med. 2019;380(4):315–24. https://doi.org/10.1056/NEJMoa1809983.

    Article  CAS  PubMed  Google Scholar 

  20. Carter J, Nutt J, Woodward W, Hatcher L, Trotman T. Amount and distribution of dietary protein affects clinical response to levodopa in Parkinson’s disease. Neurology. 1989;39(4):552–6.

    Article  CAS  PubMed  Google Scholar 

  21. Nutt J, Woodward W, Hammerstad J, Carter J, Anderson J. The, “on–off” phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport. N Engl J Med. 1984;310(8):483–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Xiong N, Huang J, Guo S, Liu L, Han C, et al. Protein-restricted diets for ameliorating motor fluctuations in Parkinson’s disease. Front Aging Neurosci. 2017;9(206):1663–4365. https://doi.org/10.3389/fnagi.2017.00206.

    Article  CAS  Google Scholar 

  23. Cereda E, Barichella M, Pedrolli C, Pezzoli G. Low-protein and protein-redistribution diets for Parkinson’s disease patients with motor fluctuations: a systematic review. Mov Disord. 2010;25(13):2021–34. https://doi.org/10.1002/mds.23226.

    Article  PubMed  Google Scholar 

  24. Mittur A, Gupta S, Modi NB. Pharmacokinetics of Rytary((R)), an extended-release capsule formulation of carbidopa–levodopa. Clin Pharmacokinet. 2017;56(9):999–1014. https://doi.org/10.1007/s40262-017-0511-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao HM, Hsu A, Gupta S, Modi NB. Clinical pharmacokinetics of IPX066: evaluation of dose proportionality and effect of food in healthy volunteers. Clin Neuropharmacol. 2016;39(1):10–7. https://doi.org/10.1097/WNF.0000000000000126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morgan JC, Dhall R, Rubens R, Khanna S, Gupta S. Dosing patterns during conversion to IPX066, extended-release carbidopa–levodopa (ER CD-LD), in Parkinson’s disease with motor fluctuations. Parkinsons Dis. 2018;2018:9763057. https://doi.org/10.1155/2018/9763057.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pahwa R, Lyons KE, Hauser RA, Fahn S, Jankovic J, Pourcher E, et al. Randomized trial of IPX066, carbidopa/levodopa extended release, in early Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(2):142–8. https://doi.org/10.1016/j.parkreldis.2013.08.017.

    Article  PubMed  Google Scholar 

  28. Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, et al. Extended-release carbidopa–levodopa (IPX066) compared with immediate-release carbidopa–levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013;12(4):346–56. https://doi.org/10.1016/S1474-4422(13)70025-5.

    Article  CAS  PubMed  Google Scholar 

  29. Stocchi F, Hsu A, Khanna S, Ellenbogen A, Mahler A, Liang G, et al. Comparison of IPX066 with carbidopa–levodopa plus entacapone in advanced PD patients. Parkinsonism Relat Disord. 2014;20(12):1335–40. https://doi.org/10.1016/j.parkreldis.2014.08.004.

    Article  PubMed  Google Scholar 

  30. Dhall R, Kreitzman DL. Advances in levodopa therapy for Parkinson disease: review of RYTARY (carbidopa and levodopa) clinical efficacy and safety. Neurology. 2016;86(14 Suppl 1):S13–24. https://doi.org/10.1212/WNL.0000000000002510.

    Article  CAS  PubMed  Google Scholar 

  31. Rascol O, Perez-Lloret S, Ferreira JJ. New treatments for levodopa-induced motor complications. Mov Disord. 2015;30(11):1451–60. https://doi.org/10.1002/mds.26362.

    Article  CAS  PubMed  Google Scholar 

  32. LeWitt PA, Hauser RA, Grosset DG, Stocchi F, Saint-Hilaire MH, Ellenbogen A, et al. A randomized trial of inhaled levodopa (CVT-301) for motor fluctuations in Parkinson’s disease. Mov Disord. 2016;31(9):1356–65. https://doi.org/10.1002/mds.26611.

