Skip to main content
Log in

Immunosuppression and Allograft Rejection Following Lung Transplantation: Evidence to Date

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The enduring success of lung transplantation is built on the use of immunosuppressive drugs to stop the immune system from rejecting the newly transplanted lung allograft. Most patients receive a triple-drug maintenance immunosuppressive regimen consisting of a calcineurin inhibitor, an antiproliferative and corticosteroids. Induction therapy with either an antilymphocyte monoclonal or an interleukin-2 receptor antagonist are prescribed by many centres aiming to achieve rapid inhibition of recently activated and potentially alloreactive T lymphocytes. Despite this generic approach acute rejection episodes remain common, mandating further fine-tuning and augmentation of the immunosuppressive regimen. While there has been a trend away from cyclosporine and azathioprine towards a preference for tacrolimus and mycophenolate mofetil, this has not translated into significant protection from the development of chronic lung allograft dysfunction, the main barrier to the long-term success of lung transplantation. This article reviews the problem of lung allograft rejection and the evidence for immunosuppressive regimens used both in the short- and long-term in patients undergoing lung transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Heeger PS, Dinavahi R. Transplant immunology for non-immunologist. Mount Sinai J Med. 2012;79(3):376–87.

    Google Scholar 

  2. Chinen J, Buckley RH. Transplantation immunology: solid organ and bone marrow. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S324–35.

    PubMed  Google Scholar 

  3. Hachem RR. Antibodies to human leukocyte antigens in lung transplantation. Clin Transpl. 2011; 327–32.

  4. Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Dobbels F, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report-2012. J Heart Lung Transplant. 2012;31(10):1073–86.

    PubMed  Google Scholar 

  5. Game DS, Lechler RI. Pathways of allorecognition: implications for transplantation tolerance. Transplant Immunol. 2002;10(2–3):101–8.

    CAS  Google Scholar 

  6. Avlonitis VS, Fisher AJ, Kirby JA, Dark JH. Pulmonary transplantation: the role of brain death in donor lung injury. Transplantation. 2003;75(12):1928–33.

    PubMed  Google Scholar 

  7. Rostron AJ, Cork DM, Avlonitis VS, Fisher AJ, Dark JH, Kirby JA. Contribution of toll-like receptor activation to lung damage after donor brain death. Transplantation. 2010;90(7):732–9.

    PubMed  CAS  Google Scholar 

  8. Beniaminovitz A, Itescu S, Lietz K, Donovan M, Burke EM, Groff BD, et al. Prevention of rejection in cardiac transplantation by blockade of the interleukin-2 receptor with a monoclonal antibody. N Engl J Med. 2000;342(9):613–9.

    PubMed  CAS  Google Scholar 

  9. Szczech LA, Berlin JA, Aradhye S, Grossman RA, Feldman HI. Effect of anti-lymphocyte induction therapy on renal allograft survival: a meta-analysis. J Am Soc Nephrol. 1997;8(11):1771–7.

    PubMed  CAS  Google Scholar 

  10. Taniguchi Y, Frickhofen N, Raghavachar A, Digel W, Heimpel H. Antilymphocyte immunoglobulins stimulate peripheral blood lymphocytes to proliferate and release lymphokines. Eur J Haematol. 1990;44(4):244–51.

    PubMed  CAS  Google Scholar 

  11. Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J. 2004;23(1):159–71.

    PubMed  CAS  Google Scholar 

  12. Hartwig MG, Snyder LD, Appel JZ 3rd, Cantu E 3rd, Lin SS, Palmer SM, et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant. 2008;27(5):547–53.

    PubMed  Google Scholar 

  13. Palmer SM, Miralles AP, Lawrence CM, Gaynor JW, Davis RD, Tapson VF. Rabbit antithymocyte globulin decreases acute rejection after lung transplantation: results of a randomized, prospective study. Chest. 1999;116(1):127–33.

    PubMed  CAS  Google Scholar 

  14. Abouna GM, al-Abdullah IH, Kelly-Sullivan D, Kumar MS, Loose J, Phillips K, et al. Randomized clinical trial of antithymocyte globulin induction in renal transplantation comparing a fixed daily dose with dose adjustment according to T cell monitoring. Transplantation. 1995;59(11):1564–8.

    Google Scholar 

  15. Djamali A, Turc-Baron C, Portales P, Leverson G, Chong G, Clot J, et al. Low dose antithymocyte globulins in renal transplantation: daily versus intermittent administration based on T-cell monitoring. Transplantation. 2000;69(5):799–805.

    PubMed  CAS  Google Scholar 

  16. Krasinskas AM, Kreisel D, Acker MA, Bavaria JE, Pochettino A, Kotloff RM, et al. CD3 monitoring of antithymocyte globulin therapy in thoracic organ transplantation. Transplantation. 2002;73(8):1339–41.

    PubMed  CAS  Google Scholar 

  17. Sweet SC. Induction therapy in lung transplantation. Transplant Int. 2013;26(7):696–703.

    CAS  Google Scholar 

  18. Ciancio G, Burke GW 3rd. Alemtuzumab (Campath-1H) in kidney transplantation. Am J Transplant. 2008;8(1):15–20.

    PubMed  CAS  Google Scholar 

  19. van Loenhout KC, Groves SC, Galazka M, Sherman B, Britt E, Garcia J, et al. Early outcomes using alemtuzumab induction in lung transplantation. Interact Cardiovasc Thorac Surg. 2010;10(2):190–4.

    PubMed  Google Scholar 

  20. Shyu S, Dew MA, Pilewski JM, DeVito Dabbs AJ, Zaldonis DB, Studer SM, et al. Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant. 2011;30(7):743–54.

  21. Ekberg H, Backman L, Tufveson G, Tyden G, Nashan B, Vincenti F. Daclizumab prevents acute rejection and improves patient survival post transplantation: 1 year pooled analysis. Transplant Int. 2000;13(2):151–9.

    CAS  Google Scholar 

  22. Mehra MR, Zucker MJ, Wagoner L, Michler R, Boehmer J, Kovarik J, et al. A multicenter, prospective, randomized, double-blind trial of basiliximab in heart transplantation. J Heart Lung Transplant. 2005;24(9):1297–304.

    PubMed  Google Scholar 

  23. Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med. 1998;338(3):161–5.

    Google Scholar 

  24. Brock MV, Borja MC, Ferber L, Orens JB, Anzcek RA, Krishnan J, et al. Induction therapy in lung transplantation: a prospective, controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant. 2001;20(12):1282–90.

    PubMed  CAS  Google Scholar 

  25. Ailawadi G, Smith PW, Oka T, Wang H, Kozower BD, Daniel TM, et al. Effects of induction immunosuppression regimen on acute rejection, bronchiolitis obliterans, and survival after lung transplantation. J Thorac Cardiovasc Surg. 2008;135(3):594–602.

    PubMed  Google Scholar 

  26. Garrity ER Jr, Villanueva J, Bhorade SM, Husain AN, Vigneswaran WT. Low rate of acute lung allograft rejection after the use of daclizumab, an interleukin 2 receptor antibody. Transplantation. 2001;71(6):773–7.

    PubMed  CAS  Google Scholar 

  27. Hachem RR, Chakinala MM, Yusen RD, Lynch JP, Aloush AA, Patterson GA, et al. A comparison of basiliximab and anti-thymocyte globulin as induction agents after lung transplantation. J Heart Lung Transplant. 2005;24(9):1320–6.

    PubMed  Google Scholar 

  28. Burton CM, Andersen CB, Jensen AS, Iversen M, Milman N, Boesgaard S, et al. The incidence of acute cellular rejection after lung transplantation: a comparative study of anti-thymocyte globulin and daclizumab. J Heart Lung Transplant. 2006;25(6):638–47.

    PubMed  Google Scholar 

  29. Borel JF, Feurer C, Gubler HU, Stahelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions. 1976;6(4):468–75.

    PubMed  CAS  Google Scholar 

  30. Kahan BD, Dunn J, Fitts C, Van Buren D, Wombolt D, Pollak R, et al. Reduced inter- and intrasubject variability in cyclosporine pharmacokinetics in renal transplant recipients treated with a microemulsion formulation in conjunction with fasting, low-fat meals, or high-fat meals. Transplantation. 1995;59(4):505–11.

