Skip to main content
Log in

Artificial Intelligence, Real-World Automation and the Safety of Medicines

  • Current Opinion
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Despite huge technological advances in the capabilities to capture, store, link and analyse data electronically, there has been some but limited impact on routine pharmacovigilance. We discuss emerging research in the use of artificial intelligence, machine learning and automation across the pharmacovigilance lifecycle including pre-licensure. Reasons are provided on why adoption is challenging and we also provide a perspective on changes needed to accelerate adoption, and thereby improve patient safety. Last, we make clear that while technologies could be superimposed on existing pharmacovigilance processes for incremental improvements, these great societal advances in data and technology also provide us with a timely opportunity to reconsider everything we do in pharmacovigilance operations to maximise the benefit of these advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crown WH. Real-world evidence, causal inference, and machine learning. Value Health. 2019;22(5):587–92.

    PubMed  Google Scholar 

  2. Inman WH. Monitoring of adverse reactions to drugs in the United Kingdom. Proc R Soc Med. 1970;63(12):1302–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jick H, Miettinen OS, Shapiro S, Lewis GP, Siskind V, Slone D. Comprehensive drug surveillance. JAMA. 1970;213(9):1455–60.

    CAS  PubMed  Google Scholar 

  4. Finney DJ. Systemic signalling of adverse reactions to drugs. Methods Inf Med. 1974;13(1):1–10.

    CAS  PubMed  Google Scholar 

  5. Levine A, Mandel SP, Santamaria A. Pattern signalling in health information monitoring systems. Methods Inf Med. 1977;16(3):138–44.

    CAS  PubMed  Google Scholar 

  6. Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427–36.

    CAS  PubMed  Google Scholar 

  7. Hauben M, Noren GN. A decade of data mining and still counting. Drug Saf. 2010;33(7):527–34.

    PubMed  Google Scholar 

  8. Bate A, Reynolds RF, Caubel P. The hope, hype and reality of Big Data for pharmacovigilance. Ther Adv Drug Saf. 2018;9(1):5–11.

    PubMed  Google Scholar 

  9. Hand DJ. Artificial intelligence and medicine: discussion paper. J R Soc Med. 1987;80(9):563–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Barr A, Feigenbaum EA. The handbook of artificial intelligence. Los Altos: William Kaufmann, Inc.; 1981.

    Google Scholar 

  11. Das S, Dey A, Pal A, Roy N. Applications of artificial intelligence in machine learning: review and prospect. Int J Comp Appl. 2015;115(9):31–41.

    Google Scholar 

  12. Berkan RC, Upadhyaya BR, Tsoukalas LH, Kisner RA, Bywater RL. Advanced automation concepts for large-scale systems. IEEE Control Syst Mag. 1991;11(6):4–12.

    Google Scholar 

  13. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.

    PubMed  PubMed Central  Google Scholar 

  14. Akselrod-Ballin A, Chorev M, Shoshan Y, Spiro A, Hazan A, Melamed R, et al. Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology. 2019;292(2):331–42.

    PubMed  Google Scholar 

  15. Finkelstein J, Wood J. Predicting asthma exacerbations using artificial intelligence. Stud Health Technol Inform. 2013;190:56–8.

    PubMed  Google Scholar 

  16. Curran K, Nichols E, Xie E, Harper R. An intensive insulinotherapy mobile phone application built on artificial intelligence techniques. J Diabetes Sci Technol. 2010;4(1):209–20.

    PubMed  PubMed Central  Google Scholar 

  17. Cruz AS, Lins HC, Medeiros RVA, Filho JMF, da Silva SG. Artificial intelligence on the identification of risk groups for osteoporosis, a general review. Biomed Eng Online. 2018;17(1):12.

    PubMed  PubMed Central  Google Scholar 

  18. Labovitz DL, Shafner L, Reyes Gil M, Virmani D, Hanina A. Using artificial intelligence to reduce the risk of nonadherence in patients on anticoagulation therapy. Stroke. 2017;48(5):1416–9.

    PubMed  PubMed Central  Google Scholar 

  19. Doshi R, Falzon D, Thomas BV, Temesgen Z, Sadasivan L, Migliori GB, et al. Tuberculosis control, and the where and why of artificial intelligence. ERJ Open Res. 2017;3(2):00056–2017.

    PubMed  PubMed Central  Google Scholar 

  20. Anumanchipalli GK, Chartier J, Chang EF. Speech synthesis from neural decoding of spoken sentences. Nature. 2019;568(7753):493–8.

    CAS  PubMed  Google Scholar 

  21. Fiore LD, Lavori PW. Integrating randomized comparative effectiveness research with patient care. N Engl J Med. 2016;374(22):2152–8.