    Article  CAS  PubMed  Google Scholar 

  33. LeWitt PA, Hauser RA, Pahwa R, Isaacson SH, Fernandez HH, Lew M, et al. Safety and efficacy of CVT-301 (levodopa inhalation powder) on motor function during off periods in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Neurol. 2019;18(2):145–54. https://doi.org/10.1016/S1474-4422(18)30405-8.

    Article  CAS  PubMed  Google Scholar 

  34. Mizuno Y, Yanagisawa N, Kuno S, Yamamoto M, Hasegawa K, Origasa H, et al. Randomized, double-blind study of pramipexole with placebo and bromocriptine in advanced Parkinson’s disease. Mov Disord. 2003;18(10):1149–56. https://doi.org/10.1002/mds.10508.

    Article  PubMed  Google Scholar 

  35. Moller JC, Oertel WH, Koster J, Pezzoli G, Provinciali L. Long-term efficacy and safety of pramipexole in advanced Parkinson’s disease: results from a European multicenter trial. Mov Disord. 2005;20(5):602–10. https://doi.org/10.1002/mds.20397.

    Article  PubMed  Google Scholar 

  36. Lieberman A, Olanow CW, Sethi K, Swanson P, Waters CH, Fahn S, et al. A multicenter trial of ropinirole as adjunct treatment for Parkinson’s disease. Ropinirole Study Group. Neurology. 1998;51(4):1057–62.

    Article  CAS  PubMed  Google Scholar 

  37. Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2018;33(8):1248–66. https://doi.org/10.1002/mds.27372.

    Article  CAS  PubMed  Google Scholar 

  38. Mizuno Y, Nomoto M, Hasegawa K, Hattori N, Kondo T, Murata M, et al. Rotigotine vs ropinirole in advanced stage Parkinson’s disease: a double-blind study. Parkinsonism Relat Disord. 2014;20(12):1388–93. https://doi.org/10.1016/j.parkreldis.2014.10.005.

    Article  PubMed  Google Scholar 

  39. Poewe WH, Rascol O, Quinn N, Tolosa E, Oertel WH, Martignoni E, et al. Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol. 2007;6(6):513–20. https://doi.org/10.1016/S1474-4422(07)70108-4.

    Article  CAS  PubMed  Google Scholar 

  40. Trenkwalder C, Kies B, Dioszeghy P, Hill D, Surmann E, Boroojerdi B, et al. Rotigotine transdermal system for the management of motor function and sleep disturbances in Parkinson’s disease: results from a 1-year, open-label extension of the RECOVER study. Basal Ganglia. 2012;2(2):79–85. https://doi.org/10.1016/j.baga.2012.05.009.

    Article  Google Scholar 

  41. Trenkwalder C, Kies B, Rudzinska M, Fine J, Nikl J, Honczarenko K, et al. Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: a double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord. 2011;26(1):90–9. https://doi.org/10.1002/mds.23441.

    Article  PubMed  Google Scholar 

  42. Stocchi F, Giorgi L, Hunter B, Schapira AH. PREPARED: comparison of prolonged and immediate release ropinirole in advanced Parkinson’s disease. Mov Disord. 2011;26(7):1259–65. https://doi.org/10.1002/mds.23498.

    Article  PubMed  Google Scholar 

  43. Poewe W, Rascol O, Barone P, Hauser RA, Mizuno Y, Haaksma M, et al. Extended-release pramipexole in early Parkinson disease: a 33-week randomized controlled trial. Neurology. 2011;77(8):759–66. https://doi.org/10.1212/WNL.0b013e31822affb0.

    Article  CAS  PubMed  Google Scholar 

  44. Frampton JE. Pramipexole extended-release: a review of its use in patients with Parkinson’s disease. Drugs. 2014;74(18):2175–90. https://doi.org/10.1007/s40265-014-0322-5.

    Article  CAS  PubMed  Google Scholar 

  45. Hauser RA, Rascol O, Korczyn AD, Jon Stoessl A, Watts RL, Poewe W, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord. 2007;22(16):2409–17. https://doi.org/10.1002/mds.21743.

