Skip to main content
Log in

Leveraging Human Genetics to Identify Safety Signals Prior to Drug Marketing Approval and Clinical Use

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

When a new drug or biologic product enters the market, its full spectrum of side effects is not yet fully understood, as use in the real world often uncovers nuances not suggested within the relatively narrow confines of preapproval preclinical and trial work.

Objective

We describe a new, phenome-wide association study (PheWAS)- and evidence-based approach for detection of potential adverse drug effects.

Methods

We leveraged our established platform, which integrates human genetic data with associated phenotypes in electronic health records from 29,722 patients of European ancestry, to identify gene-phenotype associations that may represent known safety issues. We examined PheWAS data and the published literature for 16 genes, each of which encodes a protein targeted by at least one drug or biologic product.

Results

Initial data demonstrated that our novel approach (safety ascertainment using PheWAS [SA-PheWAS]) can replicate published safety information across multiple drug classes, with validated findings for 13 of 16 gene–drug class pairs.

Conclusions

By connecting and integrating in vivo and in silico data, SA-PheWAS offers an opportunity to supplement current methods for predicting or confirming safety signals associated with therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parasrampuria DA, Benet LZ, Sharma A. Why drugs fail in late stages of development: case study analyses from the last decade and recommendations. AAPS J. 2018;20:46.

    Article  PubMed  CAS  Google Scholar 

  2. Hwang TJ, Carpenter D, Lauffenburger JC, Wang B, Franklin JM, Kesselheim AS. Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Intern Med. 2016;176:1826–33.

    Article  PubMed  Google Scholar 

  3. Arrowsmith J, Miller P. Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12:569.

    Article  CAS  PubMed  Google Scholar 

  4. Ross JS, Dzara K, Downing NS. Efficacy and safety concerns are important reasons why the FDA requires multiple reviews before approval of new drugs. Health Aff. 2015;34:681–8.

    Article  Google Scholar 

  5. Zipursky J, Juurlink DN. Studying drug safety in the real world. JAMA Intern Med. 2018;178:1533–4.

    Article  PubMed  Google Scholar 

  6. Downing NS, Shah ND, Aminawung JA, Pease AM, Zeitoun J-D, Krumholz HM, et al. Postmarket safety events among novel therapeutics approved by the US Food and Drug Administration between 2001 and 2010. JAMA. 2017;317:1854–63.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patadia VK, Schuemie MJ, Coloma PM, Herings R, van der Lei J, Sturkenboom M, et al. Can electronic health records databases complement spontaneous reporting system databases? A historical-reconstruction of the association of rofecoxib and acute myocardial infarction. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00594/full.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lavelle A, Sugrue R, Lawler G, Mulligan N, Kelleher B, Murphy DM, et al. Sitaxentan-induced hepatic failure in two patients with pulmonary arterial hypertension. Eur Respir J. 2009;34:770–1.

    Article  CAS  PubMed  Google Scholar 

  9. Center for Biologics Evaluation and. FDA Biologics Post-Market Activities. https://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Post-MarketActivities/default.htm. Accessed 18 Apr 2019.

  10. Center for Drug Evaluation and. FDA’s Adverse Event Reporting System (FAERS). https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm. Accessed 18 Apr 2019.

  11. ICD-ICD-9-CM-International Classification of Diseases, Ninth Revision, Clinical Modification. 2019. https://www.cdc.gov/nchs/icd/icd9cm.htm. Accessed 8 Jan 2020.

  12. McMahon AW, Pan GD. Assessing drug safety in children—the role of real-world data. N Engl J Med. 2018;378:2155–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sarker A, Ginn R, Nikfarjam A, O’Connor K, Smith K, Jayaraman S, et al. Utilizing social media data for pharmacovigilance: a review. J Biomed Inform. 2015;54:202–12.

    Article  PubMed  PubMed Central  Google Scholar 

  14. White RW, Harpaz R, Shah NH, DuMouchel W, Horvitz E. Toward enhanced pharmacovigilance using patient-generated data on the internet. Clin Pharmacol Ther. 2014;96:239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pontes H, Clément M, Rollason V. Safety signal detection: the relevance of literature review. Drug Saf. 2014;37:471–9.

