Skip to main content
Log in

The Serotonin 1A (5-HT1A) Receptor as a Pharmacological Target in Depression

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Clinical depression is a common, debilitating and heterogenous disorder. Existing treatments for depression are inadequate for a significant minority of patients and new approaches are urgently needed. A wealth of evidence implicates the serotonin 1A (5-HT1A) receptor in the pathophysiology of depression. Stimulation of the 5-HT1A receptor is an existing therapeutic target for treating depression and anxiety, using drugs such as buspirone and tandospirone. However, activation of 5-HT1A raphe autoreceptors has also been suggested to be responsible for the delay in the therapeutic action of conventional antidepressants such as selective serotonin reuptake inhibitors (SSRIs). This narrative review provides a brief overview of the 5-HT1A receptor, the evidence implicating it in depression and in the effects of conventional antidepressant treatment. We highlight that pre- and post-synaptic 5-HT1A receptors may have divergent roles in the pathophysiology and treatment of depression. To date, developing this understanding to progress therapeutic discovery has been limited, partly due to a paucity of specific pharmacological probes suitable for use in humans. The development of 5-HT1A ‘biased agonism’, using compounds such as NLX-101, offers the opportunity to further elucidate the roles of pre- and post-synaptic 5-HT1A receptors. We describe how experimental medicine approaches can be helpful in profiling the effects of 5-HT1A receptor modulation on the different clinical domains of depression, and outline some potential neurocognitive models that could be used to test the effects of 5-HT1A biased agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Peroutka SJ, Snyder SH. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol. 1979;16(3):687–99.

    CAS  PubMed  Google Scholar 

  2. Peroutka SJ. 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci. 1988;11(11):496–500. https://doi.org/10.1016/0166-2236(88)90011-2.

    Article  CAS  PubMed  Google Scholar 

  3. Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol. 2009;88(1):17–31. https://doi.org/10.1016/j.pneurobio.2009.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Celada P, Puig M, Amargos-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29(4):252–65.

    PubMed  PubMed Central  Google Scholar 

  5. Celada P, Bortolozzi A, Artigas F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs. 2013;27(9):703–16. https://doi.org/10.1007/s40263-013-0071-0.

    Article  CAS  PubMed  Google Scholar 

  6. Kia HK, Miquel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, et al. Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J Comp Neurol. 1996;365(2):289–305. https://doi.org/10.1002/(SICI)1096-9861(19960205)365:2%3c289::AID-CNE7%3e3.0.CO;2-1.

    Article  CAS  PubMed  Google Scholar 

  7. Verge D, Daval G, Patey A, Gozlan H, el Mestikawy S, Hamon M. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985;113(3):463–4. https://doi.org/10.1016/0014-2999(85)90099-8.

    Article  CAS  PubMed  Google Scholar 

  8. Sharp T, Boothman L, Raley J, Queree P. Important messages in the “post”: recent discoveries in 5-HT neurone feedback control. Trends Pharmacol Sci. 2007;28(12):629–36. https://doi.org/10.1016/j.tips.2007.10.009.

    Article  CAS  PubMed  Google Scholar 

  9. Halasy K, Miettinen R, Szabat E, Freund TF. GABAergic interneurons are the major postsynaptic targets of median raphe afferents in the rat dentate gyrus. Eur J Neurosci. 1992;4(2):144–53. https://doi.org/10.1111/j.1460-9568.1992.tb00861.x.

    Article  PubMed  Google Scholar 

  10. Ogren SO, Eriksson TM, Elvander-Tottie E, D’Addario C, Ekstrom JC, Svenningsson P, et al. The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res. 2008;195(1):54–77. https://doi.org/10.1016/j.bbr.2008.02.023.

    Article  CAS  PubMed  Google Scholar 

  11. Meltzer HY, Sumiyoshi T. Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res. 2008;195(1):98–102. https://doi.org/10.1016/j.bbr.2008.05.016.