    Article  PubMed  Google Scholar 

  46. Chaudhuri KR, Todorova A, Nirenberg MJ, Parry M, Martin A, Martinez-Martin P, et al. A pilot prospective, multicenter observational study of dopamine agonist withdrawal syndrome in Parkinson’s disease. Mov Disord Clin Pract. 2015;2(2):170–4. https://doi.org/10.1002/mdc3.12141.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nirenberg MJ. Dopamine agonist withdrawal syndrome: implications for patient care. Drugs Aging. 2013;30(8):587–92. https://doi.org/10.1007/s40266-013-0090-z.

    Article  CAS  PubMed  Google Scholar 

  48. Patel S, Garcia X, Mohammad ME, Yu XX, Vlastaris K, O’Donnell K, et al. Dopamine agonist withdrawal syndrome (DAWS) in a tertiary Parkinson disease treatment center. J Neurol Sci. 2017;379:308–11. https://doi.org/10.1016/j.jns.2017.06.022.

    Article  CAS  PubMed  Google Scholar 

  49. Rabinak CA, Nirenberg MJ. Dopamine agonist withdrawal syndrome in Parkinson disease. Arch Neurol. 2010;67(1):58–63. https://doi.org/10.1001/archneurol.2009.294.

    Article  PubMed  Google Scholar 

  50. Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med. 2007;356(1):39–46. https://doi.org/10.1056/NEJMoa054830.

    Article  CAS  PubMed  Google Scholar 

  51. Fitzsimmons PR, Blayney S, Mina-Corkill S, Scott GO. Older participants are frequently excluded from Parkinson’s disease research. Parkinsonism Relat Disord. 2012;18(5):585–9. https://doi.org/10.1016/j.parkreldis.2012.03.003.

    Article  CAS  PubMed  Google Scholar 

  52. Stowe RL, Ives NJ, Clarke C, van Hilten J, Ferreira J, Hawker RJ, et al. Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst Rev. 2008;2:CD006564. https://doi.org/10.1002/14651858.cd006564.pub2.

    Article  Google Scholar 

  53. Silver D. Impact of functional age on the use of dopamine agonists in patients with Parkinson disease. Neurologist. 2006;12(4):214–23.

    Article  PubMed  Google Scholar 

  54. Castro ES, Santos-Garcia D, de Deus Fonticoba T, Exposito Ruiz I, Tunas Gesto C, Arribi MM. Causes and factors related to dopamine agonist withdrawal in Parkinson’s disease. Brain Behav. 2016;6(7):e00453. https://doi.org/10.1002/brb3.453.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shulman L, Minagar A, Rabinstein A, Weiner W. The use of dopamine agonists in very elderly patients with Parkinson’s disease. Mov Disord. 2000;15(4):664–8.

    Article  CAS  PubMed  Google Scholar 

  56. Makumi CW, Asgharian A, Ellis J, Shaikh S, Jimenez T, VanMeter S. Long-term, open-label, safety study of once-daily ropinirole extended/prolonged release in early and advanced Parkinson’s disease. Int J Neurosci. 2016;126(1):30–8. https://doi.org/10.3109/00207454.2014.991924.

    Article  PubMed  Google Scholar 

  57. Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees AJ, et al. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008;71(7):474–80. https://doi.org/10.1212/01.wnl.0000310812.43352.66.

    Article  CAS  PubMed  Google Scholar 

  58. Hely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson’s disease: non-l-dopa-responsive problems dominate at 15 years. Mov Disord. 2005;20(2):190–9. https://doi.org/10.1002/mds.20324.

    Article  PubMed  Google Scholar 

  59. Constantinescu R, Romer M, McDermott MP, Kamp C, Kieburtz K, Group C-PIotPS. Impact of pramipexole on the onset of levodopa-related dyskinesias. Mov Disord. 2007;22(9):1317–9. https://doi.org/10.1002/mds.21292.

    Article  PubMed  Google Scholar 

  60. Kuoppamaki M, Leinonen M, Poewe W. Efficacy and safety of entacapone in levodopa/carbidopa versus levodopa/benserazide treated Parkinson’s disease patients with wearing-off. J Neural Transm (Vienna). 2015;122(12):1709–14. https://doi.org/10.1007/s00702-015-1449-6.

    Article  CAS  Google Scholar 

  61. Rinne UK, Larsen JP, Siden A, Worm-Petersen J. Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Nomecomt Study Group. Neurology. 1998;51(5):1309–14. https://doi.org/10.1212/WNL.51.5.1309.

