Skip to main content
Log in

Progress in Elucidating Biomarkers of Antidepressant Pharmacological Treatment Response: A Systematic Review and Meta-analysis of the Last 15 Years

  • Systematic Review
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Background

Antidepressant drugs are widely prescribed, but response rates after 3 months are only around one-third, explaining the importance of the search of objectively measurable markers predicting positive treatment response. These markers are being developed in different fields, with different techniques, sample sizes, costs, and efficiency. It is therefore difficult to know which ones are the most promising.

Objective

Our purpose was to compute comparable (i.e., standardized) effect sizes, at study level but also at marker level, in order to conclude on the efficacy of each technique used and all analyzed markers.

Methods

We conducted a systematic search on the PubMed database to gather all articles published since 2000 using objectively measurable markers to predict antidepressant response from five domains, namely cognition, electrophysiology, imaging, genetics, and transcriptomics/proteomics/epigenetics. A manual screening of the abstracts and the reference lists of these articles completed the search process.

Results

Executive functioning, theta activity in the rostral Anterior Cingular Cortex (rACC), and polysomnographic sleep measures could be considered as belonging to the best objectively measured markers, with a combined d around 1 and at least four positive studies. For inter-category comparisons, the approaches that showed the highest effect sizes are, in descending order, imaging (combined d between 0.703 and 1.353), electrophysiology (0.294–1.138), cognition (0.929–1.022), proteins/nucleotides (0.520–1.18), and genetics (0.021–0.515).

Conclusion

Markers of antidepressant treatment outcome are numerous, but with a discrepant level of accuracy. Many biomarkers and cognitions have sufficient predictive value (d ≥ 1) to be potentially useful for clinicians to predict outcome and personalize antidepressant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kessler RC, et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. World Psychiatry Off J World Psychiatr Assoc WPA. 2007;6(3):168–76.

    Google Scholar 

  2. Thase ME, et al. Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors. Br J Psychiatry J Ment Sci. 2001;178:234–41.

    Article  CAS  Google Scholar 

  3. Ciudad A, et al. Early response and remission as predictors of a good outcome of a major depressive episode at 12-month follow-up: a prospective, longitudinal, observational study. J Clin Psychiatry. 2012;73(2):185–91.

    Article  PubMed  Google Scholar 

  4. Gorwood P, et al. Toxic effects of depression on brain function: impairment of delayed recall and the cumulative length of depressive disorder in a large sample of depressed outpatients. Am J Psychiatry. 2008;165(6):731–9.

    Article  PubMed  Google Scholar 

  5. Stauffer VL, et al. Is the noradrenergic symptom cluster a valid construct in adjunctive treatment of major depressive disorder? J Clin Psychiatry. 2017;78(3):317–23.

    Article  PubMed  Google Scholar 

  6. Austin MP, et al. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry J Ment Sci. 2001;178:200–6.

    Article  CAS  Google Scholar 

  7. Paelecke-Habermann Y, et al. Attention and executive functions in remitted major depression patients. J Affect Disord. 2005;89(1–3):125–35.

    Article  PubMed  Google Scholar 

  8. Jaeger J, Berns S, et al. Neurocognitive deficits and disability in major depressive disorder. Psychiatry Res. 2006;145(1):39–48.

    Article  PubMed  Google Scholar 

  9. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160(4):636–45.

    Article  PubMed  Google Scholar 

  10. Den Hartog HM, et al. Cognitive functioning in young and middle-aged unmedicated out-patients with major depression: testing the effort and cognitive speed hypotheses. Psychol Med. 2003;33(8):1443–51.

    Article  Google Scholar 

  11. Marazziti D, et al. Cognitive impairment in major depression. Eur J Pharmacol. 2010;626(1):83–6.

    Article  PubMed  CAS  Google Scholar 

  12. Clark L, et al. Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci. 2009;32:57–74.

    Article  PubMed  CAS  Google Scholar 

  13. Hasler G, et al. Discovering endophenotypes for major depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2004;29(10):1765–81.

    Article  CAS  Google Scholar 

  14. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5(6):463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mössner R, et al. Consensus paper of the WFSBP Task Force on Biological Markers: biological markers in depression. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry. 2007;8(3):141–74.

    Article  Google Scholar 

  16. Perlis RH. A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biol Psychiatry. 2013;74(1):7–14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crane NA, et al. Multidimensional prediction of treatment response to antidepressants with cognitive control and functional MRI. Brain J Neurol. 2017;140(Pt 2):472–86.

    Article  Google Scholar 

  18. Baskaran A, et al. The neurobiology of the EEG biomarker as a predictor of treatment response in depression. Neuropharmacology. 2012;63(4):507–13.

    Article  PubMed  CAS  Google Scholar 

  19. Franchini L, et al. Familial concordance of fluvoxamine response as a tool for differentiating mood disorder pedigrees. J Psychiatr Res. 1998;32(5):255–9.

    Article  PubMed  CAS  Google Scholar 

  20. Gorlyn M, et al. Neuropsychological characteristics as predictors of SSRI treatment response in depressed subjects. J Neural Transm Vienna Austria 1996. 2008;115(8):1213–9.

    Google Scholar 

  21. Bruder GE, et al. Neurocognitive predictors of antidepressant clinical response. J Affect Disord. 2014;166:108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Antypa N, et al. The neuropsychological hypothesis of antidepressant drug action revisited. CNS Neurol Disord Drug Targets. 2014;13(10):1722–39.

    Article  PubMed  Google Scholar 

  23. Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry. 2000;48(8):813–29.