    PubMed  CAS  Google Scholar 

  31. Reynaud-Gaubert M, Viard L, Girault D, Bertault-Perez P, Guignard M, Metras D, et al. Improved absorption and bioavailability of cyclosporine A from a microemulsion formulation in lung transplant recipients affected with cystic fibrosis. Transplant Proceed. 1997;29(5):2450–3.

    CAS  Google Scholar 

  32. Kesten S, Scavuzzo M, Chaparro C, Szalai JP. Pharmacokinetic profile and variability of cyclosporine versus neoral in patients with cystic fibrosis after lung transplantation. Pharmacotherapy. 1998;18(4):847–50.

    PubMed  CAS  Google Scholar 

  33. Lindholm A, Kahan BD. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Therapeutics. 1993;54(2):205–18.

    CAS  Google Scholar 

  34. Lindholm A, Welsh M, Rutzky L, Kahan BD. The adverse impact of high cyclosporine: clearance rates on the incidences of acute rejection and graft loss. Transplantation. 1993;55(5):985–93.

    Google Scholar 

  35. Levy G, Burra P, Cavallari A, Duvoux C, Lake J, Mayer AD, et al. Improved clinical outcomes for liver transplant recipients using cyclosporine monitoring based on 2-hr post-dose levels (C2). Transplantation. 2002;73(6):953–9.

    PubMed  CAS  Google Scholar 

  36. Levy GA. Neoral C2 monitoring in solid organ transplantation. Transplant Proceed. 2004;36(2 Suppl):392S–5S.

    CAS  Google Scholar 

  37. Trull A, Steel L, Sharples L, Stewart S, Parameshwar J, McNeil K, et al. Randomized, trough blood cyclosporine concentration-controlled trial to compare the pharmacodynamics of Sandimmune and Neoral in de novo lung transplant recipients. Ther Drug Monit. 1999;21(1):17–26.

    PubMed  CAS  Google Scholar 

  38. Dumont RJ, Partovi N, Levy RD, Fradet G, Ensom MH. A limited sampling strategy for cyclosporine area under the curve monitoring in lung transplant recipients. J Heart Lung Transplant. 2001;20(8):897–900.

    PubMed  CAS  Google Scholar 

  39. Glanville AR, Aboyoun CL, Morton JM, Plit M, Malouf MA. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant. 2006;25(8):928–34.

    PubMed  Google Scholar 

  40. Ragette R, Kamler M, Weinreich G, Teschler H, Jakob H. Tacrolimus pharmacokinetics in lung transplantation: new strategies for monitoring. J Heart Lung Transplant. 2005;24(9):1315–9.

    PubMed  Google Scholar 

  41. Knoop C, Thiry P, Saint-Marcoux F, Rousseau A, Marquet P, Estenne M. Tacrolimus pharmacokinetics and dose monitoring after lung transplantation for cystic fibrosis and other conditions. Am J Transplant. 2005;5(6):1477–82.

    PubMed  CAS  Google Scholar 

  42. Keenan RJ, Konishi H, Kawai A, Paradis IL, Nunley DR, Iacono AT, et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Annals Thorac Surg. 1995;60(3):580–4; discussion 4–5

    Google Scholar 

  43. Treede H, Klepetko W, Reichenspurner H, Zuckermann A, Meiser B, Birsan T, et al. Tacrolimus versus cyclosporine after lung transplantation: a prospective, open, randomized two-center trial comparing two different immunosuppressive protocols. J Heart Lung Transplant. 2001;20(5):511–7.

    PubMed  CAS  Google Scholar 

  44. Zuckermann A, Reichenspurner H, Birsan T, Treede H, Deviatko E, Reichart B, et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J Thorac Cardiovasc Surg. 2003;125(4):891–900.

    PubMed  CAS  Google Scholar 

  45. Treede H, Glanville AR, Klepetko W, Aboyoun C, Vettorazzi E, Lama R, et al. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transplant. 2012;31(8):797–804.

    PubMed  Google Scholar 

  46. Van Gelder T, Klupp J, Barten MJ, Christians U, Morris RE. Co-administration of tacrolimus and mycophenolate mofetil does not increase mycophenolic acid (MPA) exposure, but co-administration of cyclosporine inhibits the enterohepatic recirculation of MPA, thereby decreasing its exposure. J Heart Lung Transplant. 2001;20(2):160–1.

    PubMed  Google Scholar 

  47. Halloran P, Mathew T, Tomlanovich S, Groth C, Hooftman L, Barker C. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation. 1997;63(1):39–47.

    Google Scholar 

  48. Kobashigawa J, Miller L, Renlund D, Mentzer R, Alderman E, Bourge R, et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation. 1998;66(4):507–15.

    PubMed  CAS  Google Scholar 

  49. O’Hair DP, Cantu E, McGregor C, Jorgensen B, Gerow-Smith R, Galantowicz ME, et al. Preliminary experience with mycophenolate mofetil used after lung transplantation. J Heart Lung Transplant. 1998;17(9):864–8.

    PubMed  Google Scholar 

  50. Ross DJ, Waters PF, Levine M, Kramer M, Ruzevich S, Kass RM. Mycophenolate mofetil versus azathioprine immunosuppressive regimens after lung transplantation: preliminary experience. J Heart Lung Transplant. 1998;17(8):768–74.

    PubMed  CAS  Google Scholar 

  51. Zuckermann A, Birsan T, Thaghavi S, Artemiou O, Kupilik N, Dekan G, et al. Mycophenolate mofetil in lung transplantation. Transplant Proceed. 1998;30(4):1514–6.

    CAS  Google Scholar 

  52. Palmer SM, Baz MA, Sanders L, Miralles AP, Lawrence CM, Rea JB, et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71(12):1772–6.

    PubMed  CAS  Google Scholar 

  53. Glanville AR, Corris PA, McNeil KD, Wahlers T. Mycophenolate mofetil (MMF) vs azathioprine (AZA) in lung transplantation for the prevention of Bronchiolitis Obliterans Syndrome (BOS): results of a 3 year international randomised trial. J Heart Lung Transplant. 2003;22(1):S207.

    Google Scholar 

  54. Lorber MI, Mulgaonkar S, Butt KM, Elkhammas E, Mendez R, Rajagopalan PR, et al. Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. Transplantation. 2005;80(2):244–52.

    PubMed  CAS  Google Scholar 

  55. Ekberg H, Tedesco-Silva H, Demirbas A, Vitko S, Nashan B, Gurkan A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357(25):2562–75.

    PubMed  CAS  Google Scholar 

  56. Vigano M, Tuzcu M, Benza R, Boissonnat P, Haverich A, Hill J, et al. Prevention of acute rejection and allograft vasculopathy by everolimus in cardiac transplants recipients: a 24-month analysis. J Heart Lung Transplant. 2007;26(6):584–92.

    PubMed  Google Scholar 

  57. Dantal J, Berthoux F, Moal MC, Rostaing L, Legendre C, Genin R, et al. Efficacy and safety of de novo or early everolimus with low cyclosporine in deceased-donor kidney transplant recipients at specified risk of delayed graft function: 12-month results of a randomized, multicenter trial. Transplant Int. 2010;23(11):1084–93.

    CAS  Google Scholar 

  58. Glanville AR, Aboyoun CL, Klepetko W, Reichenspurner H, Treede H, Verschuuren EA, et al. 278: 1-year results of the CeMyLungs study, a 3-year randomised, open label, multi-centre investigator driven study comparing de novo enteric coated mycophenolate sodium with delayed onset everolimus, both arms in combination with cyclosporin (using C2 monitoring) and corticosteroids for the prevention of the bronchiolitis obliterans syndrome in heart-lung, bilateral lung and single lung transplant recipients. J Heart Lung Transplant. 2010;29(2):S94.

    Google Scholar 

  59. Snell GI, Valentine VG, Vitulo P, Glanville AR, McGiffin DC, Loyd JE, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant. 2006;6(1):169–77.

