Skip to main content
Log in

Addressing Limitations in Observational Studies of the Association Between Glucose-Lowering Medications and All-Cause Mortality: A Review

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

A growing body of observational literature on the association between glucose-lowering treatments and all-cause mortality has been accumulating in recent years. However, many investigations present designs or analyses that inadequately address the methodological challenges involved. We conducted a systematic search with a non-systematic extension to identify observational studies published between 2000 and 2012 that evaluated the effects of glucose-lowering medications on all-cause mortality. We reviewed these studies and assessed the design and analysis methods used, with a focus on their ability to address specific methodological challenges. We described these methodological issues and their potential impact on observed associations, providing examples from the reviewed literature, and suggested possible approaches to manage these methodological challenges. We evaluated 67 publications of observational studies evaluating the association between glucose-lowering treatments and all-cause mortality. The identified methodological challenges included trade-offs associated with the outcome of all-cause mortality, incorrect temporal sequencing in administrative databases, inadequate treatment of time-varying hazards and treatment duration effects, unclear definition of the exposure risk window, improper handling of time-varying exposures, and incomplete accounting for confounding by indication. Most of these methodological challenges may be adequately addressed through the application of appropriate methods. Observational research plays an increasingly important role in assessing the clinical effects of diabetes therapy. The implementation of suitable research methods can reduce the potential for spurious findings, and thus the risk of misleading the medical community about benefits and harms of diabetes therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arana A, Rivero E, Egberts TCG. What do we show and who does so? An analysis of the abstracts presented at the 19th ICPE. Pharmacoepidemiol Drug Saf. 2004;13:S330–1.

    Google Scholar 

  2. Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58:323–37.

    PubMed  Google Scholar 

  3. Patorno E, Patrick AR, Garry EM, Schneeweiss S, Gillet VG, Bartels DB, et al. Observational studies of the association between glucose-lowering medications and cardiovascular outcomes: addressing methodological limitations. Diabetologia. 2014;57:2237–50.

    CAS  PubMed  Google Scholar 

  4. Ray W. Observational studies of drugs and mortality. N Engl J Med. 2005;353:2319–21.

    CAS  PubMed  Google Scholar 

  5. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.

    Google Scholar 

  6. Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer. 2011;11:20.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Dehal AN, Newton CC, Jacobs EJ, Patel AV, Gapstur SM, Campbell PT. Impact of diabetes mellitus and insulin use on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort. J Clin Oncol. 2012;30:53–9.

    PubMed  Google Scholar 

  8. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

    Google Scholar 

  9. Bo S, Ciccone G, Rosato R, Villois P, Appendino G, Ghigo E, et al. Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab. 2012;14:23–9.

    CAS  PubMed  Google Scholar 

  10. Schneeweiss S. A basic study design for expedited safety signal evaluation based on electronic healthcare data. Pharmacoepidemiol Drug Saf. 2010;19:858–68.

    PubMed Central  PubMed  Google Scholar 

  11. Gulliford M, Latinovic R. Mortality in type 2 diabetic subjects prescribed metformin and sulphonylurea drugs in combination: cohort study. Diabetes Metab Res Rev. 2004;20:239–45.

    CAS  PubMed  Google Scholar 

  12. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA. 2010;304:411–8.

    CAS  PubMed  Google Scholar 

  13. Juurlink DN, Gomes T, Lipscombe LL, Austin PC, Hux JE, Mamdani MM. Adverse cardiovascular events during treatment with pioglitazone and rosiglitazone: population based cohort study. BMJ. 2009;339:b2942.

    PubMed Central  PubMed  Google Scholar 

  14. Mellbin LG, Malmberg K, Norhammar A, Wedel H, Ryden L. The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J. 2008;29:166–76.

    CAS  PubMed  Google Scholar 

  15. Roumie CL, Hung AM, Greevy RA, Grijalva CG, Liu X, Murff HJ, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2012;157:601–10.

    PubMed  Google Scholar 

  16. Tzoulaki I, Molokhia M, Curcin V, Little MP, Millett CJ, Ng A, et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ. 2009;339:b4731.

    PubMed Central  PubMed  Google Scholar 

  17. Winkelmayer WC, Setoguchi S, Levin R, Solomon DH. Comparison of cardiovascular outcomes in elderly patients with diabetes who initiated rosiglitazone vs pioglitazone therapy. Arch Intern Med. 2008;168:2368–75.