    Article  PubMed  CAS  Google Scholar 

  24. Pizzagalli D, et al. Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis. Am J Psychiatry. 2001;158(3):405–15.

    Article  PubMed  CAS  Google Scholar 

  25. Gyurak A, et al. Frontoparietal activation during response inhibition predicts remission to antidepressants in patients with major depression. Biol Psychiatry. 2016;79(4):274–81.

    Article  PubMed  CAS  Google Scholar 

  26. Gorwood P, et al. Psychomotor retardation is a scar of past depressive episodes, revealed by simple cognitive tests. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2014;24(10):1630–40.

    Article  CAS  Google Scholar 

  27. Kessing LV. Cognitive impairment in the euthymic phase of affective disorder. Psychol Med. 1998;28(5):1027–38.

    Article  PubMed  CAS  Google Scholar 

  28. Boeker H, et al. Sustained cognitive impairments after clinical recovery of severe depression. J Nerv Ment Dis. 2012;200(9):773–6.

    Article  PubMed  Google Scholar 

  29. Weiland-Fiedler P, et al. Evidence for continuing neuropsychological impairments in depression. J Affect Disord. 2004;82(2):253–8.

    Article  PubMed  Google Scholar 

  30. Cléry-Melin M-L, Gorwood P. A simple attention test in the acute phase of a major depressive episode is predictive of later functional remission. Depress Anxiety. 2017;34(2):159–70.

    Article  PubMed  Google Scholar 

  31. Taylor BP, et al. Psychomotor slowing as a predictor of fluoxetine nonresponse in depressed outpatients. Am J Psychiatry. 2006;163(1):73–8.

    Article  PubMed  Google Scholar 

  32. Herrera-Guzmán I, et al. Cognitive predictors of treatment response to bupropion and cognitive effects of bupropion in patients with major depressive disorder. Psychiatry Res. 2008;160(1):72–82.

    Article  PubMed  Google Scholar 

  33. Vrieze E, et al. Reduced reward learning predicts outcome in major depressive disorder. Biol Psychiatry. 2013;73(7):639–45.

    Article  PubMed  Google Scholar 

  34. Vrieze E, et al. Dimensions in major depressive disorder and their relevance for treatment outcome. J Affect Disord. 2014;155:35–41.

    Article  PubMed  Google Scholar 

  35. Spronk D, et al. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study. J Affect Disord. 2011;128(1–2):41–8.

    Article  PubMed  CAS  Google Scholar 

  36. Dunkin JJ, et al. Executive dysfunction predicts nonresponse to fluoxetine in major depression. J Affect Disord. 2000;60(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  37. Majer M, et al. Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychol Med. 2004;34(8):1453–63.

    Article  PubMed  CAS  Google Scholar 

  38. Langenecker SA, et al. Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biol Psychiatry. 2007;62(11):1272–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tadić A, et al. Peripheral blood and neuropsychological markers for the onset of action of antidepressant drugs in patients with major depressive disorder. BMC Psychiatry. 2011;11:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Trivedi MH, et al. Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): rationale and design. J Psychiatr Res. 2016;78:11–23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Collins PY, et al. Grand challenges in global mental health. Nature. 2011;475(7354):27–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang Y-Q, et al. The neurobiological mechanisms and treatments of REM sleep disturbances in depression. Curr Neuropharmacol. 2015;13(4):543–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bares M, et al. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2010;20(7):459–66.

    Article  CAS  Google Scholar 

  44. Linka T, et al. The intensity dependence of auditory evoked ERP components predicts responsiveness to reboxetine treatment in major depression. Pharmacopsychiatry. 2005;38(3):139–43.

    Article  PubMed  CAS  Google Scholar 

  45. Linka T, et al. The intensity dependence of the auditory evoked N1 component as a predictor of response to Citalopram treatment in patients with major depression. Neurosci Lett. 2004;367(3):375–8.

    Article  PubMed  CAS  Google Scholar 

  46. Gallinat J, et al. The loudness dependency of the auditory evoked N1/P2-component as a predictor of the acute SSRI response in depression. Psychopharmacology (Berlin. 2000;148(4):404–11.

    Article  CAS  Google Scholar 

  47. Lee T-W, et al. Loudness dependence of the auditory evoked potential and response to antidepressants in Chinese patients with major depression. J Psychiatry Neurosci JPN. 2005;30(3):202–5.

    PubMed  Google Scholar 

  48. Juckel G, et al. Differential prediction of first clinical response to serotonergic and noradrenergic antidepressants using the loudness dependence of auditory evoked potentials in patients with major depressive disorder. J Clin Psychiatry. 2007;68(8):1206–12.

    Article  PubMed  Google Scholar 

  49. Murck H, et al. State markers of depression in sleep EEG: dependency on drug and gender in patients treated with tianeptine or paroxetine. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2003;28(2):348–58.

    Article  CAS  Google Scholar 

  50. Leuchter AF, et al. Effectiveness of a quantitative electroencephalographic biomarker for predicting differential response or remission with escitalopram and bupropion in major depressive disorder. Psychiatry Res. 2009;169(2):132–8.

    Article  PubMed  CAS  Google Scholar 

  51. Cook IA, et al. Midline and right frontal brain function as a physiologic biomarker of remission in major depression. Psychiatry Res. 2009;174(2):152–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bruder GE, et al. Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: pre- and post-treatment findings. Biol Psychiatry. 2008;63(12):1171–7.

    Article  PubMed  CAS  Google Scholar 

  53. Bruder GE, et al. Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry. 2001;49(5):416–25.

    Article  PubMed  CAS  Google Scholar 

  54. Cook IA, et al. Early changes in prefrontal activity characterize clinical responders to antidepressants. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2002;27(1):120–31.