    PubMed  CAS  Google Scholar 

  60. Gullestad L, Iversen M, Mortensen SA, Eiskjaer H, Riise GC, Mared L, et al. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. Transplantation. 2010;89(7):864–72.

    PubMed  CAS  Google Scholar 

  61. Bhorade S, Ahya VN, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183(3):379–87.

    PubMed  CAS  Google Scholar 

  62. McWilliams TJ, Levvey BJ, Russell PA, Milne DG, Snell GI. Interstitial pneumonitis associated with sirolimus: a dilemma for lung transplantation. J Heart Lung Transplant. 2003;22(2):210–3.

    PubMed  Google Scholar 

  63. King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75(9):1437–43.

    Google Scholar 

  64. van der Vliet JA, Willems MC, de Man BM, Lomme RM, Hendriks T. Everolimus interferes with healing of experimental intestinal anastomoses. Transplantation. 2006;82(11):1477–83.

    PubMed  Google Scholar 

  65. Albano L, Berthoux F, Moal MC, Rostaing L, Legendre C, Genin R, et al. Incidence of delayed graft function and wound healing complications after deceased-donor kidney transplantation is not affected by de novo everolimus. Transplantation. 2009;88(1):69–76.

    PubMed  CAS  Google Scholar 

  66. Mulay AV, Cockfield S, Stryker R, Fergusson D, Knoll GA. Conversion from calcineurin inhibitors to sirolimus for chronic renal allograft dysfunction: a systematic review of the evidence. Transplantation. 2006;82(9):1153–62.

    PubMed  Google Scholar 

  67. Hunt J, Lerman M, Magee MJ, Dewey TM, Herbert M, Mack MJ. Improvement of renal dysfunction by conversion from calcineurin inhibitors to sirolimus after heart transplantation. J Heart Lung Transplant. 2005;24(11):1863–7.

    PubMed  Google Scholar 

  68. Gustafsson F, Ross HJ, Delgado MS, Bernabeo G, Delgado DH. Sirolimus-based immunosuppression after cardiac transplantation: predictors of recovery from calcineurin inhibitor-induced renal dysfunction. J Heart Lung Transplant. 2007;26(10):998–1003.

    PubMed  Google Scholar 

  69. Venuta F, De Giacomo T, Rendina EA, Quattrucci S, Mercadante E, Cimino G, et al. Recovery of chronic renal impairment with sirolimus after lung transplantation. Annals Thorac Surg. 2004;78(6):1940–3.

    Google Scholar 

  70. Villanueva J, Boukhamseen A, Bhorade SM. Successful use in lung transplantation of an immunosuppressive regimen aimed at reducing target blood levels of sirolimus and tacrolimus. J Heart Lung Transplant. 2005;24(4):421–5.

    PubMed  Google Scholar 

  71. Shitrit D, Rahamimov R, Gidon S, Bakal I, Bargil-Shitrit A, Milton S, et al. Use of sirolimus and low-dose calcineurin inhibitor in lung transplant recipients with renal impairment: results of a controlled pilot study. Kidney Int. 2005;67(4):1471–5.

    PubMed  CAS  Google Scholar 

  72. Ghassemieh B, Ahya VN, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Decreased incidence of cytomegalovirus infection with sirolimus in a post hoc randomized, multicenter study in lung transplantation. J Heart Lung Transplant. 2013;32(7):701–6.

    PubMed  Google Scholar 

  73. San Juan R, Aguado JM, Lumbreras C, Fortun J, Munoz P, Gavalda J, et al. Impact of current transplantation management on the development of cytomegalovirus disease after renal transplantation. Clin Infect Dis. 2008;47(7):875–82.

    Google Scholar 

  74. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349(9):847–58.

    Google Scholar 

  75. Vigano M, Dengler T, Mattei MF, Poncelet A, Vanhaecke J, Vermes E, et al. Lower incidence of cytomegalovirus infection with everolimus versus mycophenolate mofetil in de novo cardiac transplant recipients: a randomized, multicenter study. Transplant Infect Dis. 2010;12(1):23–30.

    CAS  Google Scholar 

  76. Brennan DC, Legendre C, Patel D, Mange K, Wiland A, McCague K, et al. Cytomegalovirus incidence between everolimus versus mycophenolate in de novo renal transplants: pooled analysis of three clinical trials. Am J Transplant. 2011;11(11):2453–62.

    PubMed  CAS  Google Scholar 

  77. Zhang S, Pillai VC, Mada SR, Strom S, Venkataramanan R. Effect of voriconazole and other azole antifungal agents on CYP3A activity and metabolism of tacrolimus in human liver microsomes. Xenobiotica Fate Foreign Compd Biol Syst. 2012;42(5):409–16.

    CAS  Google Scholar 

  78. Capone D, Tarantino G, Gentile A, Sabbatini M, Polichetti G, Santangelo M, et al. Effects of voriconazole on tacrolimus metabolism in a kidney transplant recipient. J Clin Pharm Therapeutics. 2010;35(1):121–4.

    CAS  Google Scholar 

  79. Venkataramanan R, Zang S, Gayowski T, Singh N. Voriconazole inhibition of the metabolism of tacrolimus in a liver transplant recipient and in human liver microsomes. Antimicrob Agents Chemother. 2002;46(9):3091–3.

    PubMed  CAS  Google Scholar 

  80. Medicine and Healthcare Products Regulatory Authority UK. Oral tacrolimus products: measures to reduce risk of medication errors. Drug Safety Update. 2010;3(10):5–7.

    Google Scholar 

  81. Service UKNP. Generic medicines: dealing with multiple brands. NPS News. 2007;55:25–6.

    Google Scholar 

  82. Therapeutic Goods Administration AG. Biopharmaceutics studies. Australian Regulatory Guidelines for Prescriptions Medicines. 2004; 15:91–116 (Appendix).

  83. Christians U, Klawitter J, Clavijo CF. Bioequivalence testing of immunosuppressants: concepts and misconceptions. Kidney Int Suppl. 2010(115):S1–7.

  84. Flechner SM, Kobashigawa J, Klintmalm G. Calcineurin inhibitor-sparing regimens in solid organ transplantation: focus on improving renal function and nephrotoxicity. Clin Transplant. 2008;22(1):1–15.

    PubMed  Google Scholar 

  85. Uber PA, Ross HJ, Zuckermann AO, Sweet SC, Corris PA, McNeil K, et al. Generic drug immunosuppression in thoracic transplantation: an ISHLT educational advisory. J Heart Lung Transplant. 2009;28(7):655–60.

    PubMed  Google Scholar 

  86. Ensor CR, Trofe-Clark J, Gabardi S, McDevitt-Potter LM, Shullo MA. Generic maintenance immunosuppression in solid organ transplant recipients. Pharmacotherapy. 2011;31(11):1111–29.

    PubMed  CAS  Google Scholar 

  87. Abdulnour HA, Araya CE, Dharnidharka VR. Comparison of generic tacrolimus and Prograf drug levels in a pediatric kidney transplant program: brief communication. Pediatr Transplant. 2010;14(8):1007–11.

    PubMed  Google Scholar 

  88. Reams D, Rea J, Davis D, Palmer S. Utility of sublingual tacrolimus in cystic fibrosis patients after lung transplantation. J Heart Lung Transplant. 2001;20(2):207–8.

    PubMed  Google Scholar 

  89. Raviv Y, D’Ovidio F, Pierre A, Chaparro C, Freeman M, Keshavjee S, et al. Prevalence of gastroparesis before and after lung transplantation and its association with lung allograft outcomes. Clin Transplant. 2012;26(1):133–42.

    PubMed  Google Scholar 

  90. Garrity ER Jr, Hertz MI, Trulock EP, Keenan R, Love R. Suggested guidelines for the use of tacrolimus in lung-transplant recipients. J Heart Lung Transplant. 1999;18(3):175–6.

    PubMed  Google Scholar 

  91. Abu-Elmagd KM, Fung J, Draviam R, Shannon W, Jain A, Alessiani M, et al. Four-hour versus 24-hour intravenous infusion of FK 506 in liver transplantation. Transplant Proceed. 1991;23(6):2767–70.