    Article  CAS  PubMed  Google Scholar 

  12. Sprouse JS, Aghajanian GK. Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology. 1988;27(7):707–15. https://doi.org/10.1016/0028-3908(88)90079-2.

    Article  CAS  PubMed  Google Scholar 

  13. Sprouse JS, Aghajanian GK. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse. 1987;1(1):3–9. https://doi.org/10.1002/syn.890010103.

    Article  CAS  PubMed  Google Scholar 

  14. Fukumoto K, Iijima M, Funakoshi T, Chaki S. Role of 5-HT1A receptor stimulation in the medial prefrontal cortex in the sustained antidepressant effects of ketamine. Int J Neuropsychopharmacol. 2018;21(4):371–81. https://doi.org/10.1093/ijnp/pyx116.

    Article  CAS  PubMed  Google Scholar 

  15. Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN. The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br J Pharmacol. 1999;127(8):1751–64. https://doi.org/10.1038/sj.bjp.0702723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Masson J, Emerit MB, Hamon M, Darmon M. Serotonergic signaling: multiple effectors and pleiotropic effects. Wiley Interdiscip Rev Membr Transp Signal. 2012;1(6):685–713. https://doi.org/10.1002/wmts.50.

    Article  CAS  Google Scholar 

  17. Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron. 1997;19(3):687–95. https://doi.org/10.1016/s0896-6273(00)80381-5.

    Article  CAS  PubMed  Google Scholar 

  18. Sun QQ, Dale N. G-proteins are involved in 5-HT receptor-mediated modulation of N- and P/Q- but not T-type Ca2+ channels. J Neurosci. 1999;19(3):890–9. https://doi.org/10.1523/JNEUROSCI.19-03-00890.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, et al. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther. 2001;92(2–3):179–212. https://doi.org/10.1016/s0163-7258(01)00169-3.

    Article  CAS  PubMed  Google Scholar 

  20. Albert PR, Vahid-Ansari F. The 5-HT1A receptor: signaling to behavior. Biochimie. 2019;161:34–45. https://doi.org/10.1016/j.biochi.2018.10.015.

    Article  CAS  PubMed  Google Scholar 

  21. Gould TD, Einat H, Bhat R, Manji HK. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol. 2004;7(4):387–90. https://doi.org/10.1017/S1461145704004535.

    Article  CAS  PubMed  Google Scholar 

  22. Wang JQ, Mao L. The ERK pathway: molecular mechanisms and treatment of depression. Mol Neurobiol. 2019;56(9):6197–205. https://doi.org/10.1007/s12035-019-1524-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prasad S, Ponimaskin E, Zeug A. Serotonin receptor oligomerization regulates cAMP-based signaling. J Cell Sci. 2019. https://doi.org/10.1242/jcs.230334.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sharp T, Barnes NM. Central 5-HT receptors and their function; present and future. Neuropharmacology. 2020;177:108155. https://doi.org/10.1016/j.neuropharm.2020.108155.

    Article  CAS  PubMed  Google Scholar 

  25. Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol. 2006;70(3):1013–21. https://doi.org/10.1124/mol.106.022756.

    Article  CAS  PubMed  Google Scholar 

  26. Kushwaha N, Albert PR. Coupling of 5-HT1A autoreceptors to inhibition of mitogen-activated protein kinase activation via G beta gamma subunit signaling. Eur J Neurosci. 2005;21(3):721–32. https://doi.org/10.1111/j.1460-9568.2005.03904.x.

    Article  PubMed  Google Scholar 

  27. Adayev T, El-Sherif Y, Barua M, Penington NJ, Banerjee P. Agonist stimulation of the serotonin1A receptor causes suppression of anoxia-induced apoptosis via mitogen-activated protein kinase in neuronal HN2-5 cells. J Neurochem. 1999;72(4):1489–96. https://doi.org/10.1046/j.1471-4159.1999.721489.x.