    Article  CAS  Google Scholar 

  55. Bares M, et al. Early reduction in prefrontal theta QEEG cordance value predicts response to venlafaxine treatment in patients with resistant depressive disorder. Eur Psychiatry J Assoc Eur Psychiatr. 2008;23(5):350–5.

    Article  Google Scholar 

  56. van Dinteren R, et al. Utility of event-related potentials in predicting antidepressant treatment response: an iSPOT-D report. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2015;25(11):1981–90.

    Article  CAS  Google Scholar 

  57. Duncan WC, et al. Baseline delta sleep ratio predicts acute ketamine mood response in major depressive disorder. J Affect Disord. 2013;145(1):115–9.

    Article  PubMed  CAS  Google Scholar 

  58. Adamczyk M, et al. Cordance derived from REM sleep EEG as a biomarker for treatment response in depression—a naturalistic study after antidepressant medication. J Psychiatr Res. 2015;63:97–104.

    Article  PubMed  Google Scholar 

  59. Olbrich S, et al. CNS- and ANS-arousal predict response to antidepressant medication: findings from the randomized iSPOT-D study. J Psychiatr Res. 2016;73:108–15.

    Article  PubMed  Google Scholar 

  60. Lee T-W, et al. The implication of functional connectivity strength in predicting treatment response of major depressive disorder: a resting EEG study. Psychiatry Res. 2011;194(3):372–7.

    Article  PubMed  Google Scholar 

  61. Caudill MM, et al. The antidepressant treatment response index as a predictor of reboxetine treatment outcome in major depressive disorder. Clin EEG Neurosci. 2015;46(4):277–84.

    Article  PubMed  Google Scholar 

  62. Cook IA, et al. Quantitative electroencephalogram biomarkers for predicting likelihood and speed of achieving sustained remission in major depression: a report from the biomarkers for rapid identification of treatment effectiveness in major depression (BRITE-MD) trial. J Clin Psychiatry. 2013;74(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  63. Hunter AM, et al. The antidepressant treatment response index and treatment outcomes in a placebo-controlled trial of fluoxetine. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2011;28(5):478–82.

    Google Scholar 

  64. Hunter AM, et al. Antidepressant response trajectories and quantitative electroencephalography (QEEG) biomarkers in major depressive disorder. J Psychiatr Res. 2010;44(2):90–8.

    Article  PubMed  Google Scholar 

  65. Iosifescu DV, et al. Frontal EEG predictors of treatment outcome in major depressive disorder. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2009;19(11):772–7.

    Article  CAS  Google Scholar 

  66. Tenke CE, et al. Current source density measures of electroencephalographic alpha predict antidepressant treatment response. Biol Psychiatry. 2011;70(4):388–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bares M, et al. Changes in QEEG prefrontal cordance as a predictor of response to antidepressants in patients with treatment resistant depressive disorder: a pilot study. J Psychiatr Res. 2007;41(3–4):319–25.

    Article  PubMed  Google Scholar 

  68. Bares M, et al. The effectiveness of prefrontal theta cordance and early reduction of depressive symptoms in the prediction of antidepressant treatment outcome in patients with resistant depression: analysis of naturalistic data. Eur Arch Psychiatry Clin Neurosci. 2015;265(1):73–82.

    Article  PubMed  Google Scholar 

  69. Knott V, et al. Pre-treatment EEG and it’s relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry. 2000;33(6):201–5.

    Article  PubMed  CAS  Google Scholar 

  70. Mulert C, et al. Rostral anterior cingulate cortex activity in the theta band predicts response to antidepressive medication. Clin EEG Neurosci. 2007;38(2):78–81.

    Article  PubMed  Google Scholar 

  71. Korb AS, et al. Rostral anterior cingulate cortex theta current density and response to antidepressants and placebo in major depression. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2009;120(7):1313–9.

    Article  Google Scholar 

  72. Leuchter AF, et al. Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in major depressive disorder: results of the BRITE-MD study. Psychiatry Res. 2009;169(2):124–31.

    Article  PubMed  CAS  Google Scholar 

  73. Cook IA, et al. Changes in prefrontal activity characterize clinical response in SSRI nonresponders: a pilot study. J Psychiatr Res. 2005;39(5):461–6.

    Article  PubMed  Google Scholar 

  74. Hunter AM, et al. Rostral anterior cingulate activity in major depressive disorder: state or trait marker of responsiveness to medication? J Neuropsychiatry Clin Neurosci. 2013;25(2):126–33.

    Article  PubMed  Google Scholar 

  75. Rush AJ, Giles DE, Jarrett RB, Feldman-Koffler F, Debus JR, Weissenburger J, Orsulak PJ, Roffwarg HP. Reduced REM latency predicts response to tricyclic medication in depressed outpatients. Biol Psychiatry. 1989;26(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  76. Kalayam B, Alexopoulos GS. Prefrontal dysfunction and treatment response in geriatric depression. Arch Gen Psychiatry. 1999;56(8):713–8.

    Article  PubMed  CAS  Google Scholar 

  77. Luthringer R, Minot R, Toussaint M, Calvi-Gries F, Schaltenbrand N, Macher JP. All-night EEG spectral analysis as a tool for the prediction of clinical response to antidepressant treatment. Biol Psychiatry. 1995;38(2):98–104.

    Article  PubMed  CAS  Google Scholar 

  78. Gillin JC, Wyatt RJ, Fram D, Snyder F. The relationship between changes in REM sleep and clinical improvement in depressed patients treated with amitriptyline. Psychopharmacology (Berl). 1978;59(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  79. Fu CHY, et al. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.

    Article  PubMed  CAS  Google Scholar 

  80. Costafreda SG, et al. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One. 2009;4(7):e6353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Li C-T, et al. Structural and cognitive deficits in remitting and non-remitting recurrent depression: a voxel-based morphometric study. NeuroImage. 2010;50(1):347–56.