    CAS  Google Scholar 

  92. Snell GI, Westall GP. Immunosuppression for lung transplantation: evidence to date. Drugs. 2007;67(11):1531–9.

    PubMed  CAS  Google Scholar 

  93. Wu Q, Marescaux C, Wolff V, Jeung MY, Kessler R, Lauer V, et al. Tacrolimus-associated posterior reversible encephalopathy syndrome after solid organ transplantation. Eur Neurol. 2010;64(3):169–77.

    PubMed  CAS  Google Scholar 

  94. Hayek FN, Al-Ghawi H, Allen J, Baize T, Mudd L, Mehta A, Soni S, Cheerva A, Herzig GP, Herzig RH. Twice daily intravenous bolus tacrolimus infusion for acute graft-vs-host disease prophylaxis. Biol Blood Marrow Transplant. 2004;10(2):45.

    Google Scholar 

  95. Sakamoto Y, Makuuchi M, Harihara Y, Imamura H, Sato H. Higher intracerebral concentration of tacrolimus after intermittent than continuous administration to rats. Liver Transplant. 2001;7(12):1071–6.

    CAS  Google Scholar 

  96. Hibi T, Tanabe M, Hoshino K, Fuchimoto Y, Kawachi S, Itano O, et al. Cyclosporine A-based immunotherapy in adult living donor liver transplantation: accurate and improved therapeutic drug monitoring by 4-hr intravenous infusion. Transplantation. 2011;92(1):100–5.

    PubMed  CAS  Google Scholar 

  97. Snell GI, Ivulich S, Mitchell L, Westall GP, Levvey BJ. Evolution to twice daily bolus intravenous tacrolimus: optimizing efficacy and safety of calcineurin inhibitor delivery early post lung transplant. Ann Transplant. 2013;18:399-407

    Google Scholar 

  98. Goorhuis JF, Scheenstra R, Peeters PM, Albers MJ. Buccal vs. nasogastric tube administration of tacrolimus after pediatric liver transplantation. Pediatr Transplant. 2006;10(1):74–7.

    Google Scholar 

  99. Reams BD, Palmer SM. Sublingual tacrolimus for immunosuppression in lung transplantation: a potentially important therapeutic option in cystic fibrosis. Am J Respir Med Drugs Devices Other Interv. 2002;1(2):91–8.

    CAS  Google Scholar 

  100. Romero I, Jimenez C, Gil F, Escuin F, Ramirez E, Fudio S, et al. Sublingual administration of tacrolimus in a renal transplant patient. J Clin Pharm Therapeutic. 2008;33(1):87–9.

    CAS  Google Scholar 

  101. Watkins KD, Boettger RF, Hanger KM, Leard LE, Golden JA, Hoopes CW, et al. Use of sublingual tacrolimus in lung transplant recipients. J Heart Lung Transplant. 2012;31(2):127–32.

    PubMed  Google Scholar 

  102. Janata RJ, Boukhamseen A, Kramer HJ, Michalski L, Bhorade S, Vigneswaran W, Garrity ER, Villanueva J. Comparison of sublingual to oral tacrolimus administration in lung transplantation. J Heart Lung Transplant. 2005;24(2):S90.

    Google Scholar 

  103. Elefante A, Muindi J, West K, Dunford L, Abel S, Paplham P, et al. Long-term stability of a patient-convenient 1 mg/ml suspension of tacrolimus for accurate maintenance of stable therapeutic levels. Bone Marrow Transplant. 2006;37(8):781–4.

    PubMed  CAS  Google Scholar 

  104. Whitford H, Walters EH, Levvey B, Kotsimbos T, Orsida B, Ward C, et al. Addition of inhaled corticosteroids to systemic immunosuppression after lung transplantation: a double-blind, placebo-controlled trial. Transplantation. 2002;73(11):1793–9.

    PubMed  CAS  Google Scholar 

  105. Keenan RJ, Zeevi A, Iacono AT, Spichty KJ, Cai JZ, Yousem SA, et al. Efficacy of inhaled cyclosporine in lung transplant recipients with refractory rejection: correlation of intragraft cytokine gene expression with pulmonary function and histologic characteristics. Surgery. 1995;118(2):385–91.

    PubMed  CAS  Google Scholar 

  106. Wang T, Noonberg S, Steigerwalt R, Lynch M, Kovelesky RA, Rodriguez CA, et al. Preclinical safety evaluation of inhaled cyclosporine in propylene glycol. J Aerosol Med. 2007;20(4):417–28.

    PubMed  Google Scholar 

  107. Groves S, Galazka M, Johnson B, Corcoran T, Verceles A, Britt E, et al. Inhaled cyclosporine and pulmonary function in lung transplant recipients. J Aerosol Med Pulm Drug Deliv. 2010;23(1):31–9.

    PubMed  CAS  Google Scholar 

  108. Niven RW. Toward managing chronic rejection after lung transplant: the fate and effects of inhaled cyclosporine in a complex environment. Adv Drug Deliv Rev. 2011;63(1–2):88–109.

    PubMed  CAS  Google Scholar 

  109. Ide N, Nagayasu T, Matsumoto K, Tagawa T, Tanaka K, Taguchi T, et al. Efficacy and safety of inhaled tacrolimus in rat lung transplantation. J Thorac Cardiovasc Surg. 2007;133(2):548–53.

    PubMed  Google Scholar 

  110. Schrepfer S, Deuse T, Reichenspurner H, Hoffmann J, Haddad M, Fink J, et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. Am J Transplant. 2007;7(7):1733–42.

    PubMed  CAS  Google Scholar 

  111. Deuse T, Blankenberg F, Haddad M, Reichenspurner H, Phillips N, Robbins RC, et al. Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation. Am J Respir Cell Mol Biol. 2010;43(4):403–12.

    PubMed  CAS  Google Scholar 

  112. DeCamp MM Jr. Inhaled cyclosporine—a breath of fresh air? N Engl J Med. 2006;354(2):191–3.

    PubMed  CAS  Google Scholar 

  113. Iacono AT, Johnson BA, Grgurich WF, Youssef JG, Corcoran TE, Seiler DA, et al. A randomized trial of inhaled cyclosporine in lung-transplant recipients. N Engl J Med. 2006;354(2):141–50.

    PubMed  Google Scholar 

  114. Verleden GM, Dupont LJ. Inhaled cyclosporine in lung transplantation. N Engl J Med. 2006;354(16):1752–3 (author reply -3).

    Google Scholar 

  115. Johnson BA, Zamora MR, Budev MM, Kotloff RM, Iacono A, Dilly SG, et al. Cyclosporine inhalation solution does not improve Bronchiolitis Obliterans Syndrome free survival following lung transplant: results from the CYCLIST Trial. J Heart Lung Transplant. 2012;31(4S):S66.

    Google Scholar 

  116. Abecassis MM, Seifeldin R, Riordan ME. Patient outcomes and economics of once-daily tacrolimus in renal transplant patients: results of a modeling analysis. Transplant Proceed. 2008;40(5):1443–5.

    CAS  Google Scholar 

  117. Marzoa-Rivas R, Paniagua-Martin MJ, Barge-Caballero E, Pedrosa del Moral V, Barge-Caballero G, Grille-Cancela Z, et al. Conversion of heart transplant patients from standard to sustained-release tacrolimus requires a dosage increase. Transplantation Proceed. 2010;42(8):2994–6.

    Google Scholar 

  118. Beckebaum S, Iacob S, Sweid D, Sotiropoulos GC, Saner F, Kaiser G, et al. Efficacy, safety, and immunosuppressant adherence in stable liver transplant patients converted from a twice-daily tacrolimus-based regimen to once-daily tacrolimus extended-release formulation. Transplant Int. 2011;24(7):666–75.

    CAS  Google Scholar 

  119. Florman S, Alloway R, Kalayoglu M, Punch J, Bak T, Melancon J, et al. Once-daily tacrolimus extended release formulation: experience at 2 years postconversion from a Prograf-based regimen in stable liver transplant recipients. Transplantation. 2007;83(12):1639–42.