    Article  CAS  PubMed  Google Scholar 

  28. Menkes DB. Putting serotonin in its place-again. BMJ. 2022;379:o2357. https://doi.org/10.1136/bmj.o2357.

    Article  PubMed  Google Scholar 

  29. Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2022. https://doi.org/10.1038/s41380-022-01661-0.

    Article  PubMed  Google Scholar 

  30. Jauhar S, Cowen PJ, Browning M. Fifty years on: serotonin and depression. J Psychopharmacol. 2023. https://doi.org/10.1177/02698811231161813.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dean J, Keshavan M. The neurobiology of depression: an integrated view. Asian J Psychiatr. 2017;27:101–11. https://doi.org/10.1016/j.ajp.2017.01.025.

    Article  PubMed  Google Scholar 

  32. Deakin J. The role of serotonin in depression and anxiety. Eur Psychiatry. 1998;13(Suppl 2):57s–63s. https://doi.org/10.1016/S0924-9338(98)80015-1.

    Article  PubMed  Google Scholar 

  33. Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience. 2010;166(4):1023–35. https://doi.org/10.1016/j.neuroscience.2010.01.036.

    Article  CAS  PubMed  Google Scholar 

  34. Merens W, Willem Van der Does AJ, Spinhoven P. The effects of serotonin manipulations on emotional information processing and mood. J Affect Disord. 2007;103(1–3):43–62. https://doi.org/10.1016/j.jad.2007.01.032.

    Article  CAS  PubMed  Google Scholar 

  35. Kaufman J, DeLorenzo C, Choudhury S, Parsey RV. The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol. 2016;26(3):397–410. https://doi.org/10.1016/j.euroneuro.2015.12.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, et al. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology. 2001;25(6):892–903. https://doi.org/10.1016/S0893-133X(01)00310-4.

    Article  CAS  PubMed  Google Scholar 

  37. Boldrini M, Underwood MD, Mann JJ, Arango V. Serotonin-1A autoreceptor binding in the dorsal raphe nucleus of depressed suicides. J Psychiatr Res. 2008;42(6):433–42. https://doi.org/10.1016/j.jpsychires.2007.05.004.

    Article  PubMed  Google Scholar 

  38. Stockmeier CA, Shapiro LA, Dilley GE, Kolli TN, Friedman L, Rajkowska G. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J Neurosci. 1998;18(18):7394–401. https://doi.org/10.1523/JNEUROSCI.18-18-07394.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, et al. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry. 2004;55(3):225–33. https://doi.org/10.1016/j.biopsych.2003.09.017.

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Zhou C, Zhu D, Wang X, Fang L, Zhong J, et al. Serotonin-1A receptor alterations in depression: a meta-analysis of molecular imaging studies. BMC Psychiatry. 2016;16(1):319. https://doi.org/10.1186/s12888-016-1025-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, et al. Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol. 2007;34(7):865–77. https://doi.org/10.1016/j.nucmedbio.2007.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parsey RV, Ogden RT, Miller JM, Tin A, Hesselgrave N, Goldstein E, et al. Higher serotonin 1A binding in a second major depression cohort: modeling and reference region considerations. Biol Psychiatry. 2010;68(2):170–8. https://doi.org/10.1016/j.biopsych.2010.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parsey RV, Oquendo MA, Ogden RT, Olvet DM, Simpson N, Huang YY, et al. Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biol Psychiatry. 2006;59(2):106–13. https://doi.org/10.1016/j.biopsych.2005.06.016.

    Article  CAS  PubMed  Google Scholar 

  44. Shrestha S, Hirvonen J, Hines CS, Henter ID, Svenningsson P, Pike VW, et al. Serotonin-1A receptors in major depression quantified using PET: controversies, confounds, and recommendations. Neuroimage. 2012;59(4):3243–51. https://doi.org/10.1016/j.neuroimage.2011.11.029.