    Article  PubMed  Google Scholar 

  82. Gong Q, et al. Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage. 2011;55(4):1497–503.

    Article  PubMed  Google Scholar 

  83. Liu F, et al. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS One. 2012;7(7):e40968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Chen C-H, et al. Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol Psychiatry. 2007;62(5):407–14.

    Article  PubMed  CAS  Google Scholar 

  85. Williams LM, et al. Amygdala reactivity to emotional faces in the prediction of general and medication-specific responses to antidepressant treatment in the randomized iSPOT-D trial. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2015;40(10):2398–408.

    Article  CAS  Google Scholar 

  86. Saxena S, et al. Differential brain metabolic predictors of response to paroxetine in obsessive-compulsive disorder versus major depression. Am J Psychiatry. 2003;160(3):522–32.

    Article  PubMed  Google Scholar 

  87. Little JT, et al. Bupropion and venlafaxine responders differ in pretreatment regional cerebral metabolism in unipolar depression. Biol Psychiatry. 2005;57(3):220–8.

    Article  PubMed  CAS  Google Scholar 

  88. Rizvi SJ, et al. Neural response to emotional stimuli associated with successful antidepressant treatment and behavioral activation. J Affect Disord. 2013;151(2):573–81.

    Article  PubMed  Google Scholar 

  89. Samson AC, et al. Brain activation predicts treatment improvement in patients with major depressive disorder. J Psychiatr Res. 2011;45(9):1214–22.

    PubMed  Google Scholar 

  90. Roy M, et al. Medial prefrontal cortex activity during memory encoding of pictures and its relation to symptomatic improvement after citalopram treatment in patients with major depression. J Psychiatry Neurosci JPN. 2010;35(3):152–62.

    PubMed  Google Scholar 

  91. Walsh ND, et al. A longitudinal functional magnetic resonance imaging study of verbal working memory in depression after antidepressant therapy. Biol Psychiatry. 2007;62(11):1236–43.

    Article  PubMed  CAS  Google Scholar 

  92. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2011;36(1):183–206.

    Article  Google Scholar 

  93. Salvadore G, et al. Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine. Biol Psychiatry. 2009;65(4):289–95.

    Article  PubMed  CAS  Google Scholar 

  94. Salvadore G, et al. Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2010;35(7):1415–22.

    Article  CAS  Google Scholar 

  95. Brockmann H, et al. The value of HMPAO SPECT in predicting treatment response to citalopram in patients with major depression. Psychiatry Res. 2009;173(2):107–12.

    Article  PubMed  CAS  Google Scholar 

  96. Vakili K, et al. Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biol Psychiatry. 2000;47(12):1087–90.

    Article  PubMed  CAS  Google Scholar 

  97. Frodl T, et al. Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clin Psychiatry. 2004;65(4):492–9.

    Article  PubMed  Google Scholar 

  98. Frodl T, et al. Different effects of mirtazapine and venlafaxine on brain activation: an open randomized controlled fMRI study. J Clin Psychiatry. 2011;72(4):448–57.

    Article  PubMed  CAS  Google Scholar 

  99. MacQueen GM, et al. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry. 2008;64(10):880–3.

    Article  PubMed  Google Scholar 

  100. Wagner G, et al. Differential effects of serotonergic and noradrenergic antidepressants on brain activity during a cognitive control task and neurofunctional prediction of treatment outcome in patients with depression. J Psychiatry Neurosci JPN. 2010;35(4):247–57.

    Article  PubMed  Google Scholar 

  101. Konarski JZ, et al. Predictors of nonresponse to cognitive behavioural therapy or venlafaxine using glucose metabolism in major depressive disorder. J Psychiatry Neurosci JPN. 2009;34(3):175–80.

    PubMed  Google Scholar 

  102. Milak MS, et al. Pretreatment regional brain glucose uptake in the midbrain on PET may predict remission from a major depressive episode after three months of treatment. Psychiatry Res. 2009;173(1):63–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Won E-S, et al. Association between serotonin transporter-linked polymorphic region and escitalopram antidepressant treatment response in Korean patients with major depressive disorder. Neuropsychobiology. 2012;66(4):221–9.

    Article  PubMed  CAS  Google Scholar 

  104. Myung W, et al. Serotonin transporter genotype and function in relation to antidepressant response in Koreans. Psychopharmacology (Berlin). 2013;225(2):283–90.

    Article  CAS  Google Scholar 

  105. Umene-Nakano W, et al. Predictive factors for responding to sertraline treatment: views from plasma catecholamine metabolites and serotonin transporter polymorphism. J Psychopharmacol Oxf Engl. 2010;24(12):1764–71.

    Article  CAS  Google Scholar 

  106. Kang R-H, et al. Association study of the serotonin transporter promoter polymorphism and mirtazapine antidepressant response in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(6):1317–21.

    Article  PubMed  CAS  Google Scholar 

  107. Kim Y-G, et al. Serotonin-related polymorphisms in TPH1 and HTR5A genes are not associated with escitalopram treatment response in Korean patients with major depression. Neuropsychobiology. 2014;69(4):210–9.

    Article  PubMed  CAS  Google Scholar 

  108. Illi A, et al. Is 5-HTTLPR linked to the response of selective serotonin reuptake inhibitors in MDD? Eur Arch Psychiatry Clin Neurosci. 2011;261(2):95–102.

    Article  PubMed  Google Scholar 

  109. Bozina N, et al. Association study of paroxetine therapeutic response with SERT gene polymorphisms in patients with major depressive disorder. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry. 2008;9(3):190–7.