    PubMed  CAS  Google Scholar 

  120. Tinti F, Mecule A, Poli L, Bachetoni A, Umbro I, Brunini F, et al. Improvement of graft function after conversion to once daily tacrolimus of stable kidney transplant patients. Transplant Proceed. 2010;42(10):4047–8.

    CAS  Google Scholar 

  121. Wu MJ, Cheng CY, Chen CH, Wu WP, Cheng CH, Yu DM, et al. Lower variability of tacrolimus trough concentration after conversion from prograf to advagraf in stable kidney transplant recipients. Transplantation. 2011;92(6):648–52.

    PubMed  CAS  Google Scholar 

  122. Doesch AO, Mueller S, Konstandin M, Celik S, Erbel C, Kristen A, et al. Increased adherence after switch from twice daily calcineurin inhibitor based treatment to once daily modified released tacrolimus in heart transplantation: a pre-experimental study. Transplant Proceed. 2010;42(10):4238–42.

    CAS  Google Scholar 

  123. Pollock-Barziv SM, Finkelstein Y, Manlhiot C, Dipchand AI, Hebert D, Ng VL, et al. Variability in tacrolimus blood levels increases the risk of late rejection and graft loss after solid organ transplantation in older children. Pediatr Transplant. 2010;14(8):968–75.

    PubMed  Google Scholar 

  124. Prytula AA, Bouts AH, Mathot RA, van Gelder T, Croes LK, Hop W, et al. Intra-patient variability in tacrolimus trough concentrations and renal function decline in pediatric renal transplant recipients. Pediatr Transplant. 2012;16(6):613–8.

    PubMed  CAS  Google Scholar 

  125. Hsiau M, Fernandez HE, Gjertson D, Ettenger RB, Tsai EW. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. Transplantation. 2011;92(8):918–22.

    PubMed  CAS  Google Scholar 

  126. Venkat VL, Nick TG, Wang Y, Bucuvalas JC. An objective measure to identify pediatric liver transplant recipients at risk for late allograft rejection related to non-adherence. Pediatr Transplant. 2008;12(1):67–72.

    PubMed  Google Scholar 

  127. Kahan BD, Welsh M, Urbauer DL, Mosheim MB, Beusterien KM, Wood MR, et al. Low intraindividual variability of cyclosporin A exposure reduces chronic rejection incidence and health care costs. J Am Soc Nephrol. 2000;11(6):1122–31.

    PubMed  CAS  Google Scholar 

  128. Rogers CC, Alloway RR, Alexander JW, Cardi M, Trofe J, Vinks AA. Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in end-stage renal disease and transplant patients: a pilot study. Clin Transplant. 2008;22(3):281–91.

    PubMed  Google Scholar 

  129. Chiang CY, Schneider HG, Levvey B, Mitchell L, Snell GI. Tacrolimus level variability is a novel measure associated with increased acute rejection in lung transplant (LTx) recipients. J Heart Lung Transplant. 2013;32(4):S170.

    Google Scholar 

  130. Bosma OH, Vermeulen KM, Verschuuren EA, Erasmus ME, van der Bij W. Adherence to immunosuppression in adult lung transplant recipients: prevalence and risk factors. J Heart Lung Transplant. 2011;30(11):1275–80.

    PubMed  Google Scholar 

  131. Taber DJ, Baillie GM, Ashcraft EE, Rogers J, Lin A, Afzal F, et al. Does bioequivalence between modified cyclosporine formulations translate into equal outcomes? Transplantation. 2005;80(11):1633–5.

    PubMed  CAS  Google Scholar 

  132. Kurnatowska I, Krawczyk J, Oleksik T, Nowicki M. Tacrolimus dose and blood concentration variability in kidney transplant recipients undergoing conversion from twice daily to once daily modified release tacrolimus. Transplant Proceed. 2011;43(8):2954–6.

    CAS  Google Scholar 

  133. Barau C, Furlan V, Debray D, Taburet A-M, Barrail-Tran A. Population pharmacokinetics of mycophenolic acid and dose optimization with limited sampling strategy in liver transplant children. Br J Clin Pharmacol. 2012;74(3):515–24.

    PubMed  CAS  Google Scholar 

  134. Asberg A, Falck P, Undset LH, Dorje C, Holdaas H, Hartmann A, et al. Computer-assisted cyclosporine dosing performs better than traditional dosing in renal transplant recipients: results of a pilot study. Ther Drug Monit. 2010;32(2):152–8.

    PubMed  Google Scholar 

  135. Ray JE, Keogh AM, McLachlan AJ. Decision support tool to individualize cyclosporine dose in stable, long-term heart transplant recipients receiving metabolic inhibitors: overcoming limitations of cyclosporine C2 monitoring. J Heart Lung Transplant. 2006;25(10):1223–9.

    PubMed  Google Scholar 

  136. Woillard JB, de Winter BC, Kamar N, Marquet P, Rostaing L, Rousseau A. Population pharmacokinetic model and Bayesian estimator for two tacrolimus formulations—twice daily Prograf and once daily Advagraf. Br J Clin Pharmacol. 2011;71(3):391–402.

    PubMed  CAS  Google Scholar 

  137. Monchaud C, de Winter BC, Knoop C, Estenne M, Reynaud-Gaubert M, Pison C, et al. Population pharmacokinetic modelling and design of a Bayesian estimator for therapeutic drug monitoring of tacrolimus in lung transplantation. Clin Pharmacokinet. 2012;51(3):175–86.

    PubMed  CAS  Google Scholar 

  138. Saint-Marcoux F, Debord J, Undre N, Rousseau A, Marquet P. Pharmacokinetic modeling and development of Bayesian estimators in kidney transplant patients receiving the tacrolimus once-daily formulation. Ther Drug Monit. 2010;32(2):129–35.

    PubMed  CAS  Google Scholar 

  139. Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, Hertz M, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant. 2002;21(3):297–310.

    PubMed  Google Scholar 

  140. Snyder LD, Palmer SM. Immune mechanisms of lung allograft rejection. Semin Respir Crit Care Med. 2006;27(5):534–43.

    PubMed  Google Scholar 

  141. Stewart S, Fishbein MC, Snell GI, Berry GJ, Boehler A, Burke MM, et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant. 2007;26(12):1229–42.

    PubMed  Google Scholar 

  142. van Besouw NM, Zuijderwijk JM, Vaessen LM, Balk AH, Maat AP, van der Meide PH, et al. The direct and indirect allogeneic presentation pathway during acute rejection after human cardiac transplantation. Clin Exp Immunol. 2005;141(3):534–40.

    PubMed  Google Scholar 

  143. Stanford RE, Ahmed S, Hodson M, Banner NR, Rose ML. A role for indirect allorecognition in lung transplant recipients with obliterative bronchiolitis. Am J Transplant. 2003;3(6):736–42.

    PubMed  Google Scholar 

  144. van Besouw NM, Zuijderwijk JM, de Kuiper P, Ijzermans JN, Weimar W, van der Mast BJ. The granzyme B and interferon-gamma enzyme-linked immunospot assay as alternatives for cytotoxic T-lymphocyte precursor frequency after renal transplantation. Transplantation. 2005;79(9):1062–6.

    PubMed  Google Scholar 

  145. Ng YL, Paul N, Patsios D, Walsham A, Chung TB, Keshavjee S, et al. Imaging of lung transplantation: review. Am J Roentgenol. 2009;192(3 Suppl):S1–13 (quiz S4-9).

    Google Scholar 

  146. Gotway MB, Dawn SK, Sellami D, Golden JA, Reddy GP, Keith FM, et al. Acute rejection following lung transplantation: limitations in accuracy of thin-section CT for diagnosis. Radiology. 2001;221(1):207–12.

    PubMed  CAS  Google Scholar 

  147. Tiroke AH, Bewig B, Haverich A. Bronchoalveolar lavage in lung transplantation: state of the art. Clin Transplant. 1999;13(2):131–57.