    Article  CAS  PubMed  Google Scholar 

  16. Abernethy DR, Woodcock J, Lesko LJ. Pharmacological mechanism-based drug safety assessment and prediction. Clin Pharmacol Ther. 2011;89:793–7.

    Article  CAS  PubMed  Google Scholar 

  17. Pulley JM, Shirey-Rice JK, Lavieri RR, Jerome RN, Zaleski NM, Aronoff DM, et al. Accelerating precision drug development and drug repurposing by leveraging human genetics. Assay Drug Dev Technol. 2017;15:113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR, et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin Pharmacol Ther. 2008;84:362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31:1102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei W-Q, Bastarache LA, Carroll RJ, Marlo JE, Osterman TJ, Gamazon ER, et al. Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. Rzhetsky A, editor. PLoS One. 2017;12:e0175508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Denny JC, Bastarache L, Roden DM. Phenome-wide association studies as a tool to advance precision medicine. Annu Rev Genom Hum Genet. 2016;17:353–73.

    Article  CAS  Google Scholar 

  24. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.

    Article  CAS  PubMed  Google Scholar 

  25. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;76:7–20.

    Google Scholar 

  26. CADD—Combined Annotation Dependent Depletion. https://cadd.gs.washington.edu/. Accessed 10 Apr 2019.

  27. Ensembl genome browser 96. https://useast.ensembl.org/index.html. Accessed 10 Apr 2019.

  28. Schulz R, Schlüter K-D, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol. 2015;110:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Singh M, Kumar A. Risks associated with SGLT2 inhibitors: an overview. Curr Drug Saf. 2018;13:84–91.

    Article  CAS  PubMed  Google Scholar 

  30. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Vajaitu C, Draghici CC, Solomon I, Lisievici CV, Popa AV, Lupu M, et al. The central role of inflammation associated with checkpoint inhibitor treatments. J Immunol Res. 2018;2018:4625472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nivolumab FDA label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125554s055lbl.pdf. Accessed 12 Dec 2018.

  33. Bray GA, Smith SR, Banerji MA, Tripathy D, Clement SC, Buchanan TA, et al. Effect of pioglitazone on body composition and bone density in subjects with prediabetes in the ACT NOW trial. Diabetes Obes Metab. 2013;15:931–7.

    Article  CAS  PubMed  Google Scholar 

  34. Jerome RN, Pulley JM, Roden DM, Shirey-Rice JK, Bastarache LA, Bernard RG, et al. Using human “experiments of nature” to predict drug safety issues: an example with PCSK9 inhibitors. Drug Saf. 2018;41:303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. An D, Wei X, Li H, Gu H, Huang T, Zhao G, et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci Rep. 2015;5:17559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. What’s in a REMS? FDA. 2018. http://www.fda.gov/drugs/risk-evaluation-and-mitigation-strategies-rems/whats-rems. Accessed 10 Jun 2019.

  37. DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87:272–7.

    Article  CAS  PubMed  Google Scholar 

  38. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60.

    Article  CAS  PubMed  Google Scholar 

  39. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20:273–86.

    Article  PubMed  Google Scholar 

  40. Diogo D, Tian C, Franklin CS, Alanne-Kinnunen M, March M, Spencer CCA, et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun. 2018;9:1–3.

    Article  CAS  Google Scholar 

  41. Cami A, Arnold A, Manzi S, Reis B. Predicting adverse drug events using pharmacological network models. Sci Transl Med. 2011;3:114ra127.

    Article  PubMed  CAS  Google Scholar 

  42. Guney E, Menche J, Vidal M, Barábasi A-L. Network-based in silico drug efficacy screening. Nat Commun. 2016;7:1–13.

    Article  CAS  Google Scholar 

  43. Cheng F, Kovács IA, Barabási A-L. Network-based prediction of drug combinations. Nat Commun. 2019;10:1–11.

    Article  CAS  Google Scholar 

  44. Davazdahemami B, Delen D. A chronological pharmacovigilance network analytics approach for predicting adverse drug events. J Am Med Inform Assoc. 2018;25:1311–21.

    Article  PubMed  Google Scholar 

  45. Dey S, Luo H, Fokoue A, Hu J, Zhang P. Predicting adverse drug reactions through interpretable deep learning framework. BMC Bioinform. 2018;19:476.