    Article  CAS  PubMed  Google Scholar 

  62. Poewe WH, Deuschl G, Gordin A, Kultalahti ER, Leinonen M, Celomen Study Group. Efficacy and safety of entacapone in Parkinson’s disease patients with suboptimal levodopa response: a 6-month randomized placebo-controlled double-blind study in Germany and Austria (Celomen study). Acta Neurol Scand. 2002;105(4):245–55. https://doi.org/10.1034/j.1600-0404.2002.1o174.x.

    Article  CAS  PubMed  Google Scholar 

  63. Brooks DJ. Entacapone is beneficial in both fluctuating and non-fluctuating patients with Parkinson’s disease: a randomised, placebo controlled, double blind, six month study. J Neurol Neurosurg Psychiatry. 2003;74(8):1071–9. https://doi.org/10.1136/jnnp.74.8.1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rascol O, Barone P, Behari M, Emre M, Giladi N, Olanow CW, et al. Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone. Clin Neuropharmacol. 2012;35(1):15–20. https://doi.org/10.1097/WNF.0b013e318241520b.

    Article  CAS  PubMed  Google Scholar 

  65. Stocchi F, Rascol O, Kieburtz K, Poewe W, Jankovic J, Tolosa E, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010;68(1):18–27. https://doi.org/10.1002/ana.22060.

    Article  CAS  PubMed  Google Scholar 

  66. Tolosa E, Hernandez B, Linazasoro G, Lopez-Lozano JJ, Mir P, Marey J, et al. Efficacy of levodopa/carbidopa/entacapone versus levodopa/carbidopa in patients with early Parkinson’s disease experiencing mild wearing-off: a randomised, double-blind trial. J Neural Transm (Vienna). 2014;121(4):357–66. https://doi.org/10.1007/s00702-013-1114-x.

    Article  CAS  Google Scholar 

  67. Korhonen P, Kuoppamaki M, Prami T, Hoti F, Christopher S, Ellmen J, et al. Entacapone and prostate cancer risk in patients with Parkinson’s disease. Mov Disord. 2015;30(5):724–8. https://doi.org/10.1002/mds.26140.

    Article  CAS  PubMed  Google Scholar 

  68. Major JM, Dong D, Cunningham F, By K, Hur K, Shih DC, et al. Entacapone and prostate cancer in Parkinson’s disease patients: a large Veterans Affairs healthcare system study. Parkinsonism Relat Disord. 2018;53:46–52.

    Article  PubMed  Google Scholar 

  69. Ferreira JJ, Lees A, Rocha J-F, Poewe W, Rascol O, Soares-da-Silva P. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol. 2016;15(2):154–65. https://doi.org/10.1016/s1474-4422(15)00336-1.

    Article  CAS  PubMed  Google Scholar 

  70. Ferreira JJ, Rocha JF, Falcao A, Santos A, Pinto R, Nunes T, et al. Effect of opicapone on levodopa pharmacokinetics, catechol-O-methyltransferase activity and motor fluctuations in patients with Parkinson’s disease. Eur J Neurol. 2015;22(5):815–825, e56. https://doi.org/10.1111/ene.12666.

    Article  CAS  PubMed  Google Scholar 

  71. Lees AJ, Ferreira J, Rascol O, Poewe W, Rocha JF, McCrory M, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol. 2017;74(2):197–206. https://doi.org/10.1001/jamaneurol.2016.4703.

    Article  PubMed  Google Scholar 

  72. Ferreira J, Poewe W, Rascol O, Costa R, Arbe E, Rocha J, et al. Relationship between patient global impression of change and other efficacy endpoints in Parkinson’s disease: a post-hoc analysis from combined BIPARK-I and II [abstract]. Mov Disord. 2018; 33 (suppl 2). https://www.mdsabstracts.org/abstract/relationship-between-patient-global-impression-of-change-and-other-efficacy-endpoints-in-parkinsons-disease-a-post-hoc-analysis-from-combined-bipark-i-and-ii/. Accessed March 8, 2019.