    Article  CAS  PubMed  Google Scholar 

  45. Bhagwagar Z, Rabiner EA, Sargent PA, Grasby PM, Cowen PJ. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Mol Psychiatry. 2004;9(4):386–92. https://doi.org/10.1038/sj.mp.4001401.

    Article  CAS  PubMed  Google Scholar 

  46. Kishi T, Meltzer HY, Matsuda Y, Iwata N. Azapirone 5-HT1A receptor partial agonist treatment for major depressive disorder: systematic review and meta-analysis. Psychol Med. 2014;44(11):2255–69. https://doi.org/10.1017/S0033291713002857.

    Article  CAS  PubMed  Google Scholar 

  47. Loane C, Politis M. Buspirone: what is it all about? Brain Res. 2012;1461:111–8. https://doi.org/10.1016/j.brainres.2012.04.032.

    Article  CAS  PubMed  Google Scholar 

  48. Ansseau M, Pitchot W, Moreno AG, Wauthy J, Papart P. Pilot-study of flesinoxan, a 5-ht1a agonist, in major depression - effects on sleep rem latency and body-temperature. Hum Psychopharmacol Clin Exp. 1993;8(4):279–83. https://doi.org/10.1002/hup.470080407.

    Article  Google Scholar 

  49. Cowen PJ. Serotonin receptor subtypes in depression: evidence from studies in neuroendocrine regulation. Clin Neuropharmacol. 1993;16(Suppl 3):S6-18.

    PubMed  Google Scholar 

  50. Pitchot W, Wauthy J, Hansenne M, Pinto E, Fuchs S, Reggers J, et al. Hormonal and temperature responses to the 5-HT1A receptor agonist flesinoxan in normal volunteers. Psychopharmacology. 2002;164(1):27–32. https://doi.org/10.1007/s00213-002-1177-0.

    Article  CAS  PubMed  Google Scholar 

  51. Voronova IP. 5-HT Receptors and temperature homeostasis. Biomolecules. 2021;11(12):1914. https://doi.org/10.3390/biom11121914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Anderson IM, Ware CJ, da Roza Davis JM, Cowen PJ. Decreased 5-HT-mediated prolactin release in major depression. Br J Psychiatry. 1992;160:372–8. https://doi.org/10.1192/bjp.160.3.372.

    Article  CAS  PubMed  Google Scholar 

  53. Pan L, Gilbert F. Activation of 5-HT1A receptor subtype in the paraventricular nuclei of the hypothalamus induces CRH and ACTH release in the rat. Neuroendocrinology. 1992;56(6):797–802. https://doi.org/10.1159/000126332.

    Article  CAS  PubMed  Google Scholar 

  54. Goodwin GM, De Souza RJ, Green AR. The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). A model of presynaptic 5-HT1 function. Neuropharmacology. 1985;24(12):1187–94. https://doi.org/10.1016/0028-3908(85)90153-4.

    Article  CAS  PubMed  Google Scholar 

  55. Hutson PH, Donohoe TP, Curzon G. Hypothermia induced by the putative 5-HT1A agonists LY165163 and 8-OH-DPAT is not prevented by 5-HT depletion. Eur J Pharmacol. 1987;143(2):221–8. https://doi.org/10.1016/0014-2999(87)90536-x.

    Article  CAS  PubMed  Google Scholar 

  56. Hillegaart V. Effects of local application of 5-HT and 8-OH-DPAT into the dorsal and median raphe nuclei on core temperature in the rat. Psychopharmacology. 1991;103(3):291–6. https://doi.org/10.1007/BF02244281.

    Article  CAS  PubMed  Google Scholar 

  57. McAllister-Williams RH, Massey AE, Fairchild G. Repeated cortisol administration attenuates the EEG response to buspirone in healthy volunteers: evidence for desensitization of the 5-HT1A autoreceptor. J Psychopharmacol. 2007;21(8):826–32. https://doi.org/10.1177/0269881107078292.