    PubMed  Google Scholar 

  18. Suissa S. Immortal time bias in pharmaco-epidemiology. Am J Epidemiol. 2008;167:492–9.

    PubMed  Google Scholar 

  19. Hsiao FY, Tsai YW, Wen YW, Chen PF, Chou HY, Chen CH, et al. Relationship between cumulative dose of thiazolidinediones and clinical outcomes in type 2 diabetic patients with history of heart failure: a population-based cohort study in Taiwan. Pharmacoepidemiol Drug Saf. 2010;19:786–91.

    CAS  PubMed  Google Scholar 

  20. Eurich DT, Majumdar SR, McAlister FA, Tsuyuki RT, Johnson JA. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28:2345–51.

    CAS  PubMed  Google Scholar 

  21. Aguilar D, Bozkurt B, Pritchett A, Petersen NJ, Deswal A. The impact of thiazolidinedione use on outcomes in ambulatory patients with diabetes mellitus and heart failure. J Am Coll Cardiol. 2007;50:32–6.

    CAS  PubMed  Google Scholar 

  22. Anselmino M, Ohrvik J, Malmberg K, Standl E, Ryden L. Glucose lowering treatment in patients with coronary artery disease is prognostically important not only in established but also in newly detected diabetes mellitus: a report from the Euro Heart Survey on Diabetes and the Heart. Eur Heart J. 2008;29:177–84.

    PubMed  Google Scholar 

  23. Khalangot M, Tronko M, Kravchenko V, Kovtun V. Glibenclamide-related excess in total and cardiovascular mortality risks: data from large Ukrainian observational cohort study. Diabetes Res Clin Pract. 2009;86:247–53.

    CAS  PubMed  Google Scholar 

  24. Corrao G, Romio SA, Zambon A, Merlino L, Bosi E, Scavini M. Multiple outcomes associated with the use of metformin and sulphonylureas in type 2 diabetes: a population-based cohort study in Italy. Eur J Clin Pharmacol. 2011;67:289–99.

    CAS  PubMed  Google Scholar 

  25. Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol. 2011;26:858–65.

    PubMed  Google Scholar 

  26. Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. 2012;118:1202–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Yeh HT, Hsieh CF, Tsai YW, Huang WF. Effects of thiazolidinediones on cardiovascular events in patients with type 2 diabetes mellitus after drug-eluting stent implantation: a retrospective cohort study using the national health insurance database in Taiwan. Clin Ther. 2012;34:885–93.

    CAS  PubMed  Google Scholar 

  28. Lee JH, Kim TI, Jeon SM, Hong SP, Cheon JH, Kim WH. The effects of metformin on the survival of colorectal cancer patients with diabetes mellitus. Int J Cancer. 2012;131:752–9.

    CAS  PubMed  Google Scholar 

  29. Sadeghi N, Abbruzzese JL, Yeung SC, Hassan M, Li D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res. 2012;18:2905–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Loebstein R, Dushinat M, Vesterman-Landes J, Silverman B, Friedman N, Katzir I, et al. Database evaluation of the effects of long-term rosiglitazone treatment on cardiovascular outcomes in patients with type 2 diabetes. J Clin Pharmacol. 2011;51:173–80.

    CAS  PubMed  Google Scholar 

  31. Olsson J, Lindberg G, Gottsäter M, Lindwall K, Sjöstrand A, Tisell A, et al. Increased mortality in type II diabetic patients using sulphonylurea and metformin in combination: a population-based observational study. Diabetologia. 2000;43:558–60.

    CAS  PubMed  Google Scholar 

  32. Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care. 2002;25:2244–8.

    CAS  PubMed  Google Scholar 

  33. Evans JM, Doney AS, AlZadjali MA, Ogston SA, Petrie JR, Morris AD, et al. Effect of metformin on mortality in patients with heart failure and type 2 diabetes mellitus. Am J Cardiol. 2010;106:1006–10.

    CAS  PubMed  Google Scholar 

  34. Simpson SH, Majumdar SR, Tsuyuki RT, Eurich DT, Johnson JA. Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. CMAJ. 2006;174:169–74.

    PubMed Central  PubMed  Google Scholar 

  35. Gamble JM, Simpson SH, Eurich DT, Majumdar SR, Johnson JA. Insulin use and increased risk of mortality in type 2 diabetes: a cohort study. Diabetes Obes Metab. 2010;12:47–53.