    CAS  PubMed  Google Scholar 

  22. Persson M, Hornberg JJ. Advances in predictive toxicology for discovery safety through high content screening. Chem Res Toxicol. 2016;29(12):1998–2007.

    CAS  PubMed  Google Scholar 

  23. Luechtefeld T, Marsh D, Rowlands C, Hartung T. Machine learning of toxicological Big Data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci. 2018;165(1):198–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Alvager T, Smith TJ, Vijai F. Neural-network applications for analysis of adverse drug reactions. Biomed Instrum Technol. 1993;27(5):408–11.

    CAS  PubMed  Google Scholar 

  25. Edwards IR. Adverse drug reactions: finding the needle in the haystack. BMJ. 1997;315(7107):500.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghosh R, Kempf D, Pufko A, Barrios Martinez LF, Davis CM, Sethi S. Automation opportunities in pharmacovigilance: an industry survey. Pharm Med. 2020;34(1):7–18.

    Google Scholar 

  27. Comfort S, Perera S, Hudson Z, Dorrell D, Meireis S, Nagarajan M, et al. Sorting through the safety data haystack: using machine learning to identify individual case safety reports in social-digital media. Drug Saf. 2018;41(6):579–90.

    PubMed  PubMed Central  Google Scholar 

  28. Schmider J, Kumar K, LaForest C, Swankoski B, Naim K, Caubel PM. Innovation in pharmacovigilance: use of artificial intelligence in adverse event case processing. Clin Pharmacol Ther. 2019;105(4):954–61.

    PubMed  Google Scholar 

  29. Routray R, Tetarenko N, Abu-Assal C, Mockute R, Assuncao B, Chen H, et al. Application of augmented intelligence for pharmacovigilance case seriousness determination. Drug Saf. 2020;43(1):57–66.

    CAS  PubMed  Google Scholar 

  30. Han L, Ball R, Pamer CA, Altman RB, Proestel S. Development of an automated assessment tool for MedWatch reports in the FDA adverse event reporting system. J Am Med Inform Assoc. 2017;24(5):913–20.

    PubMed  PubMed Central  Google Scholar 

  31. Chandler RE, Juhlin K, Fransson J, Caster O, Edwards IR, Noren GN. Current safety concerns with human papillomavirus vaccine: a cluster analysis of reports in VigiBase®. Drug Saf. 2017;40(1):81–90.

    CAS  PubMed  Google Scholar 

  32. Orre R, Bate A, Noren GN, Swahn E, Arnborg S, Edwards IR. A Bayesian recurrent neural network for unsupervised pattern recognition in large incomplete data sets. Int J Neural Syst. 2005;15(3):207–22.

    PubMed  Google Scholar 

  33. Whalen E, Hauben M, Bate A. Time series disturbance detection for hypothesis-free signal detection in longitudinal observational databases. Drug Saf. 2018;41(6):565–77.

    PubMed  Google Scholar 

  34. Vanderwall DE, Yuen N, Al-Ansari M, Bailey J, Fram D, Green DV, et al. Molecular clinical safety intelligence: a system for bridging clinically focused safety knowledge to early-stage drug discovery: the GSK experience. Drug Discov Today. 2011;16(15–16):646–53.

    PubMed  Google Scholar 

  35. Nikfarjam A, Sarker A, O’Connor K, Ginn R, Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc. 2015;22(3):671–81.

    PubMed  PubMed Central  Google Scholar 

  36. van Stekelenborg J, Ellenius J, Maskell S, Bergvall T, Caster O, Dasgupta N, et al. Recommendations for the use of social media in pharmacovigilance: lessons from IMI WEB-RADR. Drug Saf. 2019;42(12):1393–407.

    PubMed  PubMed Central  Google Scholar 

  37. Strandell J, Caster O, Bate A, Noren N, Edwards IR. Reporting patterns indicative of adverse drug interactions: a systematic evaluation in VigiBase. Drug Saf. 2011;34(3):253–66.

    PubMed  Google Scholar 

  38. Ly T, Pamer C, Dang O, Brajovic S, Haider S, Botsis T, et al. Evaluation of natural language processing (NLP) systems to annotate drug product labeling with MedDRA terminology. J Biomed Inform. 2018;83:73–86.

    PubMed  Google Scholar 

  39. Wang W, Haerian K, Salmasian H, Harpaz R, Chase H, Friedman C. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations. In: American medical informatics association annual symposium proceedings; 2011. p. 1464.

  40. Walker AM, Zhou X, Ananthakrishnan AN, Weiss LS, Shen R, Sobel RE, et al. Computer-assisted expert case definition in electronic health records. Int J Med Inform. 2016;86:62–70.