    Article  CAS  Google Scholar 

  46. Dimitri GM, Lió P. DrugClust: a machine learning approach for drugs side effects prediction. Comput Biol Chem. 2017;68:204–10.

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Gu Q, Wei J, Cao Z, Liu Q. Mining drug–disease relationships as a complement to medical genetics-based drug repositioning: where a recommendation system meets genome-wide association studies. Clin Pharmacol Ther. 2015;97:451–4.

    Article  CAS  PubMed  Google Scholar 

  48. Chen X, Shi H, Yang F, Yang L, Lv Y, Wang S, et al. Large-scale identification of adverse drug reaction-related proteins through a random walk model. Sci Rep. 2016;6:36325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiang Y, Liu K, Cheng X, Cheng C, Gong F, Pan J, et al. Rapid assessment of adverse drug reactions by statistical solution of gene association network. IEEE/ACM Trans Comput Biol Bioinform. 2015;12:844–50.

    Article  CAS  PubMed  Google Scholar 

  50. Wilson JL, Racz R, Liu T, Adeniyi O, Sun J, Ramamoorthy A, et al. PathFX provides mechanistic insights into drug efficacy and safety for regulatory review and therapeutic development. PLoS Comput Biol. 2018;14:e1006614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Scott RA, Freitag DF, Li L, Chu AY, Surendran P, Young R, et al. A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Sci Transl Med. 2016;8:341ra76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Walker VM, Davey Smith G, Davies NM, Martin RM. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J Epidemiol. 2017;46:2078–89.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68.

    Article  CAS  PubMed  Google Scholar 

  54. O’Malley KJ, Cook KF, Price MD, Wildes KR, Hurdle JF, Ashton CM. Measuring diagnoses: ICD code accuracy. Health Serv Res. 2005;40:1620–39.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov. 2012;11:909–22.

    Article  CAS  PubMed  Google Scholar 

  56. Mayne J, Dewpura T, Raymond A, Bernier L, Cousins M, Ooi TC, et al. Novel loss-of-function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin Chem. 2011;57:1415–23.

    Article  CAS  PubMed  Google Scholar 

  57. PRALUENT® (alirocumab) Injection—dosing and safety. Home. https://www.praluenthcp.com/dosing. Accessed 11 Oct 2019.

  58. Evolocumab package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125522s014lbl.pdf. Accessed 16 Oct 2019.

  59. Praluent® (Alirocumab) Pregnancy Exposure Registry: an OTIS pregnancy surveillance study—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03379558. Accessed 23 Oct 2019.

  60. Solus JF, Chung CP, Oeser A, Li C, Rho YH, Bradley KM, et al. Genetics of serum concentration of IL-6 and TNFα in systemic lupus erythematosus and rheumatoid arthritis: a candidate gene analysis. Clin Rheumatol. 2015;34:1375–82.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Burmester GR, Mease P, Dijkmans BAC, Gordon K, Lovell D, Panaccione R, et al. Adalimumab safety and mortality rates from global clinical trials of six immune-mediated inflammatory diseases. Ann Rheum Dis. 2009;68:1863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burmester GR, Panaccione R, Gordon KB, McIlraith MJ, Lacerda APM. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann Rheum Dis. 2013;72:517–24.

    Article  CAS  PubMed  Google Scholar 

  63. Humira brochure. https://www.rxabbvie.com/pdf/humira.pdf. Accessed 24 Oct 2018.

  64. Quaresma PGF, Reencober N, Zanotto TM, Santos AC, Weissmann L, de Matos AHB, et al. Pioglitazone treatment increases food intake and decreases energy expenditure partially via hypothalamic adiponectin/adipoR1/AMPK pathway. Int J Obes. 2016;40:138–46.

    Article  CAS  Google Scholar 

  65. Pioglitazone package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021842s014s015lbl.pdf. Accessed 6 May 2019.

  66. Fisher B, Costantino JP, Redmond CK, Fisher ER, Wickerham DL, Cronin WM. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst. 1994;86:527–37.

    Article  CAS  PubMed  Google Scholar 

  67. Tamoxifen treatment and risk of deep venous thrombosis and pulmonary embolism—Hernandez—2009—Cancer—Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1002/cncr.24508. Accessed 30 Oct 2018.