    PubMed  CAS  Google Scholar 

  148. Slebos DJ, Postma DS, Koeter GH, Van Der Bij W, Boezen M, Kauffman HF. Bronchoalveolar lavage fluid characteristics in acute and chronic lung transplant rejection. J Heart Lung Transplant. 2004;23(5):532–40.

    PubMed  Google Scholar 

  149. Zeevi A, Rabinowich H, Paradis I, Gryzan S, Dauber JH, Hardesty RL, et al. Lymphocyte activation in bronchoalveolar lavages from heart-lung transplant recipients. Transplantation Proceed. 1988;20(2):189–92.

    CAS  Google Scholar 

  150. Whitehead BF, Stoehr C, Finkle C, Patterson G, Theodore J, Clayberger C, et al. Analysis of bronchoalveolar lavage from human lung transplant recipients by flow cytometry. Respir Med. 1995;89(1):27–34.

    PubMed  CAS  Google Scholar 

  151. Crim C, Keller CA, Dunphy CH, Maluf HM, Ohar JA. Flow cytometric analysis of lung lymphocytes in lung transplant recipients. Am J Respir Crit Care Med. 1996;153(3):1041–6.

    PubMed  CAS  Google Scholar 

  152. Tikkanen J, Lemstrom K, Halme M, Pakkala S, Taskinen E, Koskinen P. Cytological monitoring of peripheral blood, bronchoalveolar lavage fluid, and transbronchial biopsy specimens during acute rejection and cytomegalovirus infection in lung and heart–lung allograft recipients. Clin Transplant. 2001;15(2):77–88.

    PubMed  CAS  Google Scholar 

  153. Clelland C, Higenbottam T, Stewart S, Otulana B, Wreghitt T, Gray J, et al. Bronchoalveolar lavage and transbronchial lung biopsy during acute rejection and infection in heart-lung transplant patients. Studies of cell counts, lymphocyte phenotypes, and expression of HLA-DR and interleukin-2 receptor. Am Rev Respir Dis. 1993;147(6 Pt 1):1386–92.

    Google Scholar 

  154. Patil J, Lande JD, Li N, Berryman TR, King RA, Hertz MI. Bronchoalveolar lavage cell gene expression in acute lung rejection: development of a diagnostic classifier. Transplantation. 2008;85(2):224–31.

    PubMed  Google Scholar 

  155. Meloni F, Paschetto E, Cascina A, Marone Bianco A, Pellegrini C, Oggionni T, et al. Evaluation with enzyme-linked immunosorbent assay spot detection of the frequency of interferon-gamma-producing T cells in bronchoalveolar lavage is useful in identifying lung transplant patients at higher risk of acute rejection. Transplant Proceed. 2001;33(7–8):3286–8.

    Google Scholar 

  156. Zeevi A, Pavlakis M, Spichty K, Chang S, Iacono A, Dauber J, et al. Prediction of rejection in lung transplantation. Transplant Proc. 2001;33(1–2):291–2.

    PubMed  CAS  Google Scholar 

  157. Kowalski R, Post D, Schneider MC, Britz J, Thomas J, Deierhoi M, et al. Immune cell function testing: an adjunct to therapeutic drug monitoring in transplant patient management. Clin Transplant. 2003;17(2):77–88.

    PubMed  Google Scholar 

  158. Shino MY, Weigt SS, Saggar R, Elashoff D, Derhovanessian A, Gregson AL, et al. Usefulness of immune monitoring in lung transplantation using adenosine triphosphate production in activated lymphocytes. J Heart Lung Transplant. 2012;31(9):996–1002.

    PubMed  Google Scholar 

  159. Hopkins PM, Aboyoun CL, Chhajed PN, Malouf MA, Plit ML, Rainer SP, et al. Association of minimal rejection in lung transplant recipients with obliterative bronchiolitis. Am J Respir Crit Care Med. 2004;170(9):1022–6.

    PubMed  Google Scholar 

  160. Griffith BP, Bando K, Hardesty RL, Armitage JM, Keenan RJ, Pham SM, et al. A prospective randomized trial of FK506 versus cyclosporine after human pulmonary transplantation. Transplantation. 1994;57(6):848–51.

    PubMed  CAS  Google Scholar 

  161. Horning NR, Lynch JP, Sundaresan SR, Patterson GA, Trulock EP. Tacrolimus therapy for persistent or recurrent acute rejection after lung transplantation. J Heart Lung Transplant. 1998;17(8):761–7.

    PubMed  CAS  Google Scholar 

  162. Onsager DR, Canver CC, Jahania MS, Welter D, Michalski M, Hoffman AM, et al. Efficacy of tacrolimus in the treatment of refractory rejection in heart and lung transplant recipients. J Heart Lung Transplant. 1999;18(5):448–55.

    PubMed  CAS  Google Scholar 

  163. Shennib H, Mercado M, Nguyen D, Ernst P, Lebel F, O’Donovan M, et al. Successful treatment of steroid-resistant double-lung allograft rejection with Orthoclone OKT3. Am Rev Respir Dis. 1991;144(1):224–6.

    PubMed  CAS  Google Scholar 

  164. Reams BD, Musselwhite LW, Zaas DW, Steele MP, Garantziotis S, Eu PC, et al. Alemtuzumab in the treatment of refractory acute rejection and bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant. 2007;7(12):2802–8.

    PubMed  CAS  Google Scholar 

  165. Valentine VG, Robbins RC, Wehner JH, Patel HR, Berry GJ, Theodore J. Total lymphoid irradiation for refractory acute rejection in heart-lung and lung allografts. Chest. 1996;109(5):1184–9.

    PubMed  CAS  Google Scholar 

  166. Dall’Amico R, Messina C. Extracorporeal photochemotherapy for the treatment of graft-versus-host disease. Therapeutic Apheresis Off J Int Soc Apheresis Jpn Soc Apheresis. 2002;6(4):296–304.

    Google Scholar 

  167. Cahill BC, O’Rourke MK, Strasburg KA, Savik K, Jessurun J, Bolman RM 3rd, et al. Methotrexate for lung transplant recipients with steroid-resistant acute rejection. J Heart Lung Transplant. 1996;15(11):1130–7.

    PubMed  CAS  Google Scholar 

  168. Boettcher H, Costard-Jackle A, Moller F, Hirt SW, Cremer J. Methotrexate rescue therapy in lung transplantation. Transplant Proceed. 2002;34(8):3255–7.

    CAS  Google Scholar 

  169. Keenan RJ, Iacono A, Dauber JH, Zeevi A, Yousem SA, Ohori NP, et al. Treatment of refractory acute allograft rejection with aerosolized cyclosporine in lung transplant recipients. J Thorac Cardiovasc Surg. 1997;113(2):335–40; discussion 40-1

    Google Scholar 

  170. De Soyza A, Fisher AJ, Small T, Corris PA. Inhaled corticosteroids and the treatment of lymphocytic bronchiolitis following lung transplantation. Am J Respir Crit Care Med. 2001;164(7):1209–12.

    PubMed  Google Scholar 

  171. Berry GJ, Brunt EM, Chamberlain D, Hruban RH, Sibley RK, Stewart S, et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Lung Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant. 1990;9(6):593–601.

    Google Scholar 

  172. Yousem SA, Berry GJ, Cagle PT, Chamberlain D, Husain AN, Hruban RH, et al. Revision of the 1990 working formulation for the classification of pulmonary allograft rejection: Lung Rejection Study Group. J Heart Lung Transplant. 1996;15(1 Pt 1):1–15.

    PubMed  CAS  Google Scholar 

  173. Kittleson MM, Kobashigawa JA. Antibody-mediated rejection. Curr Opin Organ Transplant. 2012;17(5):551–7.

    PubMed  CAS  Google Scholar 

  174. Mohan S, Palanisamy A, Tsapepas D, Tanriover B, Crew RJ, Dube G, et al. Donor-specific antibodies adversely affect kidney allograft outcomes. J Am Soc Nephrol. 2012;23(12):2061–71.

    PubMed  Google Scholar 

  175. Patel JK, Kobashigawa JA. Improving survival during heart transplantation: diagnosis of antibody-mediated rejection and techniques for the prevention of graft injury. Future Cardiol. 2012;8(4):623–35.