  73. Larsen JP, Worm-Petersen J, Siden A, Gordin A, Reinikainen K, Leinonen M, et al. The tolerability and efficacy of entacapone over 3 years in patients with Parkinson’s disease. Eur J Neurol. 2003;10(2):137–46. https://doi.org/10.1046/j.1468-1331.2003.00559.x.

    Article  CAS  PubMed  Google Scholar 

  74. Elmer LW. Rasagiline adjunct therapy in patients with Parkinson’s disease: post hoc analyses of the PRESTO and LARGO trials. Parkinsonism Relat Disord. 2013;19(11):930–6. https://doi.org/10.1016/j.parkreldis.2013.06.001.

    Article  PubMed  Google Scholar 

  75. Parkinson Study Group. A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study. Arch Neurol. 2005;62(2):241–8. https://doi.org/10.1001/archneur.62.2.241.

    Article  Google Scholar 

  76. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet. 2005;365(9463):947–54. https://doi.org/10.1016/s0140-6736(05)71083-7.

    Article  CAS  PubMed  Google Scholar 

  77. Richard IH, Kurlan R, Tanner C, Factor S, Hubble J, Suchowersky O, et al. Serotonin syndrome and the combined use of deprenyl and an antidepressant in Parkinson’s disease. Parkinson Study Group. Neurology. 1997;48(4):1070–7.

    Article  CAS  PubMed  Google Scholar 

  78. Panisset M, Chen JJ, Rhyee SH, Conner J, Mathena J, STACCATO study investigators. Serotonin toxicity association with concomitant antidepressants and rasagiline treatment: retrospective study (STACCATO). Pharmacotherapy. 2014;34(12):1250–8. https://doi.org/10.1002/phar.1500.

    Article  CAS  PubMed  Google Scholar 

  79. Finberg JP, Gillman K. Selective inhibitors of monoamine oxidase type B and the “cheese effect”. Int Rev Neurobiol. 2011;100:169–90. https://doi.org/10.1016/B978-0-12-386467-3.00009-1.

    Article  CAS  PubMed  Google Scholar 

  80. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt M, Chirilineau D, et al. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov Disord. 2014;29(2):229–37. https://doi.org/10.1002/mds.25751.

    Article  CAS  PubMed  Google Scholar 

  81. Stocchi F, Borgohain R, Onofrj M, Schapira AH, Bhatt M, Lucini V, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov Disord. 2012;27(1):106–12. https://doi.org/10.1002/mds.23954.

    Article  CAS  PubMed  Google Scholar 

  82. Schapira AH, Fox SH, Hauser RA, Jankovic J, Jost WH, Kenney C, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol. 2017;74(2):216–24. https://doi.org/10.1001/jamaneurol.2016.4467.

    Article  PubMed  Google Scholar 

  83. Murata M, Hasegawa K, Kanazawa I, Fukasaka J, Kochi K, Shimazu R, et al. Zonisamide improves wearing-off in Parkinson’s disease: a randomized, double-blind study. Mov Disord. 2015;30(10):1343–50. https://doi.org/10.1002/mds.26286.

    Article  CAS  PubMed  Google Scholar 

  84. Kondo T, Mizuno Y, Japanese Istradefylline Study Group. A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol. 2015;38(2):41–6. https://doi.org/10.1097/wnf.0000000000000073.

    Article  CAS  PubMed  Google Scholar 

  85. Pilleri M, Antonini A. Therapeutic strategies to prevent and manage dyskinesias in Parkinson’s disease. Expert Opin Drug Saf. 2015;14(2):281–94. https://doi.org/10.1517/14740338.2015.988137.

    Article  CAS  PubMed  Google Scholar 

  86. Fahn S, Parkinson Study Group. Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol. 2005;252(Suppl 4):IV37–42.

    PubMed  Google Scholar 

  87. Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord. 2008;23(Suppl 3):S570–9. https://doi.org/10.1002/mds.22019.

    Article  PubMed  Google Scholar 

  88. Nishijima H, Ueno T, Funamizu Y, Ueno S, Tomiyama M. Levodopa treatment and dendritic spine pathology. Mov Disord. 2018;33(6):877–88. https://doi.org/10.1002/mds.27172.

