Skip to main content
Log in

Hypermutated Tumors and Immune Checkpoint Inhibition

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Microsatellite instability-high/DNA mismatch repair deficient tumors are found across the cancer spectrum and often harbor markedly increased numbers of mutations when compared to microsatellite stable/DNA mismatch repair proficient tumors. As a result of this high mutational load, tumor-infiltrating lymphocyte density is increased and more immunogenic neoepitopes are expressed, leading to upregulation of immune checkpoints in these tumors. Checkpoint inhibitors such as pembrolizumab and nivolumab, both immunoglobulin G4 (IgG4) monoclonal antibodies that block interactions between the programmed cell death receptor-1 and its ligands, have significant activity in this tumor class. This review will focus on hypermutated tumors and immuno-oncology drug development for this biologically unique tumor type, with an emphasis on FDA-approved immunotherapies for these cancers, as well as a short discussion of the many therapeutic and scientific challenges ahead in order to optimize the uses of this new class of drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellmunt J, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garon EB, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  3. Chen R, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.

    Article  PubMed  Google Scholar 

  4. Herbst RS, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

    Article  CAS  PubMed  Google Scholar 

  5. Nghiem PT, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med. 2016;374(26):2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  7. Ribas A, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18.

    Article  CAS  PubMed  Google Scholar 

  8. Ansell SM, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed  Google Scholar 

  9. Antonia SJ, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–95.

    Article  CAS  PubMed  Google Scholar 

  10. Borghaei H, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brahmer J, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferris RL, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Motzer RJ, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Postow MA, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma P, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.

    Article  CAS  PubMed  Google Scholar 

  18. Le DT, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aaltonen LA, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260(5109):812–6.

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein J, et al. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability (MSI-H). Ann Oncol. 2014;25(5):1032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609–18.

    Article  CAS  PubMed  Google Scholar 

  22. Lochhead P, et al. Microsatellite instability and BRAF mutation testing in colorectal cancer prognostication. J Natl Cancer Inst. 2013;105(15):1151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Phipps AI, et al. Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology. 2015;148(1):77–87 e2.

    Article  CAS  PubMed  Google Scholar 

  24. French AJ, et al. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 2008;14(11):3408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ribic CM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carethers JM, et al. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology. 2004;126(2):394–401.

    Article  CAS  PubMed  Google Scholar 

  27. Sargent DJ, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28(20):3219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tajima A, et al. The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology. 2004;127(6):1678–84.

    Article  CAS  PubMed  Google Scholar 

  29. Tajima A, et al. Both hMutSalpha and hMutSss DNA mismatch repair complexes participate in 5-fluorouracil cytotoxicity. PLoS One. 2011;6(12):e28117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073–2087 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sinicrope FA, et al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst. 2011;103(11):863–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Webber EM, et al. Systematic review of the predictive effect of MSI status in colorectal cancer patients undergoing 5FU-based chemotherapy. BMC Cancer. 2015;15:156.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lynch HT, et al. Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer. 2015;15(3):181–94.

    Article  CAS  PubMed  Google Scholar 

  34. Kane MF, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57(5):808–11.

    CAS  PubMed  Google Scholar 

  35. Geurts-Giele WR, et al. Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers. J Pathol. 2014;234(4):548–59.

    Article  CAS  PubMed  Google Scholar 

  36. Haraldsdottir S, et al. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147(6):1308–1316 e1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parsons R, et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993;75(6):1227–36.

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharyya NP, et al. Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci USA. 1994;91(14):6319–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eshleman JR, et al. Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer. Oncogene. 1995;10(1):33–7.

    CAS  PubMed  Google Scholar 

  40. Modrich P. DNA mismatch correction. Annu Rev Biochem. 1987;56:435–66.

    Article  CAS  PubMed  Google Scholar 

  41. Fishel R, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993;75(5):1027–38.

    Article  CAS  PubMed  Google Scholar 

  42. Liu B, et al. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 1994;54(17):4590–4.

    CAS  PubMed  Google Scholar 

  43. Papadopoulos N, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263(5153):1625–9.

    Article  CAS  PubMed  Google Scholar 

  44. Bronner CE, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368(6468):258–61.

    Article  CAS  PubMed  Google Scholar 

  45. Eshleman JR, Markowitz SD. Mismatch repair defects in human carcinogenesis. Hum Mol Genet. 1996;5:1489–94.

    Article  CAS  PubMed  Google Scholar 

  46. Hause RJ, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016;22(11):1342–50.

    Article  CAS  PubMed  Google Scholar 

  47. Kim H, et al. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 1994;145(1):148–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Alexander J, et al. Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 2001;158(2):527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dolcetti R, et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol. 1999;154(6):1805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogino S, et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res. 2009;15(20):6412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vogelstein B, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jung B, et al. Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology. 2004;126(3):654–9.

    Article  CAS  PubMed  Google Scholar 

  53. Markowitz S, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268(5215):1336–8.

    Article  CAS  PubMed  Google Scholar 

  54. Lee V, et al. Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist. 2016;21(10):1200–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Llosa NJ, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  56. Gatalica Z, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2965–70.

    Article  CAS  PubMed  Google Scholar 

  57. Patnaik A, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21(19):4286–93.

    Article  CAS  PubMed  Google Scholar 

  58. Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32.

    Article  CAS  PubMed  Google Scholar 

  60. Yamamoto H, Imai K, Perucho M. Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J Gastroenterol. 2002;37(3):153–63.

    Article  CAS  PubMed  Google Scholar 

  61. Zaretsky JM, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm560040.htm. Cited 20 Oct 2017.

  63. Brahmer JR, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lipson EJ, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 2013;19(2):462–8.

    Article  CAS  PubMed  Google Scholar 

  65. Overman MJ, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.

    Article  CAS  PubMed  Google Scholar 

  66. https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm569366.htm. Cited 20 Oct 2017.

  67. Andre T, Lonardi S, Wong KYM, et al. Combination of nivolumab + ipilimumab in the treatment of patients with deficient DNA mismatch repair/microsatellite instability metastatic colorectal cancer: CheckMate 142 study. Proc Am Soc Clin Oncol. 2017;2017:35.

    Google Scholar 

Download references

Funding

No funding was received for the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Goldberg.

Ethics declarations

Conflict of interest

Both authors (KKC, RMG) have received research funding from Merck. KKC has also received research funding from Bristol-Myers Squibb. RMG has served as a paid consultant to Merck and Merck KGA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciombor, K.K., Goldberg, R.M. Hypermutated Tumors and Immune Checkpoint Inhibition. Drugs 78, 155–162 (2018). https://doi.org/10.1007/s40265-018-0863-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-018-0863-0

Navigation