    PubMed  CAS  Google Scholar 

  176. Lefaucheur C, Suberbielle-Boissel C, Hill GS, Nochy D, Andrade J, Antoine C, et al. Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation. Am J Transplant. 2008;8(2):324–31.

    PubMed  CAS  Google Scholar 

  177. Roberts DM, Jiang SH, Chadban SJ. The treatment of acute antibody-mediated rejection in kidney transplant recipients-a systematic review. Transplantation. 2012;94(8):775–83.

    PubMed  CAS  Google Scholar 

  178. Lobo LJ, Aris RM, Schmitz J, Neuringer IP. Donor-specific antibodies are associated with antibody-mediated rejection, acute cellular rejection, bronchiolitis obliterans syndrome, and cystic fibrosis after lung transplantation. J Heart Lung Transplant. 2013;32(1):70–7.

    PubMed  Google Scholar 

  179. Morrell MR, Patterson GA, Trulock EP, Hachem RR. Acute antibody-mediated rejection after lung transplantation. J Heart Lung Transplant. 2009;28(1):96–100.

    PubMed  Google Scholar 

  180. Jackups R Jr, Canter C, Sweet SC, Mohanakumar T, Morris GP. Measurement of donor-specific HLA antibodies following plasma exchange therapy predicts clinical outcome in pediatric heart and lung transplant recipients with antibody-mediated rejection. J Clin Apheresis. 2013;28(4):301–8.

    PubMed  Google Scholar 

  181. Appel JZ 3rd, Hartwig MG, Davis RD, Reinsmoen NL. Utility of peritransplant and rescue intravenous immunoglobulin and extracorporeal immunoadsorption in lung transplant recipients sensitized to HLA antigens. Human Immunol. 2005;66(4):378–86.

    CAS  Google Scholar 

  182. Jordan SC, Toyoda M, Kahwaji J, Vo AA. Clinical aspects of intravenous immunoglobulin use in solid organ transplant recipients. Am J Transplant. 2011;11(2):196–202.

    PubMed  CAS  Google Scholar 

  183. Shehata N, Palda VA, Meyer RM, Blydt-Hansen TD, Campbell P, Cardella C, et al. The use of immunoglobulin therapy for patients undergoing solid organ transplantation: an evidence-based practice guideline. Transfus Med Rev. 2010;24(Suppl 1):S7–27.

    PubMed  Google Scholar 

  184. Hachem RR, Yusen RD, Meyers BF, Aloush AA, Mohanakumar T, Patterson GA, et al. Anti-human leukocyte antigen antibodies and preemptive antibody-directed therapy after lung transplantation. J Heart Lung Transplant. 2010;29(9):973–80.

    PubMed  Google Scholar 

  185. Neumann J, Schio S, Tarrasconi H, Bortolotto A, Costa C, Machuca T, et al. Bortezomib in lung transplantation: a promising start. Clin Transplant. 2009:421–4.

  186. Neumann J, Tarrasconi H, Bortolotto A, Machuca T, Canabarro R, Sporleder H, et al. Acute humoral rejection in a lung recipient: reversion with bortezomib. Transplantation. 2010;89(1):125–6.

    PubMed  Google Scholar 

  187. Dawson KL, Parulekar A, Seethamraju H. Treatment of hyperacute antibody-mediated lung allograft rejection with eculizumab. J Heart Lung Transplant. 2012;31(12):1325–6.

    PubMed  Google Scholar 

  188. Sato M, Waddell TK, Wagnetz U, Roberts HC, Hwang DM, Haroon A, et al. Restrictive allograft syndrome (RAS): a novel form of chronic lung allograft dysfunction. J Heart Lung Transplant. 2010;30(7):735–42.

    Google Scholar 

  189. Paraskeva M, McLean C, Ellis S, Bailey M, Williams T, Levvey B, et al. Acute fibrinoid organizing pneumonia after lung transplantation. Am J Respir Crit Care Med. 2013;187(12):1360–8.

    PubMed  Google Scholar 

  190. Sato M, Hwang DM, Waddell TK, Singer LG, Keshavjee S. Progression pattern of restrictive allograft syndrome after lung transplantation. J Heart Lung Transplant. 2013;32(1):23–30.

    PubMed  Google Scholar 

  191. Verleden SE, Verleden GM, Vanaudenaerde BM. Phenotyping BOS could improve understanding of mechanisms involved. J Heart Lung Transplant. 2010;30(1):112 (author reply 3).

    Google Scholar 

  192. Woodrow JP, Shlobin OA, Barnett SD, Burton N, Nathan SD. Comparison of bronchiolitis obliterans syndrome to other forms of chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant. 2010;29(10):1159–64.

    PubMed  Google Scholar 

  193. Snell G, Levvey B, Westall G. Non-bronchiolitis obliterans syndrome (BOS) forms of chronic lung allograft dysfunction (CLAD). In: Hirsch J, Elssner A, Masur G, Maier KL, editors. Bronchiolitis obliterans syndrome after lung transplantation. New York: Springer; 2013.

  194. Snell GI, Paraskeva M, Westall GP. Managing bronchiolitis obliterans syndrome (BOS) and chronic lung allograft dysfunction (CLAD) in children: what does the future hold? Paediatric Drugs. 2013;15(4):281–9.

    PubMed  Google Scholar 

  195. Verleden SE, Ruttens D, Vandermeulen E, Vaneylen A, Dupont LJ, Van Raemdonck DE, et al. Bronchiolitis obliterans syndrome and restrictive allograft syndrome: do risk factors differ? Transplantation. 2013;95(9):1167–72.

    PubMed  Google Scholar 

  196. Snell GI, Westall GP. The contribution of airway ischemia and vascular remodelling to the pathophysiology of bronchiolitis obliterans syndrome and chronic lung allograft dysfunction. Curr Opin Organ Transplant. 2010;15(5):558–62.

    PubMed  Google Scholar 

  197. Sato M, Waddell TK, Wagnetz U, Roberts HC, Hwang DM, Haroon A, et al. Restrictive allograft syndrome (RAS): a novel form of chronic lung allograft dysfunction. J Heart Lung Transplant. 2011;30(7):735–42.

    PubMed  Google Scholar 

  198. Nawrot TS, Vos R, Jacobs L, Verleden SE, Wauters S, Mertens V, et al. The impact of traffic air pollution on bronchiolitis obliterans syndrome and mortality after lung transplantation. Thorax. 2011;66(9):748–54.

    PubMed  Google Scholar 

  199. Willis BC, Borok Z. Epithelial-mesenchymal transition: potential role in obliterative bronchiolitis? Thorax. 2009;64(9):742–3.

    PubMed  Google Scholar 

  200. Ward C, Forrest IA, Murphy DM, Johnson GE, Robertson H, Cawston TE, et al. Phenotype of airway epithelial cells suggests epithelial to mesenchymal cell transition in clinically stable lung transplant recipients. Thorax. 2005;60(10):865–71.

    PubMed  CAS  Google Scholar 

  201. Jiang X, Khan MA, Tian W, Beilke J, Natarajan R, Kosek J, et al. Adenovirus-mediated HIF-1alpha gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection. J Clin Investig. 2011;121(6):2336–49.

    PubMed  CAS  Google Scholar 

  202. Goers TA, Ramachandran S, Aloush A, Trulock E, Patterson GA, Mohanakumar T. De novo production of K-alpha1 tubulin-specific antibodies: role in chronic lung allograft rejection. J Immunol. 2008;180(7):4487–94.

    PubMed  CAS  Google Scholar 

  203. Yoshida S, Haque A, Mizobuchi T, Iwata T, Chiyo M, Webb TJ, et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am J Transplant. 2006;6(4):724–35.

    PubMed  CAS  Google Scholar 

  204. Lee JC, Christie JD. Primary graft dysfunction. Proc Am Thorac Soc. 2009;6(1):39–46.

    PubMed  Google Scholar 

  205. Sato M, Hirayama S, Matsuda Y, Wagnetz D, Hwang DM, Guan Z, et al. Stromal activation and formation of lymphoid-like stroma in chronic lung allograft dysfunction. Transplantation. 2011;91(12):1398–405.