    Article  CAS  PubMed  Google Scholar 

  89. Parkinson Study Group. A randomized controlled trial comparing pramipexole with levodopa in early Parkinson’s disease: design and methods of the CALM-PD Study. Parkinson Study Group. Clin Neuropharmacol. 2000;23(1):34–44.

    Article  Google Scholar 

  90. Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol. 2003;54(1):93–101. https://doi.org/10.1002/ana.10609.

    Article  CAS  PubMed  Google Scholar 

  91. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342(20):1484–91. https://doi.org/10.1056/NEJM200005183422004.

    Article  CAS  PubMed  Google Scholar 

  92. Holloway RG. Pramipexole vs levodopa as initial treatment for Parkinson disease. Arch Neurol. 2004;61(7):1044–53. https://doi.org/10.1001/archneur.61.7.1044.

    Article  PubMed  Google Scholar 

  93. Zhou CQ, Lou JH, Zhang YP, Zhong L, Chen YL, Lu FJ, et al. Long-acting versus standard non-ergot dopamine agonists in Parkinson’s disease: a meta-analysis of randomized controlled trials. CNS Neurosci Ther. 2014;20(4):368–76. https://doi.org/10.1111/cns.12239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shen Z, Kong D. Meta-analysis of the adverse events associated with extended-release versus standard immediate-release pramipexole in Parkinson disease. Medicine (Baltimore). 2018;97(34):e11316. https://doi.org/10.1097/MD.0000000000011316.

    Article  CAS  Google Scholar 

  95. Payer DE, Guttman M, Kish SJ, Tong J, Adams JR, Rusjan P, et al. D3 dopamine receptor-preferring [11C]PHNO PET imaging in Parkinson patients with dyskinesia. Neurology. 2016;86(3):224–30. https://doi.org/10.1212/WNL.0000000000002285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Berthet A, Bezard E. Dopamine receptors and l-dopa-induced dyskinesia. Parkinsonism Relat Disord. 2009;15(Suppl 4):S8–12. https://doi.org/10.1016/S1353-8020(09)70827-2.

    Article  PubMed  Google Scholar 

  97. Giladi N, Ghys L, Surmann E, Boroojerdi B, Jankovic J. Effects of long-term treatment with rotigotine transdermal system on dyskinesia in patients with early-stage Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(12):1345–51. https://doi.org/10.1016/j.parkreldis.2014.09.016.

    Article  PubMed  Google Scholar 

  98. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain. 2000;123(Pt 11):2297–305. https://doi.org/10.1093/brain/123.11.2297.

    Article  PubMed  Google Scholar 

  99. Fox SH, Lang AE. ‘Don’t delay, start today’: delaying levodopa does not delay motor complications. Brain. 2014;137(Pt 10):2628–30. https://doi.org/10.1093/brain/awu212.

    Article  PubMed  Google Scholar 

  100. Cilia R, Akpalu A, Sarfo FS, Cham M, Amboni M, Cereda E, et al. The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa. Brain. 2014;137(Pt 10):2731–42. https://doi.org/10.1093/brain/awu195.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hattori N, Fujimoto K, Kondo T, Murata M, Stacy M. Patient perspectives on Parkinson’s disease therapy in Japan and the United States: results of two patient surveys. Patient Relat Outcome Meas. 2012;3:31–8. https://doi.org/10.2147/PROM.S29443.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ory-Magne F, Corvol JC, Azulay JP, Bonnet AM, Brefel-Courbon C, Damier P, et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014;82(4):300–7. https://doi.org/10.1212/WNL.0000000000000050.

    Article  CAS  PubMed  Google Scholar 

  103. Goetz CG, Stebbins GT, Chung KA, Hauser RA, Miyasaki JM, Nicholas AP, et al. Which dyskinesia scale best detects treatment response? Mov Disord. 2013;28(3):341–6. https://doi.org/10.1002/mds.25321.

    Article  CAS  PubMed  Google Scholar 

  104. Sawada H, Oeda T, Kuno S, Nomoto M, Yamamoto K, Yamamoto M, et al. Amantadine for dyskinesias in Parkinson’s disease: a randomized controlled trial. PLoS One. 2010;5(12):e15298. https://doi.org/10.1371/journal.pone.0015298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hubsher G, Haider M, Okun MS. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology. 2012;78(14):1096–9. https://doi.org/10.1212/WNL.0b013e31824e8f0d.