    PubMed  Google Scholar 

  41. Weiss LS, Zhou X, Walker AM, Ananthakrishnan AN, Shen R, Sobel RE, et al. A case study of the incremental utility for disease identification of natural language processing in electronic medical records. Pharm Med. 2018;32(1):31–7.

    CAS  Google Scholar 

  42. Luo Y, Thompson WK, Herr TM, Zeng Z, Berendsen MA, Jonnalagadda SR, et al. Natural language processing for EHR-based pharmacovigilance: a structured review. Drug Saf. 2017;40(11):1075–89.

    PubMed  Google Scholar 

  43. Bate A, Brown EG, Goldman SA, Hauben M. Terminological challenges in safety surveillance. Drug Saf. 2012;35(1):79–84.

    PubMed  Google Scholar 

  44. Gattepaille LM. Using the WHO database of spontaneous reports to build joint vector representations of drugs and adverse drug reactions, a promising avenue for pharmacovigilance. In: 2019 IEEE international conference on healthcare informatics (ICHI); 2019. p. 1–6.

  45. Wong J, Horwitz MM, Zhou L, Toh S. Using machine learning to identify health outcomes from electronic health record data. Curr Epidemiol Rep. 2018;5(4):331–42.

    PubMed  PubMed Central  Google Scholar 

  46. Park MY, Yoon D, Choi NK, Lee J, Lee K, Lim HS, et al. Construction of an open-access QT database for detecting the proarrhythmia potential of marketed drugs: ECG-ViEW. Clin Pharmacol Ther. 2012;92(3):393–6.

    CAS  PubMed  Google Scholar 

  47. Orriols L, Delorme B, Gadegbeku B, Tricotel A, Contrand B, Laumon B, et al. Prescription medicines and the risk of road traffic crashes: a French registry-based study. PLoS Med. 2010;7(11):e1000366.

    PubMed  PubMed Central  Google Scholar 

  48. Bolaños M, Garolera M, Radeva P. Active labeling application applied to food-related object recognition. In: Proceedings of the 5th international workshop on multimedia for cooking and eating activities; 2013: p. 45–50.

  49. Schneeweiss S. Automated data-adaptive analytics for electronic healthcare data to study causal treatment effects. Clin Epidemiol. 2018;10:771.

    PubMed  PubMed Central  Google Scholar 

  50. Schuler MS, Rose S. Targeted maximum likelihood estimation for causal inference in observational studies. Am J Epidemiol. 2017;185(1):65–73.

    PubMed  Google Scholar 

  51. Hernán MA, Hsu J, Healy B. A second chance to get causal inference right: a classification of data science tasks. Chance. 2019;32(1):42–9.

    Google Scholar 

  52. Norén GN, Orre R, Bate A, Edwards IR. Duplicate detection in adverse drug reaction surveillance. Data Min Knowl Discov. 2007;14(3):305–28.

    Google Scholar 

  53. Koutkias VG, Lillo-Le Louet A, Jaulent MC. Exploiting heterogeneous publicly available data sources for drug safety surveillance: computational framework and case studies. Expert Opin Drug Saf. 2017;16(2):113–24.

    CAS  PubMed  Google Scholar 

  54. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1:18.

    PubMed  PubMed Central  Google Scholar 

  55. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One. 2013;8(6):e66341.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weissenbacher D, Sarker A, Klein A, O’Connor K, Magge A, Gonzalez-Hernandez G. Deep neural networks ensemble for detecting medication mentions in tweets. J Am Med Inform Assoc. 2019;26(12):1618–26.

    PubMed  PubMed Central  Google Scholar 

  57. Wang CS, Lin PJ, Cheng CL, Tai SH, Kao Yang YH, Chiang JH. Detecting potential adverse drug reactions using a deep neural network model. J Med Internet Res. 2019;21(2):e11016.

    PubMed  PubMed Central  Google Scholar 

  58. Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. 2015. arXiv preprint. arXiv:150302531.

  59. Ferner R, Aronson J. Susceptibility to adverse drug reactions. Br J Clin Pharmacol. 2019;85(10):2205–12.

    PubMed  PubMed Central  Google Scholar 

  60. Bate A, Edwards IR. Data mining techniques in pharmacovigilance. Pharmacoepidemiology and therapeutic risk management. Cincinnati: Harvey Whitney; 2008. p. 239–72.

    Google Scholar 

  61. Wang SV, Patterson OV, Gagne JJ, Brown JS, Ball R, Jonsson P, et al. Transparent reporting on research using unstructured electronic health record data to generate ‘real world’ evidence of comparative effectiveness and safety. Drug Saf. 2019;42(11):1297–309.