    CAS  PubMed  Google Scholar 

  36. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32:1620–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Choy-Shan A, Zinn A, Shah B, Danoff A, Donnino R, Schwartzbard AZ, et al. Effect of rosiglitazone on survival in patients with diabetes mellitus treated for coronary artery disease. Coron Artery Dis. 2012;23:354–8.

    PubMed  Google Scholar 

  38. He XX, Tu SM, Lee MH, Yeung SC. Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. Ann Oncol. 2011;22:2640–5.

    PubMed Central  PubMed  Google Scholar 

  39. Morgan CL, Poole CD, Evans M, Barnett AH, Jenkins-Jones S, Currie CJ. What next after metformin? A retrospective evaluation of the outcome of second-line, glucose-lowering therapies in people with type 2 diabetes. J Clin Endocrinol Metab. 2012;97:4605–12.

    CAS  PubMed  Google Scholar 

  40. Wertz DA, Chang CL, Sarawate CA, Willey VJ, Cziraky MJ, Bohn RL. Risk of cardiovascular events and all-cause mortality in patients treated with thiazolidinediones in a managed-care population. Circ Cardiovasc Qual Outcomes. 2010;3:538–45.

    PubMed  Google Scholar 

  41. Hemkens LG, Grouven U, Bender R, Günster C, Gutschmidt S, Selke GW, et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia. 2009;52:1732–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Rothman KJ, Greenland S. Modern epidemiology. 2nd ed. Philadelphia: Lippincott-Raven; 1998.

    Google Scholar 

  43. Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009;20:488–95.

    PubMed Central  PubMed  Google Scholar 

  44. Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300–6.

    PubMed  Google Scholar 

  45. Azoulay L, Schneider-Lindner V, Dell’aniello S, Schiffrin A, Suissa S. Combination therapy with sulfonylureas and metformin and the prevention of death in type 2 diabetes: a nested case–control study. Pharmacoepidemiol Drug Saf. 2010;19:335–42.

    CAS  PubMed  Google Scholar 

  46. MacDonald MR, Eurich DT, Majumdar SR, Lewsey JD, Bhagra S, Jhund PS, et al. Treatment of type 2 diabetes and outcomes in patients with heart failure: a nested case–control study from the UK General Practice Research Database. Diabetes Care. 2010;33:1213–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Lipscombe LL, Gomes T, Levesque LE, Hux JE, Juurlink DN, Alter DA. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA. 2007;298:2634–43.

    CAS  PubMed  Google Scholar 

  48. Pantalone KM, Kattan MW, Yu C, Wells BJ, Arrigain S, Jain A, et al. Increase in overall mortality risk in patients with type 2 diabetes receiving glipizide, glyburide or glimepiride monotherapy versus metformin: a retrospective analysis. Diabetes Obes Metab. 2012;14:803–9.

    CAS  PubMed  Google Scholar 

  49. Pantalone KM, Kattan MW, Yu C, Wells BJ, Arrigain S, Nutter B, et al. The risk of overall mortality in patients with type 2 diabetes receiving different combinations of sulfonylureas and metformin: a retrospective analysis. Diabet Med. 2012;29:1029–35.

    CAS  PubMed  Google Scholar 

  50. Pantalone KM, Kattan MW, Yu C, Wells BJ, Arrigain S, Jain A, et al. The risk of developing coronary artery disease or congestive heart failure, and overall mortality, in type 2 diabetic patients receiving rosiglitazone, pioglitazone, metformin, or sulfonylureas: a retrospective analysis. Acta Diabetol. 2009;46:145–54.

    CAS  PubMed  Google Scholar 

  51. Pantalone KM, Kattan MW, Yu C, Wells BJ, Arrigain S, Jain A, et al. The risk of overall mortality in patients with type 2 diabetes receiving glipizide, glyburide, or glimepiride monotherapy: a retrospective analysis. Diabetes Care. 2010;33:1224–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Evans J, Ogston S, Emslie-Smith A, Morris A. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia. 2006;49:930–6.

    CAS  PubMed  Google Scholar 

  53. Azoulay L, Schneider-Lindner V, Dell’aniello S, Filion KB, Suissa S. Thiazolidinediones and the risk of incident strokes in patients with type 2 diabetes: a nested case–control study. Pharmacoepidemiol Drug Saf. 2010;19:343–50.