    Article  CAS  PubMed  Google Scholar 

  106. Oertel W, Eggert K, Pahwa R, Tanner CM, Hauser RA, Trenkwalder C, et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov Disord. 2017;32(12):1701–9. https://doi.org/10.1002/mds.27131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Isaacson SH, Fahn S, Pahwa R, Tanner CM, Espay AJ, Trenkwalder C, et al. Parkinson’s patients with dyskinesia switched from immediate release amantadine to open-label ADS-5102. Mov Disord Clin Pract. 2018;5(2):183–90. https://doi.org/10.1002/mdc3.12595.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pahwa R, Tanner CM, Hauser RA, Sethi K, Isaacson S, Truong D, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord. 2015;30(6):788–95. https://doi.org/10.1002/mds.26159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hauser RA, Pahwa R, Tanner CM, Oertel W, Isaacson SH, Johnson R, et al. ADS-5102 (Amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 2 Study): interim results of an open-label safety study. J Parkinsons Dis. 2017;7(3):511–22. https://doi.org/10.3233/JPD-171134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Utsumi H, Okuma Y, Kano O, Suzuki Y, Iijima M, Tomimitsu H, et al. Evaluation of the efficacy of pramipexole for treating levodopa-induced dyskinesia in patients with Parkinson’s disease. Intern Med. 2013;52(3):325–32. https://doi.org/10.2169/internalmedicine.52.8333.

    Article  CAS  PubMed  Google Scholar 

  111. Trenkwalder C, Stocchi F, Poewe W, Dronamraju N, Kenney C, Shah A, et al. Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord. 2016;31(7):1054–8. https://doi.org/10.1002/mds.26585.

    Article  CAS  PubMed  Google Scholar 

  112. Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, Wictorin K, Keywood C, Shankar B, et al. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain. 2015;138(Pt 4):963–73. https://doi.org/10.1093/brain/awu409.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Bjorklund A, et al. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord. 2013;28(8):1088–96. https://doi.org/10.1002/mds.25366.

    Article  CAS  PubMed  Google Scholar 

  114. Frazzitta G, Bertotti G, Riboldazzi G, Turla M, Uccellini D, Boveri N, et al. Effectiveness of intensive inpatient rehabilitation treatment on disease progression in parkinsonian patients: a randomized controlled trial with 1-year follow-up. Neurorehabil Neural Repair. 2012;26(2):144–50. https://doi.org/10.1177/1545968311416990.

    Article  PubMed  Google Scholar 

  115. Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11(2):140–9. https://doi.org/10.1016/S1474-4422(11)70308-8.

    Article  PubMed  Google Scholar 

  116. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91. https://doi.org/10.1056/NEJMoa0907083.

    Article  CAS  PubMed  Google Scholar 

  117. Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79(1):55–65. https://doi.org/10.1212/WNL.0b013e31825dcdc1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368(7):610–22. https://doi.org/10.1056/NEJMoa1205158.

    Article  CAS  PubMed  Google Scholar 

  119. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44. https://doi.org/10.1016/S1474-4422(12)70264-8.

    Article  PubMed  Google Scholar 

  120. Odekerken VJ, Boel JA, Schmand BA, de Haan RJ, Figee M, van den Munckhof P, et al. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology. 2016;86(8):755–61. https://doi.org/10.1212/WNL.0000000000002401.

    Article  CAS  PubMed  Google Scholar 

  121. Ferreira JJ, Katzenschlager R, Bloem BR, Bonuccelli U, Burn D, Deuschl G, et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur J Neurol. 2013;20(1):5–15. https://doi.org/10.1111/j.1468-1331.2012.03866.x.

    Article  CAS  PubMed  Google Scholar 

  122. Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006;21(Suppl 14):S290–304.

    Article  PubMed  Google Scholar 

  123. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, et al. Continuous intrajejunal infusion of levodopa–carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–9. https://doi.org/10.1016/S1474-4422(13)70293-X.