    Article  CAS  PubMed  Google Scholar 

  58. Young AH, Sharpley AL, Campling GM, Hockney RA, Cowen PJ. Effects of hydrocortisone on brain 5-HT function and sleep. J Affect Disord. 1994;32(2):139–46. https://doi.org/10.1016/0165-0327(94)90072-8.

    Article  CAS  PubMed  Google Scholar 

  59. Lesch KP. 5-HT1A receptor responsivity in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry. 1991;15(6):723–33. https://doi.org/10.1016/0278-5846(91)90001-h.

    Article  CAS  PubMed  Google Scholar 

  60. Meltzer HY, Maes M. Effects of ipsapirone on plasma cortisol and body temperature in major depression. Biol Psychiatry. 1995;38(7):450–7. https://doi.org/10.1016/0006-3223(94)00370-i.

    Article  CAS  PubMed  Google Scholar 

  61. Shapira B, Newman ME, Gelfin Y, Lerer B. Blunted temperature and cortisol responses to ipsapirone in major depression: lack of enhancement by electroconvulsive therapy. Psychoneuroendocrinology. 2000;25(5):421–38. https://doi.org/10.1016/s0306-4530(99)00067-0.

    Article  CAS  PubMed  Google Scholar 

  62. Riedel WJ, Klaassen T, Griez E, Honig A, Menheere PP, van Praag HM. Dissociable hormonal, cognitive and mood responses to neuroendocrine challenge: evidence for receptor-specific serotonergic dysregulation in depressed mood. Neuropsychopharmacology. 2002;26(3):358–67. https://doi.org/10.1016/S0893-133X(01)00361-X.

    Article  CAS  PubMed  Google Scholar 

  63. Navines R, Martin-Santos R, Gomez-Gil E, Martinez de Osaba MJ, Imaz ML, Gasto C. Effects of citalopram treatment on hypothermic and hormonal responses to the 5-HT1A receptor agonist buspirone in patients with major depression and therapeutic response. Psychoneuroendocrinology. 2007;32(4):411–6. https://doi.org/10.1016/j.psyneuen.2007.01.006.

    Article  CAS  PubMed  Google Scholar 

  64. Gray NA, Milak MS, DeLorenzo C, Ogden RT, Huang YY, Mann JJ, et al. Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biol Psychiatry. 2013;74(1):26–31. https://doi.org/10.1016/j.biopsych.2012.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lemonde S, Turecki G, Bakish D, Du LS, Hrdina PD, Bown CD, et al. Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci. 2003;23(25):8788–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Albert PR, Lemonde S. 5-HT1A receptors, gene repression, and depression: guilt by association. Neuroscientist. 2004;10(6):575–93. https://doi.org/10.1177/1073858404267382.

    Article  CAS  PubMed  Google Scholar 

  67. Hesselgrave N, Parsey RV. Imaging the serotonin 1A receptor using [11C]WAY100635 in healthy controls and major depression. Philos Trans R Soc Lond B Biol Sci. 2013;368(1615):20120004. https://doi.org/10.1098/rstb.2012.0004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lothe A, Boni C, Costes N, Bouvard S, Gorwood P, Lavenne F, et al. 5-HT1A gene promoter polymorphism and [18F]MPPF binding potential in healthy subjects: a PET study. Behav Brain Funct. 2010;6:37. https://doi.org/10.1186/1744-9081-6-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. David SP, Murthy NV, Rabiner EA, Munafo MR, Johnstone EC, Jacob R, et al. A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT1A receptor binding in humans. J Neurosci. 2005;25(10):2586–90. https://doi.org/10.1523/JNEUROSCI.3769-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lemonde S, Du L, Bakish D, Hrdina P, Albert PR. Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol. 2004;7(4):501–6. https://doi.org/10.1017/S1461145704004699.