    CAS  PubMed  Google Scholar 

  62. Torcel-Pagnon L, Bauchau V, Mahy P, Htar MTT, van der Sande M, Mahe C, et al. Guidance for the governance of public-private collaborations in vaccine post-marketing settings in Europe. Vaccine. 2019;37(25):3278–89.

    PubMed  Google Scholar 

  63. Candore G, Juhlin K, Manlik K, Thakrar B, Quarcoo N, Seabroke S, et al. Comparison of statistical signal detection methods within and across spontaneous reporting databases. Drug Saf. 2015;38(6):577–87.

    CAS  PubMed  Google Scholar 

  64. Platt R, Brown JS, Robb M, McClellan M, Ball R, Nguyen MD, et al. The FDA Sentinel initiative: an evolving national resource. N Engl J Med. 2018;379(22):2091–3.

    PubMed  Google Scholar 

  65. Tsintis P, La Mache E. CIOMS and ICH initiatives in pharmacovigilance and risk management: overview and implications. Drug Saf. 2004;27(8):509–17.

    PubMed  Google Scholar 

  66. Duke Margolis Center for Health Policy. Implementation of signal detection capabilities in the Sentinel system: a discussion guide. 2018. https://healthpolicy.duke.edu/events/implementation-signal-detection-capabilities-sentinel-system. Accessed 21 Sept 2020.

  67. Almenoff J, Tonning JM, Gould AL, Szarfman A, Hauben M, Ouellet-Hellstrom R, et al. Perspectives on the use of data mining in pharmaco-vigilance. Drug Saf. 2005;28(11):981–1007.

    CAS  PubMed  Google Scholar 

  68. Califf RM. Introducing IMEDS, a public-private resource for evidence generation. FDA Voice 2017. https://www.focr.org/news/fda-voice-introducing-imeds-public-private-resource-evidence-generation. Accessed 21 Sept 2020.

  69. Danysz K, Cicirello S, Mingle E, Assuncao B, Tetarenko N, Mockute R, et al. Artificial intelligence and the future of the drug safety professional. Drug Saf. 2019;42(4):491–7.

    PubMed  Google Scholar 

  70. Sobel RE, Bate A, Marshall J, Haynes K, Selvam N, Nair V, et al. Do FDA label changes work? Assessment of the 2010 class label change for proton pump inhibitors using the Sentinel system’s analytic tools. Pharmacoepidemiol Drug Saf. 2018;27(3):332–9.

    CAS  PubMed  Google Scholar 

  71. Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999;20(2):109–17.

    CAS  PubMed  Google Scholar 

  72. Pissadaki E, Abrami A, Heisig S, Bilal E, Cavallo M, Wacnik P, et al. Decomposition of complex movements into primitives for Parkinson’s disease assessment. IBM J Res Dev. 2018;62(1):5:1–11.

    Google Scholar 

  73. Curtis LH, Weiner MG, Boudreau DM, Cooper WO, Daniel GW, Nair VP, et al. Design considerations, architecture, and use of the Mini-Sentinel distributed data system. Pharmacoepidemiol Drug Saf. 2012;21(Suppl. 1):23–31.

    PubMed  Google Scholar 

  74. Bate A, Hornbuckle K, Juhaeri J, Motsko SP, Reynolds RF. Hypothesis-free signal detection in healthcare databases: finding its value for pharmacovigilance. Ther Adv Drug Saf. 2019;10:2042098619864744. https://doi.org/10.1177/2042098619864744

    Article  PubMed  PubMed Central  Google Scholar 

  75. Arlett P, Straus S, Rasi G. Pharmacovigilance 2030: invited commentary for the January 2020 “Futures” edition of Clinical Pharmacology and Therapeutics. Clin Pharmacol Ther. 2020;107(1):89–91.

    PubMed  Google Scholar 

  76. Leape LL, Berwick DM. Five years after To Err Is Human: what have we learned? JAMA. 2005;293(19):2384–90.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Bate.

Ethics declarations

Funding

No funding was received for the preparation of this article.

Conflict of Interest

Andrew Bate is a full-time employee of GSK, and holds stock and stock options at Pfizer and GSK. Steve F. Hobbiger is a full-time employee of GSK, and holds stock and stock options at GSK. The views expressed in this article represent the authors’ own thoughts and are independent of their employer.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Author Contributions

AB and SFH jointly planned, drafted and edited the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bate, A., Hobbiger, S.F. Artificial Intelligence, Real-World Automation and the Safety of Medicines. Drug Saf 44, 125–132 (2021). https://doi.org/10.1007/s40264-020-01001-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-020-01001-7

Navigation