    CAS  PubMed  Google Scholar 

  54. Zendehdel K, Nyren O, Ostenson CG, Adami HO, Ekbom A, Ye W. Cancer incidence in patients with type 1 diabetes mellitus: a population-based cohort study in Sweden. J Natl Cancer Inst. 2003;95:1797–800.

    PubMed  Google Scholar 

  55. Adami HO, McLaughlin J, Ekbom A, Berne C, Silverman D, Hacker D, et al. Cancer risk in patients with diabetes mellitus. Cancer Causes Control. 1991;2:307–14.

    CAS  PubMed  Google Scholar 

  56. Johnson ES, Bartman BA, Briesacher BA, Fleming NS, Gerhard T, Kornegay CJ, et al. The incident user design in comparative effectiveness research. Pharmacoepidemiol Drug Saf. 2013;22:1–6.

    PubMed  Google Scholar 

  57. Ray W. Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol. 2003;158:915–20.

    PubMed  Google Scholar 

  58. Gamble JM, McAlister FA, Johnson JA, Eurich DT. Quantifying the impact of drug exposure misclassification due to restrictive drug coverage in administrative databases: a simulation cohort study. Value Health. 2012;15:191–7.

    PubMed  Google Scholar 

  59. Solomon DH, Glynn RJ, Rothman KJ, Schneeweiss S, Setoguchi S, Mogun H, et al. Subgroup analyses to determine cardiovascular risk associated with nonsteroidal antiinflammatory drugs and coxibs in specific patient groups. Arthritis Rheum. 2008;59:1097–104.

    PubMed Central  PubMed  Google Scholar 

  60. Breslow NE, Day NE. Statistical methods in cancer research. Vol. II—the design and analysis of cohort studies. Lyon: International Agency for Research on Cancer; 1987.

  61. Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care. 2010;33:322–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Habib ZA, Tzogias L, Havstad SL, Wells K, Divine G, Lanfear DE, et al. Relationship between thiazolidinedione use and cardiovascular outcomes and all-cause mortality among patients with diabetes: a time-updated propensity analysis. Pharmacoepidemiol Drug Saf. 2009;18:437–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Kahler KH, Rajan M, Rhoads GG, Safford MM, Demissie K, Lu SE, et al. Impact of oral antihyperglycemic therapy on all-cause mortality among patients with diabetes in the Veterans Health Administration. Diabetes Care. 2007;30:1689–93.

    CAS  PubMed  Google Scholar 

  64. Jonasson JM, Ljung R, Talback M, Haglund B, Gudbjornsdottir S, Steineck G. Insulin glargine use and short-term incidence of malignancies—a population-based follow-up study in Sweden. Diabetologia. 2009;52:1745–54.

    CAS  PubMed  Google Scholar 

  65. Andersson C, Olesen JB, Hansen PR, Weeke P, Norgaard ML, Jørgensen CH, et al. Metformin treatment is associated with a low risk of mortality in diabetic patients with heart failure: a retrospective nationwide cohort study. Diabetologia. 2010;53:2546–53.

    CAS  PubMed  Google Scholar 

  66. Andersson C, Gislason GH, Jørgensen CH, Hansen PR, Vaag A, Sørensen R, et al. Comparable long-term mortality risk associated with individual sulfonylureas in diabetes patients with heart failure. Diabetes Res Clin Pract. 2011;94:119–25.

    CAS  PubMed  Google Scholar 

  67. Hernan MA, Hernandez-Diaz S, Robins JM. Randomized trials analyzed as observational studies. Ann Intern Med. 2013;159:560–2.

    PubMed  Google Scholar 

  68. Hernan M, Hernandez-Diaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials. 2012;9:48–55.

    PubMed Central  PubMed  Google Scholar 

  69. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  70. Jørgensen CH, Gislason GH, Andersson C, Ahlehoff O, Charlot M, Schramm TK, et al. Effects of oral glucose-lowering drugs on long term outcomes in patients with diabetes mellitus following myocardial infarction not treated with emergent percutaneous coronary intervention: a retrospective nationwide cohort study. Cardiovasc Diabetol. 2010;9:54.