    Article  Google Scholar 

  110. Arias B, et al. 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J Clin Psychopharmacol. 2003;23(6):563–7.

    Article  PubMed  CAS  Google Scholar 

  111. Sahraian S, et al. Serotonin transporter polymorphism (5-HTTLPR) and citalopram effectiveness in iranian patients with major depressive disorder. Iran J Psychiatry. 2013;8(2):86–91.

    PubMed  PubMed Central  Google Scholar 

  112. Reimherr F, et al. Genetic polymorphisms in the treatment of depression: speculations from an augmentation study using atomoxetine. Psychiatry Res. 2010;175(1–2):67–73.

    Article  PubMed  CAS  Google Scholar 

  113. Baffa A, et al. Norepinephrine and serotonin transporter genes: impact on treatment response in depression. Neuropsychobiology. 2010;62(2):121–31.

    Article  PubMed  CAS  Google Scholar 

  114. Gressier F, et al. 5-HTTLPR modulates antidepressant efficacy in depressed women. Psychiatr Genet. 2009;19(4):195–200.

    Article  PubMed  Google Scholar 

  115. Huezo-Diaz P, et al. Moderation of antidepressant response by the serotonin transporter gene. Br J Psychiatry J Ment Sci. 2009;195(1):30–8.

    Article  Google Scholar 

  116. Porcelli S, et al. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2012;22(4):239–58.

    Article  CAS  Google Scholar 

  117. Kraft JB, et al. Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample. Biol Psychiatry. 2007;61(6):734–42.

    Article  PubMed  CAS  Google Scholar 

  118. Hu X-Z, et al. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch Gen Psychiatry. 2007;64(7):783–92.

    Article  PubMed  CAS  Google Scholar 

  119. Lewis G, et al. Polymorphism of the 5-HT transporter and response to antidepressants: randomised controlled trial. Br J Psychiatry J Ment Sci. 2011;198(6):464–71.

    Article  Google Scholar 

  120. Chang HS, et al. Interaction of 5-HTT and HTR1A gene polymorphisms in treatment responses to mirtazapine in patients with major depressive disorder. J Clin Psychopharmacol. 2014;34(4):446–54.

    Article  PubMed  CAS  Google Scholar 

  121. Lee S-H, et al. Serotonin transporter gene polymorphism associated with short-term treatment response to venlafaxine. Neuropsychobiology. 2010;62(3):198–206.

    Article  PubMed  CAS  Google Scholar 

  122. Min W, et al. Monoamine transporter gene polymorphisms affect susceptibility to depression and predict antidepressant response. Psychopharmacology (Berlin). 2009;205(3):409–17.

    Article  CAS  Google Scholar 

  123. Kim H, et al. Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression. JAMA. 2006;296(13):1609–18.

    Article  PubMed  CAS  Google Scholar 

  124. Kato M, Serretti A. Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry. 2010;15(5):473–500.

    Article  PubMed  CAS  Google Scholar 

  125. Peters EJ, et al. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry. 2004;9(9):879–89.

    Article  PubMed  CAS  Google Scholar 

  126. Arias B, et al. TPH1, MAOA, serotonin receptor 2A and 2C genes in citalopram response: possible effect in melancholic and psychotic depression. Neuropsychobiology. 2013;67(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  127. Hong C-J, et al. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenom J. 2006;6(1):27–33.

    Article  CAS  Google Scholar 

  128. Wang H-C, et al. TPH1 is associated with major depressive disorder but not with SSRI/SNRI response in Taiwanese patients. Psychopharmacology (Berlin). 2011;213(4):773–9.

    Article  CAS  Google Scholar 

  129. Peters EJ, et al. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet Genom. 2009;19(1):1–10.

    Article  CAS  Google Scholar 

  130. Serretti A, et al. Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2004;129B(1):36–40.

    Article  Google Scholar 

  131. Tsai S-J, et al. Tryptophan hydroxylase 2 gene is associated with major depression and antidepressant treatment response. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(4):637–41.

    Article  PubMed  CAS  Google Scholar 

  132. Benedetti F, et al. The catechol-O-methyltransferase Val(108/158)Met polymorphism affects antidepressant response to paroxetine in a naturalistic setting. Psychopharmacology (Berlin). 2009;203(1):155–60.

    Article  CAS  Google Scholar 

  133. Tsai S-J, et al. Sexually dimorphic effect of catechol-O-methyltransferase val158met polymorphism on clinical response to fluoxetine in major depressive patients. J Affect Disord. 2009;113(1–2):183–7.

    Article  PubMed  CAS  Google Scholar 

  134. Baune BT, et al. Association of the COMT val158met variant with antidepressant treatment response in major depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2008;33(4):924–32.

    Article  CAS  Google Scholar 

  135. Arias B, et al. Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. J Affect Disord. 2006;90(2–3):251–6.

    Article  PubMed  CAS  Google Scholar 

  136. Szegedi A, et al. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenom J. 2005;5(1):49–53.

    Article  CAS  Google Scholar 

  137. Tiwari AK, et al. Analysis of 34 candidate genes in bupropion and placebo remission. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP. 2013;16(4):771–81.

    CAS  Google Scholar 

  138. Tzeng D-S, et al. MAOA gene polymorphisms and response to mirtazapine in major depression. Hum Psychopharmacol. 2009;24(4):293–300.

    Article  PubMed  CAS  Google Scholar 

  139. Domschke K, et al. Monoamine oxidase A variant influences antidepressant treatment response in female patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(1):224–8.

    Article  PubMed  CAS  Google Scholar 

  140. Tadić A, et al. The MAOA T941G polymorphism and short-term treatment response to mirtazapine and paroxetine in major depression. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2007;144B(3):325–31.