    Article  CAS  PubMed  Google Scholar 

  124. Fernandez HH, Standaert DG, Hauser RA, Lang AE, Fung VS, Klostermann F, et al. Levodopa–carbidopa intestinal gel in advanced Parkinson’s disease: final 12-month, open-label results. Mov Disord. 2015;30(4):500–9. https://doi.org/10.1002/mds.26123.

    Article  CAS  PubMed  Google Scholar 

  125. Antonini A, Fung VS, Boyd JT, Slevin JT, Hall C, Chatamra K, et al. Effect of levodopa–carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov Disord. 2016;31(4):530–7. https://doi.org/10.1002/mds.26528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sensi M, Cossu G, Mancini F, Pilleri M, Zibetti M, Modugno N, et al. Which patients discontinue? Issues on Levodopa/carbidopa intestinal gel treatment: Italian multicentre survey of 905 patients with long-term follow-up. Parkinsonism Relat Disord. 2017;38:90–2. https://doi.org/10.1016/j.parkreldis.2017.02.020.

    Article  PubMed  Google Scholar 

  127. Merola A, Romagnolo A, Zibetti M, Bernardini A, Cocito D, Lopiano L. Peripheral neuropathy associated with levodopa–carbidopa intestinal infusion: a long-term prospective assessment. Eur J Neurol. 2016;23(3):501–9. https://doi.org/10.1111/ene.12846.

    Article  CAS  PubMed  Google Scholar 

  128. Rispoli V, Simioni V, Capone JG, Golfre Andreasi N, Preda F, Sette E, et al. Peripheral neuropathy in 30 duodopa patients with vitamins B supplementation. Acta Neurol Scand. 2017;136(6):660–7. https://doi.org/10.1111/ane.12783.

    Article  CAS  PubMed  Google Scholar 

  129. Devigili G, Rinaldo S, Lettieri C, Eleopra R. Levodopa/carbidopa intestinal gel therapy for advanced Parkinson disease: AN early toxic effect for small nerve fibers? Muscle Nerve. 2016;54(5):970–2. https://doi.org/10.1002/mus.25377.

    Article  CAS  PubMed  Google Scholar 

  130. Katzenschlager R, Poewe W, Rascol O, Trenkwalder C, Deuschl G, Chaudhuri KR, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018;17(9):749–59. https://doi.org/10.1016/S1474-4422(18)30239-4.

    Article  CAS  PubMed  Google Scholar 

  131. Dietrichs E, Odin P. Algorithms for the treatment of motor problems in Parkinson’s disease. Acta Neurol Scand. 2017;136(5):378–85. https://doi.org/10.1111/ane.12733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Barbosa P, Lees AJ, Magee C, Djamshidian A, Warner TT. A retrospective evaluation of the frequency of impulsive compulsive behaviors in Parkinson’s disease patients treated with continuous waking day apomorphine pumps. Mov Disord Clin Pract. 2017;4(3):323–8. https://doi.org/10.1002/mdc3.12416.

    Article  PubMed  Google Scholar 

  133. Sunovion Receives Complete Response Letter from FDA for Apomorphine Sublingual Film (APL-130277) [press release]. Marlborough: Sunovion Pharmaceuticals; 2019. http://businesswire.com/news/home/20190130005919/en/Sunovion-Receives-Complete-Response-Letter-FDA-Apomorphine. Accessed Feb 26, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Massano.

Ethics declarations

Funding

The authors received no funding for this article from any entity in the public or private domains.

Conflict of interest

Verónica Cabreira has received financial support to attend scientific meetings from Roche. João Massano received advisor honoraria from Bial, Merck Sharp and Dohme, and Zambon; he received financial support to speak at or attend meetings from Bial, Boston Scientific, GE Healthcare, Grunenthal, Medtronic, and Novartis. Patrício Soares-da-Silva is employed by Bial—Portela & Cª, S.A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabreira, V., Soares-da-Silva, P. & Massano, J. Contemporary Options for the Management of Motor Complications in Parkinson’s Disease: Updated Clinical Review. Drugs 79, 593–608 (2019). https://doi.org/10.1007/s40265-019-01098-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-01098-w

Navigation