    PubMed Central  PubMed  Google Scholar 

  71. Robins J. Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika. 1992;79:321–34.

    Google Scholar 

  72. Hernan M, Brumback B, Robins J. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11:561–70.

    CAS  PubMed  Google Scholar 

  73. Robins J, Hernan M, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.

    CAS  PubMed  Google Scholar 

  74. Robins J. A new approach to causal inference in mortality studies with sustained exposure periods: application to control of the healthy worker survivor effect. Math Model. 1986;7:1393–512.

    Google Scholar 

  75. Yang S, Eaton CB, Lu J, Lapane KL. Application of marginal structural models in pharmacoepidemiologic studies: a systematic review. Pharmacoepidemiol Drug Saf. 2014;23:560–71.

    PubMed  Google Scholar 

  76. Walker AM. Confounding by indication. Epidemiology. 1996;7:335–6.

    CAS  PubMed  Google Scholar 

  77. Petri H, Urquhart J. Channeling bias in the interpretation of drug effects. Stat Med. 1991;10:577–81.

    CAS  PubMed  Google Scholar 

  78. Walker AM. Observation and inference: an introduction to the methods of epidemiology. Chestnut Hill: Epidemiology Resources Inc.; 1991.

    Google Scholar 

  79. Wei M, Gaskill S, Haffner S, Stern M. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio Heart Study. Diabetes Care. 1998;21:1167–72.

    CAS  PubMed  Google Scholar 

  80. Barr EL, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ, Dunstan DW, et al. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation. 2007;116:151–7.

    CAS  PubMed  Google Scholar 

  81. Lowe LP, Liu K, Greenland P, Metzger B, Dyer A, Stamler J. Diabetes, asymptomatic hyperglycemia, and 22-year mortality in black and white men. The Chicago Heart Association Detection Project in Industry Study. Diabetes Care. 1997;20:163–9.

    CAS  PubMed  Google Scholar 

  82. Gu K, Cowie C, Harris M. Mortality in adults with and without diabetes in a national cohort of the US population, 1971–1993. Diabetes Care. 1998;21:1138–45.

    CAS  PubMed  Google Scholar 

  83. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33:1674–85.

    PubMed Central  PubMed  Google Scholar 

  84. Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, Wolff AC, Brancati FL. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA. 2008;300:2754–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Smooke S, Horwich TB, Fonarow GC. Insulin-treated diabetes is associated with a marked increase in mortality in patients with advanced heart failure. Am Heart J. 2005;149:168–74.

    CAS  PubMed  Google Scholar 

  86. Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care. 2012;35:299–304.

    PubMed Central  PubMed  Google Scholar 

  87. Berger AK, Breall JA, Gersh BJ, Johnson AE, Oetgen WJ, Marciniak TA, et al. Effect of diabetes mellitus and insulin use on survival after acute myocardial infarction in the elderly (the Cooperative Cardiovascular Project). Am J Cardiol. 2001;87:272–7.

    CAS  PubMed  Google Scholar 

  88. Fisman EZ, Tenenbaum A, Boyko V, Benderly M, Adler Y, Friedensohn A, et al. Oral antidiabetic treatment in patients with coronary disease: time-related increased mortality on combined glyburide/metformin therapy over a 7.7-year follow-up. Clin Cardiol. 2001;24:151–8.

    CAS  PubMed  Google Scholar 

  89. Masoudi FA, Inzucchi SE, Wang Y, Havranek EP, Foody JM, Krumholz HM. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111:583–90.

    CAS  PubMed  Google Scholar 

  90. Arruda-Olson AM, Patch RK 3rd, Leibson CL, et al. Effect of second-generation sulfonylureas on survival in patients with diabetes mellitus after myocardial infarction. Mayo Clin Proc. 2009;84:28–33.

    PubMed Central  PubMed  Google Scholar 

  91. Monami M, Balzi D, Lamanna C, et al. Are sulphonylureas all the same? A cohort study on cardiovascular and cancer-related mortality. Diabetes Metab Res Rev. 2007;23:479–84.

    CAS  PubMed  Google Scholar 

  92. Horsdal HT, Johnsen SP, Søndergaard F, Jacobsen J, Thomsen RW, Schmitz O, et al. Sulfonylureas and prognosis after myocardial infarction in patients with diabetes: a population-based follow-up study. Diabetes Metab Res Rev. 2009;25:515–22.