    Article  CAS  Google Scholar 

  141. Lucae S, et al. HTR2A gene variation is involved in antidepressant treatment response. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2010;20(1):65–8.

    Article  CAS  Google Scholar 

  142. Horstmann S, et al. Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2010;35(3):727–40.

    Article  CAS  Google Scholar 

  143. McMahon FJ, et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet. 2006;78(5):804–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Kawaguchi DM, Glatt SJ. GRIK4 polymorphism and its association with antidepressant response in depressed patients: a meta-analysis. Pharmacogenomics. 2014;15(11):1451–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Fabbri C, et al. Early antidepressant efficacy modulation by glutamatergic gene variants in the STAR*D. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2013;23(7):612–21.

    Article  CAS  Google Scholar 

  146. Ventura-Juncá R, et al. Relationship of cortisol levels and genetic polymorphisms to antidepressant response to placebo and fluoxetine in patients with major depressive disorder: a prospective study. BMC Psychiatry. 2014;14:220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Liu Z, et al. Association study of corticotropin-releasing hormone receptor1 gene polymorphisms and antidepressant response in major depressive disorders. Neurosci Lett. 2007;414(2):155–8.

    Article  PubMed  CAS  Google Scholar 

  148. Licinio J, et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry. 2004;9(12):1075–82.

    Article  PubMed  CAS  Google Scholar 

  149. Binder EB, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319–25.

    Article  PubMed  CAS  Google Scholar 

  150. Kirchheiner J, et al. Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics. 2008;9(7):841–6.

    Article  PubMed  CAS  Google Scholar 

  151. Lekman M, et al. The FKBP5-gene in depression and treatment response–an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry. 2008;63(12):1103–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Ellsworth KA, et al. FKBP5 genetic variation: association with selective serotonin reuptake inhibitor treatment outcomes in major depressive disorder. Pharmacogenet Genom. 2013;23(3):156–66.

    Article  CAS  Google Scholar 

  153. Uher R, et al. Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry. 2010;167(5):555–64.

    Article  PubMed  Google Scholar 

  154. Baune BT, et al. The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biol Psychiatry. 2010;67(6):543–9.

    Article  PubMed  CAS  Google Scholar 

  155. Baghai TC, et al. The angiotensin I converting enzyme insertion/deletion polymorphism influences therapeutic outcome in major depressed women, but not in men. Neurosci Lett. 2004;363(1):38–42.

    Article  PubMed  CAS  Google Scholar 

  156. Saab YB, et al. Renin-angiotensin-system gene polymorphisms and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(5):1113–8.

    Article  PubMed  CAS  Google Scholar 

  157. Segman RH, et al. Angiotensin converting enzyme gene insertion/deletion polymorphism: case–control association studies in schizophrenia, major affective disorder, and tardive dyskinesia and a family-based association study in schizophrenia. Am J Med Genet. 2002;114(3):310–4.

    Article  PubMed  Google Scholar 

  158. Hong C-J, et al. Association study of angiotensin I-converting enzyme polymorphism and symptomatology and antidepressant response in major depressive disorders. J Neural Transm Vienna Austria 1996. 2002;109(9):1209–14.

    CAS  Google Scholar 

  159. Wu Y, et al. The I/D polymorphism of angiotensin-converting enzyme gene in major depressive disorder and therapeutic outcome: a case-control study and meta-analysis. J Affect Disord. 2012;136(3):971–8.

    Article  PubMed  CAS  Google Scholar 

  160. Taylor WD, et al. BDNF Val66Met genotype and 6-month remission rates in late-life depression. Pharmacogenom J. 2011;11(2):146–54.

    Article  CAS  Google Scholar 

  161. Choi M-J, et al. Brain-derived neurotrophic factor gene polymorphism (Val66Met) and citalopram response in major depressive disorder. Brain Res. 2006;1118(1):176–82.

    Article  PubMed  CAS  Google Scholar 

  162. Kocabas NA, et al. Brain-derived neurotrophic factor gene polymorphisms: influence on treatment response phenotypes of major depressive disorder. Int Clin Psychopharmacol. 2011;26(1):1–10.

    Article  PubMed  Google Scholar 

  163. Chi MH, et al. Brain derived neurotrophic factor gene polymorphism (Val66Met) and short-term antidepressant response in major depressive disorder. J Affect Disord. 2010;126(3):430–5.

    Article  PubMed  CAS  Google Scholar 

  164. Domschke K, et al. Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant treatment response. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP. 2010;13(1):93–101.

    CAS  Google Scholar 

  165. Katsuki A, et al. Serum levels of brain-derived neurotrophic factor (BDNF), BDNF gene Val66Met polymorphism, or plasma catecholamine metabolites, and response to mirtazapine in Japanese patients with major depressive disorder (MDD). CNS Spectr. 2012;17(3):155–63.

    Article  PubMed  Google Scholar 

  166. Yoshimura R, et al. The brain-derived neurotrophic factor (BDNF) polymorphism Val66Met is associated with neither serum BDNF level nor response to selective serotonin reuptake inhibitors in depressed Japanese patients. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):1022–5.

    Article  PubMed  CAS  Google Scholar 

  167. Kang RH, et al. Brain-derived neurotrophic factor gene polymorphisms and mirtazapine responses in Koreans with major depression. J Psychopharmacol Oxf Engl. 2010;24(12):1755–63.

    Article  CAS  Google Scholar 

  168. Zou Y-F, et al. Association of brain-derived neurotrophic factor genetic Val66Met polymorphism with severity of depression, efficacy of fluoxetine and its side effects in Chinese major depressive patients. Neuropsychobiology. 2010;61(2):71–8.