  68. DeMichele A, Troxel AB, Berlin JA, Weber AL, Bunin GR, Turzo E, et al. Impact of raloxifene or tamoxifen use on endometrial cancer risk: a population-based case-control study. J Clin Oncol. 2008;26:4151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Novladex (tamoxifen) package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/17970s053lbl.pdf. Accessed 6 May 2019.

  70. Raloxifene package insert. https://www.fda.gov/media/73445/download. Accessed 6 May 2019.

  71. Lisinopril (Oral Route) Side Effects—Mayo Clinic. https://www.mayoclinic.org/drugs-supplements/lisinopril-oral-route/side-effects/drg-20069129?p=1. Accessed 24 Oct 2018.

  72. Lisinopril package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019777s054lbl.pdf. Accessed 6 May 2019.

  73. Nicholls SJ, Kastelein JJP, Schwartz GG, Bash D, Rosenson RS, Cavender MA, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA. 2014;311:252–62.

    Article  CAS  PubMed  Google Scholar 

  74. Cirino G, Cicala C, Sorrentino L, Browning JL. Human recombinant non pancreatic secreted platelet phospholipase A2 has anticoagulant activity in vitro on human plasma. Thromb Res. 1993;70:337–42.

    Article  CAS  PubMed  Google Scholar 

  75. Mounier C, Franken PA, Verheij HM, Bon C. The anticoagulant effect of the human secretory phospholipase A2 on blood plasma and on a cell-free system is due to a phospholipid-independent mechanism of action involving the inhibition of factor Va. Eur J Biochem. 1996;237:778–85.

    Article  CAS  PubMed  Google Scholar 

  76. Strik W, Dierks T. Neurophysiological mechanisms of psychotic symptoms. Eur Arch Psychiatry Clin Neurosci. 2008;258(Suppl 5):66–70.

    Article  PubMed  Google Scholar 

  77. Todder D, Avissar S, Schreiber G. Non-linear dynamic analysis of inter-word time intervals in psychotic speech. IEEE J Transl Eng Health Med. 2013;1:2200107.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Curran HV, Morgan C. Cognitive, dissociative and psychotogenic effects of ketamine in recreational users on the night of drug use and 3 days later. Addiction. 2000;95:575–90.

    Article  CAS  PubMed  Google Scholar 

  79. KETAMINE—National Library of Medicine HSDB Database. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+2180%20. Accessed 24 Oct 2018.

  80. Jung J-Y, Roh M, Ko K-K, Jang H-S, Lee S-R, Ha J-H, et al. Effects of single treatment of anti-dementia drugs on sleep-wake patterns in rats. Korean J Physiol Pharmacol. 2012;16:231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Larsson V, Aarsland D, Ballard C, Minthon L, Londos E. The effect of memantine on sleep behaviour in dementia with Lewy bodies and Parkinson’s disease dementia. Int J Geriatr Psychiatry. 2010;25:1030–8.

    Article  PubMed  Google Scholar 

  82. Cekmen N, Bedel P, Erdemli O. A memantin HCL intoxication responsive to plasmapheresis therapy. Bratisl Lek Listy. 2011;112:527–9.

    CAS  PubMed  Google Scholar 

  83. Yang Z, Zhou X, Zhang Q. Effectiveness and safety of memantine treatment for Alzheimer’s disease. J Alzheimers Dis. 2013;36:445–58.

    Article  CAS  PubMed  Google Scholar 

  84. Memantine package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021487s010s012s014,021627s008lbl.pdf. Accessed 29 Oct 2019.

  85. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.

    Article  CAS  PubMed  Google Scholar 

  86. Crandall JP, Mather K, Rajpathak SN, Goldberg RB, Watson K, Foo S, et al. Statin use and risk of developing diabetes: results from the Diabetes Prevention Program. BMJ Open Diabetes Res Care. 2017;5:e000438.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Center for Drug Evaluation and. Drug Safety and Availability—FDA Drug Safety Communication: Important safety label changes to cholesterol-lowering statin drugs. https://www.fda.gov/drugs/drugsafety/ucm293101.htm. Accessed 16 Apr 2019.

  88. Prasad HC, Zhu C-B, McCauley JL, Samuvel DJ, Ramamoorthy S, Shelton RC, et al. Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci USA. 2005;102:11545–50.