    CAS  PubMed  Google Scholar 

  93. Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32:1900–8.

    CAS  PubMed  Google Scholar 

  94. Monami M, Luzzi C, Lamanna C, Chiasserini V, Addante F, Desideri CM, et al. Three-year mortality in diabetic patients treated with different combinations of insulin secretagogues and metformin. Diabetes Metab Res Rev. 2006;22:477–82.

    CAS  PubMed  Google Scholar 

  95. Sadeghi N, Abbruzzese JL, Yeung SC, Hassan M, Li D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res. 2012;18(10):2905–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Inzucchi SE, Masoudi FA, Wang Y, Kosiborod M, Foody JM, Setaro JF, et al. Insulin-sensitizing antihyperglycemic drugs and mortality after acute myocardial infarction: insights from the National Heart Care Project. Diabetes Care. 2005;28:1680–9.

    CAS  PubMed  Google Scholar 

  97. Weih M, Amberger N, Wegener S, Dirnagl U, Reuter T, Einhaupl K. Sulfonylurea drugs do not influence initial stroke severity and in-hospital outcome in stroke patients with diabetes. Stroke. 2001;32:2029–32.

    CAS  PubMed  Google Scholar 

  98. Mannucci E, Monami M, Masotti G, Marchionni N. All-cause mortality in diabetic patients treated with combinations of sulfonylureas and biguanides. Diabetes Metab Res Rev. 2004;20:44–7.

    CAS  PubMed  Google Scholar 

  99. Gosmanova EO, Canada RB, Mangold TA, Rawls WN, Wall BM. Effect of metformin-containing antidiabetic regimens on all-cause mortality in veterans with type 2 diabetes mellitus. Am J Med Sci. 2008;336:241–7.

    PubMed  Google Scholar 

  100. Ramirez SP, Albert JM, Blayney MJ, Tentori F, Goodkin DA, Wolfe RA, et al. Rosiglitazone is associated with mortality in chronic hemodialysis patients. J Am Soc Nephrol. 2009;20:1094–101.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Vanasse A, Carpentier AC, Courteau J, Asghari S. Stroke and cardiovascular morbidity and mortality associated with rosiglitazone use in elderly diabetic patients. Diab Vasc Dis Res. 2009;6:87–93.

    PubMed  Google Scholar 

  102. Sillars B, Davis WA, Hirsch IB, Davis TM. Sulphonylurea-metformin combination therapy, cardiovascular disease and all-cause mortality: the Fremantle Diabetes Study. Diabetes Obes Metab. 2010;12:757–65.

    CAS  PubMed  Google Scholar 

  103. Garrett CR, Hassabo HM, Bhadkamkar NA, Wen S, Baladandayuthapani V, Kee BK, et al. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br J Cancer. 2012;106:1374–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Schneeweiss S, Patrick AR, Stürmer T, Brookhart MA, Avorn J, Maclure M, et al. Increasing levels of restriction in pharmacoepidemiologic database studies of elderly and comparison with randomized trial results. Med Care. 2007;45:S131–42.

    PubMed Central  PubMed  Google Scholar 

  105. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–9.

    CAS  PubMed  Google Scholar 

  106. Cepeda MS, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol. 2003;158:280–7.

    PubMed  Google Scholar 

  107. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.

    Google Scholar 

  108. D’Agostino RB. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17:2265–81.

    PubMed  Google Scholar 

  109. Rosenbaum PR, Rubin DB. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat. 1985;39:33–8.

    Google Scholar 

  110. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28:3083–107.

    PubMed Central  PubMed  Google Scholar 

  111. Franklin JM, Rassen JA, Ackermann D, Bartels DB, Schneeweiss S. Metrics for covariate balance in cohort studies of causal effects. Stat Med. 2014;33:1685–99.

    PubMed  Google Scholar 

  112. Freemantle N, Marston L, Walters K, Wood J, Reynolds MR, Petersen I. Making inferences on treatment effects from real world data: propensity scores, confounding by indication, and other perils for the unwary in observational research. BMJ. 2013;347:f6409.

    PubMed  Google Scholar 

  113. Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol. 2011;173:1404–13.

    PubMed Central  PubMed  Google Scholar 

  114. Rassen JA, Schneeweiss S. Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system. Pharmacoepidemiol Drug Saf. 2012;21:41–9.