    Article  PubMed  CAS  Google Scholar 

  169. Uher R, et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenom J. 2009;9(4):225–33.

    Article  CAS  Google Scholar 

  170. Lin E, et al. Association study of a brain-derived neurotrophic-factor polymorphism and short-term antidepressant response in major depressive disorders. Pharmacogenom Pers Med. 2008;1:1–6.

    CAS  Google Scholar 

  171. Yoshida K, et al. The G196A polymorphism of the brain-derived neurotrophic factor gene and the antidepressant effect of milnacipran and fluvoxamine. J Psychopharmacol Oxf Engl. 2007;21(6):650–6.

    Article  CAS  Google Scholar 

  172. Hennings JM, et al. Possible associations of NTRK2 polymorphisms with antidepressant treatment outcome: findings from an extended tag SNP approach. PLoS One. 2013;8(6):e64947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Porcelli S, et al. Pharmacogenetics of antidepressant response. J Psychiatry Neurosci JPN. 2011;36(2):87–113.

    Article  PubMed  Google Scholar 

  174. Perlis RH. Pharmacogenomic testing and personalized treatment of depression. Clin Chem. 2014;60(1):53–9.

    Article  PubMed  CAS  Google Scholar 

  175. Zhang X, et al. Neither cytochrome P450 family genes nor neuroendocrine factors could independently predict the SSRIs treatment in the Chinese Han population. Pharmacopsychiatry. 2014;47(2):60–6.

    Article  PubMed  CAS  Google Scholar 

  176. Peters EJ, et al. Pharmacokinetic genes do not influence response or tolerance to citalopram in the STAR*D sample. PLoS One. 2008;3(4):e1872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Uhr M, et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron. 2008;57(2):203–9.

    Article  PubMed  CAS  Google Scholar 

  178. Dong C, et al. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry. 2009;14(12):1105–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Huang X, et al. ABCB6, ABCB1 and ABCG1 genetic polymorphisms and antidepressant response of SSRIs in Chinese depressive patients. Pharmacogenomics. 2013;14(14):1723–30.

    Article  PubMed  CAS  Google Scholar 

  180. Breitenstein B, et al. Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: results from a randomized clinical study. J Psychiatr Res. 2016;73:86–95.

    Article  PubMed  Google Scholar 

  181. Garriock HA, et al. A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry. 2010;67(2):133–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Ising M, et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry. 2009;66(9):966–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Ji Y, et al. Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: genome-wide associations and functional genomics. Pharmacogenom J. 2013;13(5):456–63.

    Article  CAS  Google Scholar 

  184. GENDEP Investigators, MARS Investigators, STAR*D Investigators. Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. Am J Psychiatry. 2013;170(2):207–17.

    Article  Google Scholar 

  185. Poland RE, et al. Response to citalopram is not associated with SLC6A4 genotype in African-Americans and Caucasians with major depression. Life Sci. 2013;92(20–21):967–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Yoshimura R, et al. Rapid response to paroxetine is associated with plasma paroxetine levels at 4 but not 8 weeks of treatment, and is independent of serotonin transporter promoter polymorphism in Japanese depressed patients. Hum Psychopharmacol. 2009;24(6):489–94.

    Article  PubMed  CAS  Google Scholar 

  187. Dogan O, et al. Serotonin transporter gene polymorphisms and sertraline response in major depression patients. Genet Test. 2008;12(2):225–31.

    Article  PubMed  CAS  Google Scholar 

  188. Murphy GM, et al. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry. 2004;61(11):1163–9.

    Article  PubMed  CAS  Google Scholar 

  189. Yoshida K, et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry. 2004;161(9):1575–80.

    Article  PubMed  Google Scholar 

  190. Houston JP, et al. Association of catechol-O-methyltransferase variants with duloxetine response in major depressive disorder. Psychiatry Res. 2011;189(3):475–7.

    Article  PubMed  CAS  Google Scholar 

  191. Perlis RH, et al. Variation in catechol-O-methyltransferase is associated with duloxetine response in a clinical trial for major depressive disorder. Biol Psychiatry. 2009;65(9):785–91.

    Article  PubMed  CAS  Google Scholar 

  192. Yu YW-Y, et al. Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2005;30(9):1719–23.

    Article  CAS  Google Scholar 

  193. Perlis RH, et al. Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol Psychiatry. 2010;67(11):1110–3.

    Article  PubMed  CAS  Google Scholar 

  194. Sarginson JE, et al. FKBP5 polymorphisms and antidepressant response in geriatric depression. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2010;153B(2):554–60.

    Article  CAS  Google Scholar 

  195. Tsai S-J, et al. Lack of supporting evidence for a genetic association of the FKBP5 polymorphism and response to antidepressant treatment. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2007;144B(8):1097–8.

    Article  CAS  Google Scholar 

  196. Papiol S, et al. Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord. 2007;104(1–3):83–90.

    Article  PubMed  CAS  Google Scholar 

  197. Gau Y-TA, et al. Evidence for association between genetic variants of p75 neurotrophin receptor (p75NTR) gene and antidepressant treatment response in Chinese major depressive disorder. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet. 2008;147B(5):594–9.

    Article  CAS  Google Scholar 

  198. Staeker J, et al. Polymorphisms in serotonergic pathways influence the outcome of antidepressant therapy in psychiatric inpatients. Genet Test Mol Biomark. 2014;18(1):20–31.

    Article  CAS  Google Scholar 

  199. Xu Z, et al. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J Psychopharmacol Oxf Engl. 2012;26(3):349–59.

    Article  CAS  Google Scholar 

  200. Serretti A, et al. No effect of serotoninergic gene variants on response to interpersonal counseling and antidepressants in major depression. Psychiatry Investig. 2013;10(2):180–9.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Iga J, et al. Serotonin transporter mRNA expression in peripheral leukocytes of patients with major depression before and after treatment with paroxetine. Neurosci Lett. 2005;389(1):12–6.