    Article  CAS  PubMed  Google Scholar 

  71. Serretti A, Artioli P, Lorenzi C, Pirovano A, Tubazio V, Zanardi R. The C(-1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int J Neuropsychopharmacol. 2004;7(4):453–60. https://doi.org/10.1017/S1461145704004687.

    Article  CAS  PubMed  Google Scholar 

  72. Seletti B, Benkelfat C, Blier P, Annable L, Gilbert F, Demontigny C. Serotonin(1a) receptor activation by flesinoxan in humans – body-temperature and neuroendocrine responses. Neuropsychopharmacology. 1995;13(2):93–104.

    Article  CAS  PubMed  Google Scholar 

  73. Newman-Tancredi A, Depoortere RY, Kleven MS, Kolaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: serotonin 5-HT(1A) receptor functional selectivity for CNS disorders. Pharmacol Ther. 2022;229:107937. https://doi.org/10.1016/j.pharmthera.2021.107937.

    Article  CAS  PubMed  Google Scholar 

  74. Newman-Tancredi A, Gavaudan S, Conte C, Chaput C, Touzard M, Verriele L, et al. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study. Eur J Pharmacol. 1998;355(2–3):245–56. https://doi.org/10.1016/s0014-2999(98)00483-x.

    Article  CAS  PubMed  Google Scholar 

  75. Bantick RA, Rabiner EA, Hirani E, de Vries MH, Hume SP, Grasby PM. Occupancy of agonist drugs at the 5-HT1A receptor. Neuropsychopharmacology. 2004;29(5):847–59. https://doi.org/10.1038/sj.npp.1300390.

    Article  CAS  PubMed  Google Scholar 

  76. Feiger AD, Heiser JF, Shrivastava RK, Weiss KJ, Smith WT, Sitsen JM, et al. Gepirone extended-release: new evidence for efficacy in the treatment of major depressive disorder. J Clin Psychiatry. 2003;64(3):243–9. https://doi.org/10.4088/JCP.v64n0304.

    Article  CAS  PubMed  Google Scholar 

  77. Bielski RJ, Cunningham L, Horrigan JP, Londborg PD, Smith WT, Weiss K. Gepirone extended-release in the treatment of adult outpatients with major depressive disorder: a double-blind, randomized, placebo-controlled, parallel-group study. J Clin Psychiatry. 2008;69(4):571–7. https://doi.org/10.4088/jcp.v69n0408.

    Article  CAS  PubMed  Google Scholar 

  78. Heller AH, Beneke M, Kuemmel B, Spencer D, Kurtz NM. Ipsapirone: evidence for efficacy in depression. Psychopharmacol Bull. 1990;26(2):219–22.

    CAS  PubMed  Google Scholar 

  79. Lapierre YD, Silverstone P, Reesal RT, Saxena B, Turner P, Bakish D, et al. A Canadian multicenter study of three fixed doses of controlled-release ipsapirone in outpatients with moderate to severe major depression. J Clin Psychopharmacol. 1998;18(4):268–73. https://doi.org/10.1097/00004714-199808000-00002.

    Article  CAS  PubMed  Google Scholar 

  80. Stahl SM, Kaiser L, Roeschen J, Hesselink JMK, Orazem J. Effectiveness of ipsapirone, a 5-HT-1A partial agonist, in major depressive disorder: support for the role of 5-HT-1A receptors in the mechanism of action of serotonergic antidepressants. Int J Neuropsychopharmacol. 1998;1(1):11–8. https://doi.org/10.1017/s1461145798001059.

    Article  CAS  PubMed  Google Scholar 

  81. Yocca FD. Neurochemistry and neurophysiology of buspirone and gepirone: interactions at presynaptic and postsynaptic 5-HT1A receptors. J Clin Psychopharmacol. 1990;10(3 Suppl):6S-12S.