    PubMed  CAS  Google Scholar 

  206. Williams TJ, Snell GI. Early and long-term functional outcomes in unilateral, bilateral, and living-related transplant recipients. Clin Chest Med. 1997;18(2):245–57.

    PubMed  CAS  Google Scholar 

  207. Van Muylem A, Knoop C, Estenne M. Early detection of chronic pulmonary allograft dysfunction by exhaled biomarkers. Am J Respir Crit Care Med. 2007;175(7):731–6.

    PubMed  Google Scholar 

  208. Soter S, Kelemen K, Barta I, Valyon M, Csiszer E, Antus B. Exhaled breath condensate pH in lung transplant recipients with bronchiolitis obliterans syndrome. Transplantation. 2011;91(7):793–7.

    PubMed  Google Scholar 

  209. Haberman B, Doan ML, Smith EO, Schecter MG, Mallory GB, Elidemir O. Serum KL-6 level and the development of bronchiolitis obliterans syndrome in lung transplant recipients. Pediatr Transplant. 2010;14(7):903–8.

    PubMed  CAS  Google Scholar 

  210. Ohshimo S, Bonella F, Sommerwerck U, Teschler H, Kamler M, Jakob HG, et al. Comparison of serum KL-6 versus bronchoalveolar lavage neutrophilia for the diagnosis of bronchiolitis obliterans in lung transplantation. J Heart Lung Transplant. 2011;30(12):1374–80.

    PubMed  Google Scholar 

  211. LaPar DJ, Burdick MD, Emaminia A, Harris DA, Strieter BA, Liu L, et al. Circulating fibrocytes correlate with bronchiolitis obliterans syndrome development after lung transplantation: a novel clinical biomarker. Annals Thorac Surg. 2011;92(2):470–7; discussion 7.

    Google Scholar 

  212. Salama M, Jaksch P, Andrukhova O, Taghavi S, Klepetko W, Aharinejad S. Endothelin-1 is a useful biomarker for early detection of bronchiolitis obliterans in lung transplant recipients. J Thorac Cardiovasc Surg. 2010;140(6):1422–7.

    PubMed  CAS  Google Scholar 

  213. Kastelijn EA, Rijkers GT, Van Moorsel CH, Zanen P, Kwakkel-van Erp JM, Van De Graaf EA, et al. Systemic and exhaled cytokine and chemokine profiles are associated with the development of bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2010;29(9):997–1008.

    Google Scholar 

  214. Wolf T, Oumeraci T, Gottlieb J, Pich A, Brors B, Eils R, et al. Proteomic bronchiolitis obliterans syndrome risk monitoring in lung transplant recipients. Transplantation. 2011;92(4):477–85.

    PubMed  CAS  Google Scholar 

  215. Knoop C, Estenne M. Acute and chronic rejection after lung transplantation. Semin Respir Crit Care Med. 2006;27(5):521–33.

    PubMed  Google Scholar 

  216. Zamora MR. Updates in lung transplantation. Clinical Transplants. 2012:185-92.

  217. Gerhardt SG, McDyer JF, Girgis RE, Conte JV, Yang SC, Orens JB. Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med. 2003;168(1):121–5.

    PubMed  Google Scholar 

  218. Gottlieb J, Szangolies J, Koehnlein T, Golpon H, Simon A, Welte T. Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation. Transplantation. 2008;85(1):36–41.

    PubMed  CAS  Google Scholar 

  219. Vos R, Vanaudenaerde BM, Ottevaere A, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, et al. Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer? J Heart Lung Transplant 29(12):1358–68.

  220. Benden C, Boehler A. Long-term clarithromycin therapy in the management of lung transplant recipients. Transplantation. 2009;87(10):1538–40.

    PubMed  CAS  Google Scholar 

  221. Banerjee B, Musk M, Sutanto EN, Yerkovich ST, Hopkins P, Knight DA, et al. Regional differences in susceptibiity of bronchial epithelium to mesenchymal transition and inhibition by the macrolide antibiotic azithromycin. PLoS ONE. 2012;7(12):e52309.

    PubMed  CAS  Google Scholar 

  222. Persson HL, Vainikka LK, Sege M, Wennerstrom U, Dam-Larsen S, Persson J. Leaky lysosomes in lung transplant macrophages: azithromycin prevents oxidative damage. Respir Res. 2012;13:83.

    PubMed  CAS  Google Scholar 

  223. Mertens V, Blondeau K, Pauwels A, Farre R, Vanaudenaerde B, Vos R, et al. Azithromycin reduces gastroesophageal reflux and aspiration in lung transplant recipients. Dig Dis Sci. 2009;54(5):972–9.

    PubMed  CAS  Google Scholar 

  224. Verleden SE, Vandooren J, Vos R, Willems S, Dupont LJ, Verleden GM, et al. Azithromycin decreases MMP-9 expression in the airways of lung transplant recipients. Transplant Immunol. 2011;25(2–3):159–62.

    CAS  Google Scholar 

  225. Federica M, Nadia S, Monica M, Alessandro C, Tiberio O, Francesco B, et al. Clinical and immunological evaluation of 12-month azithromycin therapy in chronic lung allograft rejection. Clin Transplant. 2011;25(4):E381–9.

    PubMed  CAS  Google Scholar 

  226. Vos R, Vanaudenaerde BM, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, Van Raemdonck DE, et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J. 2011;37(1):164–72.

    PubMed  CAS  Google Scholar 

  227. Corris PA, Small T, Ryan VA, Lordan J. A randomized controlled trial of azithromycin therapy in BOS post-lung transplantation. J Heart Lung Transplant. 2012;31(4):S67.

    Google Scholar 

  228. Johnson BA, Iacono AT, Zeevi A, McCurry KR, Duncan SR. Statin use is associated with improved function and survival of lung allografts. Am J Respir Crit Care Med. 2003;167(9):1271–8.

    PubMed  Google Scholar 

  229. Tait BD, Susal C, Gebel HM, Nickerson PW, Zachary AA, Claas FH, et al. Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation. 2013;95(1):19–47.

    PubMed  CAS  Google Scholar 

  230. Morrell MR, Despotis GJ, Lublin DM, Patterson GA, Trulock EP, Hachem RR. The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2010;29(4):424–31.

    PubMed  Google Scholar 

  231. Verleden GM, Lievens Y, Dupont LJ, Van Raemdonck DE, De Vleeschauwer SI, Vos R, et al. Efficacy of total lymphoid irradiation in azithromycin nonresponsive chronic allograft rejection after lung transplantation. Transplant Proceed. 2009;41(5):1816–20.

    CAS  Google Scholar 

  232. Verleden GM, Verleden SE, Vos R, De Vleeschauwer SI, Dupont LJ, Van Raemdonck DE, et al. Montelukast for bronchiolitis obliterans syndrome after lung transplantation: a pilot study. Transplant Int. 2011;24(7):651–6.

    Google Scholar 

  233. Bizargity P, Liu K, Wang L, Hancock WW, Visner GA. Inhibitory effects of pirfenidone on dendritic cells and lung allograft rejection. Transplantation. 2012;94(2):114–22.

    PubMed  CAS  Google Scholar 

  234. Vanaudenaerde BM, De Vleeschauwer SI, Vos R, Meyts I, Bullens DM, Reynders V, et al. The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant. 2008;8(9):1911–20.

    PubMed  CAS  Google Scholar 

  235. Sinclair K, Yerkovich ST, Chambers DC. Mesenchymal stem cells and the lung. Respirology. 2013;18(3):397–411.

    PubMed  Google Scholar 

Download references

Conflict of interest

Miranda A. Paraskeva has no conflicts of interest. Glen P. Westall has received speakers fees from Roche. Gregory I. Snell has received speakers fees for speaking at a Roche symposium in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory I. Snell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snell, G.I., Westall, G.P. & Paraskeva, M.A. Immunosuppression and Allograft Rejection Following Lung Transplantation: Evidence to Date. Drugs 73, 1793–1813 (2013). https://doi.org/10.1007/s40265-013-0136-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0136-x

Keywords

Navigation