    Article  PubMed  CAS  Google Scholar 

  202. Belzeaux R, et al. Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression. J Psychiatr Res. 2010;44(16):1205–13.

    Article  PubMed  Google Scholar 

  203. Bocchio-Chiavetto L, et al. Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2013;23(7):602–11.

    Article  CAS  Google Scholar 

  204. Belzeaux R, et al. Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl Psychiatry. 2012;2:e185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Mamdani F, et al. Gene expression biomarkers of response to citalopram treatment in major depressive disorder. Transl Psychiatry. 2011;1:e13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Mamdani F, et al. Pharmacogenomic predictors of citalopram treatment outcome in major depressive disorder. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry. 2014;15(2):135–44.

    Article  Google Scholar 

  207. Guilloux J-P, et al. Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2015;40(3):701–10.

    Article  CAS  Google Scholar 

  208. Hennings JM, et al. RNA expression profiling in depressed patients suggests retinoid-related orphan receptor alpha as a biomarker for antidepressant response. Transl Psychiatry. 2015;5:e538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Powell TR, et al. DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry. 2013;3:e300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Cattaneo A, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2013;38(3):377–85.

    Article  CAS  Google Scholar 

  211. Domschke K, et al. Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP. 2014;17(8):1167–76.

    CAS  Google Scholar 

  212. Binder EB, et al. HPA-axis regulation at in-patient admission is associated with antidepressant therapy outcome in male but not in female depressed patients. Psychoneuroendocrinology. 2009;34(1):99–109.

    Article  PubMed  CAS  Google Scholar 

  213. Rojas PS, et al. Serum brain-derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes as markers of antidepressant response in major depressive patients: a pilot study. Psychiatry Res. 2011;189(2):239–45.

    Article  PubMed  CAS  Google Scholar 

  214. Haile CN, et al. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP. 2014;17(2):331–6.

    CAS  Google Scholar 

  215. García-Sevilla JA, et al. Reduced platelet G protein-coupled receptor kinase 2 in major depressive disorder: antidepressant treatment-induced upregulation of GRK2 protein discriminates between responder and non-responder patients. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2010;20(10):721–30.

    Article  CAS  Google Scholar 

  216. Harley J, et al. Orosomucoid influences the response to antidepressants in major depressive disorder. J Psychopharmacol Oxf Engl. 2010;24(4):531–5.

    Article  CAS  Google Scholar 

  217. Wolkowitz OM, et al. Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol Psychiatry. 2012;17(2):164–72.

    Article  PubMed  CAS  Google Scholar 

  218. Moaddel R, et al. D-serine plasma concentration is a potential biomarker of (R, S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology (Berlin). 2015;232(2):399–409.

    Article  CAS  Google Scholar 

  219. Martins-de-Souza D, et al. Plasma fibrinogen: now also an antidepressant response marker? Transl Psychiatry. 2014;4:e352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Lopez JP, et al. Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP. 2014;17(1):23–32.

    CAS  Google Scholar 

  221. Ising M, et al. Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression—a potential biomarker? Biol Psychiatry. 2007;62(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  222. Svenningsson P, et al. Preliminary evidence that early reduction in p11 levels in natural killer cells and monocytes predicts the likelihood of antidepressant response to chronic citalopram. Mol Psychiatry. 2014;19(9):962–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Viikki M, et al. TPH1 218A/C polymorphism is associated with major depressive disorder and its treatment response. Neurosci Lett. 2010;468(1):80–4.

    Article  PubMed  CAS  Google Scholar 

  224. Yoshida K, et al. Influence of the tyrosine hydroxylase val81met polymorphism and catechol-O-methyltransferase val158met polymorphism on the antidepressant effect of milnacipran. Hum Psychopharmacol. 2008;23(2):121–8.

    Article  PubMed  CAS  Google Scholar 

  225. Paddock S, et al. Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatry. 2007;164(8):1181–8.

    Article  PubMed  Google Scholar 

  226. Breitenstein B, et al. Are there meaningful biomarkers of treatment response for depression? Drug Discov Today. 2014;19(5):539–61.

    Article  PubMed  CAS  Google Scholar 

  227. Leuchter AF, et al. Biomarkers to predict antidepressant response. Curr Psychiatry Rep. 2010;12(6):553–62.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Olbrich S, Arns M. EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. Int Rev Psychiatry Abingdon Engl. 2013;25(5):604–18.

    Article  Google Scholar 

  229. Labermaier C, et al. Biomarkers predicting antidepressant treatment response: how can we advance the field? Dis Mark. 2013;35(1):23–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Voegeli.

Ethics declarations

Funding

No funding was used to assist with the preparation of this review.

Conflicts of interest

Geraldine VOEGELI has no conflicts of interest to declare. Marie-Laure CLERY-MELIN has no conflicts of interest to declare. Nicolas RAMOZ has no conflicts of interest to declare. Philip GORWOOD received research grants from Eli Lilly and Servier; honoraria for presentations in congresses from AstraZeneca, Bristol-Myers Squibb, Janssen, Lundbeck, Otsuka and Servier; participated on advisory board of AstraZeneca, Janssen, Roche, and Servier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voegeli, G., Cléry-Melin, M.L., Ramoz, N. et al. Progress in Elucidating Biomarkers of Antidepressant Pharmacological Treatment Response: A Systematic Review and Meta-analysis of the Last 15 Years. Drugs 77, 1967–1986 (2017). https://doi.org/10.1007/s40265-017-0819-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0819-9

Navigation