    Article  CAS  PubMed  Google Scholar 

  89. Dall M, de Muckadell OBS, Lassen AT, Hallas J. There is an association between selective serotonin reuptake inhibitor use and uncomplicated peptic ulcers: a population-based case–control study. Aliment Pharmacol Ther. 2010;32:1383–91.

    Article  CAS  PubMed  Google Scholar 

  90. Dall M, de Muckadell OBS, Hansen JM, Wildner-Christensen M, Lassen AT, Hallas J. Helicobacter pylori and risk of upper gastrointestinal bleeding among users of selective serotonin reuptake inhibitors. Scand J Gastroenterol. 2011;46:1039–44.

    Article  CAS  PubMed  Google Scholar 

  91. Fluoxetine Hydrochloride (Prozac) package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021860s005lbl.pdf. Accessed 6 May 2019.

  92. Weber JS, Hodi FS, Wolchok JD, Topalian SL, Schadendorf D, Larkin J, et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. JCO. 2016;35:785–92.

    Article  Google Scholar 

  93. Trinh S, Le A, Gowani S, La-Beck NM. Management of immune-related adverse events associated with immune checkpoint inhibitor therapy: a minireview of current clinical guidelines. Asia Pac J Oncol Nurs. 2019;6:154–60.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lansoprazole package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020406s078-021428s025lbl.pdf. Accessed 6 May 2019.

  95. Omeprazole package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/019810s096lbl.pdf. Accessed 16 Oct 2019.

  96. Chu C, Lu Y-P, Yin L, Hocher B. The SGLT2 inhibitor empagliflozin might be a new approach for the prevention of acute kidney injury. Kidney Blood Press Res. 2019;44(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  97. Aroor AR, Das NA, Carpenter AJ, Habibi J, Jia G, Ramirez-Perez FI, et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol. 2018;17(1):108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jardiance brochure. https://docs.boehringer-ingelheim.com/Prescribing%20Information/PIs/Jardiance/jardiance.pdf. Accessed 24 Oct 2018.

  99. SGLT2 Inhibitors. MedicineNet. https://www.medicinenet.com/sglt2_inhibitors_type_2_diabetes_drug_class/article.htm. Accessed 25 Oct 2018.

  100. High Blood Pressure—Medicines to Help You. FDA. 2019. consumers/free-publications-women/high-blood-pressure-medicines-help-you. Accessed 6 May 2019.

  101. Verapamil package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/018925s010lbl.pdf. Accessed 6 May 2019.

  102. Kelley-Hickie LP, Kinsella BT. EP1- and FP-mediated cross-desensitization of the alpha (alpha) and beta (beta) isoforms of the human thromboxane A2 receptor. Br J Pharmacol. 2004;142:203–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Misoprostol: Pharmacokinetic profiles, effects on the uterus and side-effects- ClinicalKey. https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0020729207005073?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0020729207005073%3Fshowall%3Dtrue&referrer=https:%2F%2Fwww.ncbi.nlm.nih.gov%2F. Accessed 6 May 2019.

  104. Misoprostol package insert. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/019268s051lbl.pdf. Accessed 6 May 2019.

  105. dbSNP Home Page. https://www.ncbi.nlm.nih.gov/projects/SNP/. Accessed 14 May 2018.

Download references

Funding

The project described was supported by CTSA award No. UL1 TR002243 from the National Center for Advancing Translational Sciences. Its contents are solely the responsibility of the authors and do not necessarily represent official views of the National Center for Advancing Translational Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca N. Jerome.

Ethics declarations

Ethics approval

This project was reviewed and received a nonhuman subjects research determination from the Vanderbilt University Institutional Review Board (IRB number 151121).

Conflict of interest

VUMC has licensed PheWAS technology to Nashville Biosciences, a VUMC-owned entity. Dr. Denny receives a portion of those royalty payments. Rebecca Jerome, Meghan Joly, Nan Kennedy, Jana Shirey-Rice, Dan Roden, Gordon Bernard, Kenneth Holroyd, and Jill Pulley have no conflicts of interest that are directly relevant to the content of this study.

Data sharing

The data used and analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerome, R.N., Joly, M.M., Kennedy, N. et al. Leveraging Human Genetics to Identify Safety Signals Prior to Drug Marketing Approval and Clinical Use. Drug Saf 43, 567–582 (2020). https://doi.org/10.1007/s40264-020-00915-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-020-00915-6

Navigation