    PubMed  Google Scholar 

  115. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart AM. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009;20:512–22.

    PubMed Central  PubMed  Google Scholar 

  116. Renehan AG, Yeh HC, Johnson JA, Wild SH, Gale EA, Moller H. Diabetes and cancer (2): evaluating the impact of diabetes on mortality in patients with cancer. Diabetologia. 2012;55:1619–32.

    CAS  PubMed  Google Scholar 

  117. Beckman T, Cuddihy R, Scheitel S, Naessens J, Killian J, Pankratz V. Screening mammogram utilization in women with diabetes. Diabetes Care. 2001;24:2049–53.

    CAS  PubMed  Google Scholar 

  118. Fleming S, Pursley H, Newman B, Pavlov D, Chen K. Comorbidity as a predictor of stage of illness for patients with breast cancer. Med Care. 2005;43:132–40.

    PubMed  Google Scholar 

  119. Zhao G, Ford E, Ahluwalia I, Li C, Mokdad A. Prevalence and trends of receipt of cancer screenings among US women with diagnosed diabetes. J Gen Intern Med. 2009;24:270–5.

    PubMed Central  PubMed  Google Scholar 

  120. Stergachis A. Record linkage studies for postmarketing drug surveillance: data quality and validity considerations. Drug Intell Clin Pharm. 1988;22:157–61.

    CAS  PubMed  Google Scholar 

  121. MacKenzie T, Zens MS, Ferrara A, Schned A, Karagas MR. Diabetes and risk of bladder cancer: evidence from a case–control study in New England. Cancer. 2011;117:1552–6.

    PubMed Central  PubMed  Google Scholar 

  122. West SL, Savitz DA, Koch G, Strom BL, Guess HA, Hartzema A. Recall accuracy for prescription medications: self-report compared with database information. Am J Epidemiol. 1995;142:1103–12.

    CAS  PubMed  Google Scholar 

  123. West SL, Strom BL, Freundlich B, Normand E, Koch G, Savitz DA. Completeness of prescription recording in outpatient medical records from a health maintenance organization. J Clin Epidemiol. 1994;47:165–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elvira Masso-Gonzalez for her thoughtful input on an early draft of this manuscript.

Funding

This review was partially sponsored by a research contract with Boehringer-Ingelheim. The research contract gave Brigham and Women’s Hospital the right of final wording for any manuscript arising from the contract.

Conflict of interest

Elisabetta Patorno, Elizabeth M. Garry, Amanda R. Patrick, and Victoria G. Gillet report no conflicts.

Sebastian Schneeweiss is principal investigator of the Harvard–Brigham Drug Safety and Risk Management Research Center funded by the US FDA. His work is partially funded by Grants/contracts from the Patient-Centered Outcomes Research Institute, the FDA, and the National Heart, Lung, and Blood Institute. He is also a consultant to WHISCON, LLC and Aetion, Inc., a software manufacturer of which he also owns shares, and is principal investigator of investigator-initiated Grants to the Brigham and Women’s Hospital from Novartis, unrelated to the topic of this review, and Boehringer-Ingelheim, partly related to the topic of this review.

John D. Seeger is a consultant to WHISCON, LLC and Optum.

Olesya Zorina and Dorothee B. Bartels are employees of Boehringer Ingelheim GmbH.

Authors’ contributions

Review article concept and design: Elisabetta Patorno, John D. Seeger, Sebastian Schneeweiss, Olesya Zorina, and Dorothee B. Bartels. Literature identification and organization: Elizabeth M. Garry, Amanda R. Patrick, Victoria G. Gillet, and Elisabetta Patorno. Critical review of the literature: Elisabetta Patorno, John D. Seeger, and Amanda R. Patrick. Critical revision of the manuscript for important intellectual content: Elisabetta Patorno, John D. Seeger, Amanda R. Patrick, Sebastian Schneeweiss, Olesya Zorina, and Dorothee B. Bartels. Review article supervision: Elisabetta Patorno, John D. Seeger, and Sebastian Schneeweiss.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Patorno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patorno, E., Garry, E.M., Patrick, A.R. et al. Addressing Limitations in Observational Studies of the Association Between Glucose-Lowering Medications and All-Cause Mortality: A Review. Drug Saf 38, 295–310 (2015). https://doi.org/10.1007/s40264-015-0280-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-015-0280-1

Keywords

Navigation