    Article  CAS  PubMed  Google Scholar 

  82. Penttila J, Hirvonen J, Tuominen L, Lumme V, Ilonen T, Nagren K, et al. Verbal memory and 5-HT1A receptors in healthy volunteers–a PET study with [carbonyl-(11)C]WAY-100635. Eur Neuropsychopharmacol. 2016;26(3):570–7. https://doi.org/10.1016/j.euroneuro.2015.12.028.

    Article  CAS  PubMed  Google Scholar 

  83. Hirvonen J, Karlsson H, Kajander J, Lepola A, Markkula J, Rasi-Hakala H, et al. Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in-vivo imaging study using PET and [carbonyl-11C]WAY-100635. Int J Neuropsychopharmacol. 2008;11(4):465–76. https://doi.org/10.1017/S1461145707008140.

    Article  CAS  PubMed  Google Scholar 

  84. Clifford EM, Gartside SE, Umbers V, Cowen PJ, Hajos M, Sharp T. Electrophysiological and neurochemical evidence that pindolol has agonist properties at the 5-HT1A autoreceptor in vivo. Br J Pharmacol. 1998;124(1):206–12. https://doi.org/10.1038/sj.bjp.0701796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Newman-Tancredi A, Chaput C, Gavaudan S, Verriele L, Millan MJ. Agonist and antagonist actions of (-)pindolol at recombinant, human serotonin1A (5-HT1A) receptors. Neuropsychopharmacology. 1998;18(5):395–8. https://doi.org/10.1016/S0893-133X(97)00169-3.

    Article  CAS  PubMed  Google Scholar 

  86. Artigas F. 5-HT and antidepressants: new views from microdialysis studies. Trends Pharmacol Sci. 1993;14(7):262. https://doi.org/10.1016/0165-6147(93)90125-4.

    Article  CAS  PubMed  Google Scholar 

  87. Portella MJ, de Diego-Adelino J, Ballesteros J, Puigdemont D, Oller S, Santos B, et al. Can we really accelerate and enhance the selective serotonin reuptake inhibitor antidepressant effect? A randomized clinical trial and a meta-analysis of pindolol in nonresistant depression. J Clin Psychiatry. 2011;72(7):962–9. https://doi.org/10.4088/JCP.09m05827blu.

    Article  PubMed  Google Scholar 

  88. Whale R, Terao T, Cowen P, Freemantle N, Geddes J. Pindolol augmentation of serotonin reuptake inhibitors for the treatment of depressive disorder: a systematic review. J Psychopharmacol. 2010;24(4):513–20. https://doi.org/10.1177/0269881108097714.

    Article  CAS  PubMed  Google Scholar 

  89. Rabiner EA, Gunn RN, Castro ME, Sargent PA, Cowen PJ, Koepp MJ, et al. beta-blocker binding to human 5-HT(1A) receptors in vivo and in vitro: implications for antidepressant therapy. Neuropsychopharmacology. 2000;23(3):285–93. https://doi.org/10.1016/S0893-133X(00)00109-3.

    Article  CAS  PubMed  Google Scholar 

  90. Newman-Tancredi A, Cussac D, Marini L, Millan MJ. Antibody capture assay reveals bell-shaped concentration-response isotherms for h5-HT(1A) receptor-mediated Galpha(i3) activation: conformational selection by high-efficacy agonists, and relationship to trafficking of receptor signaling. Mol Pharmacol. 2002;62(3):590–601. https://doi.org/10.1124/mol.62.3.590.

    Article  CAS  PubMed  Google Scholar 

  91. Newman-Tancredi A, Cussac D, Ormiere AM, Lestienne F, Varney MA, Martel JC. Bell-shaped agonist activation of 5-HT(1A) receptor-coupled Galphai(3) G-proteins: receptor density-dependent switch in receptor signaling. Cell Signal. 2019;63:109383. https://doi.org/10.1016/j.cellsig.2019.109383.

    Article  CAS  PubMed  Google Scholar 

  92. Scorza MC, Llado-Pelfort L, Oller S, Cortes R, Puigdemont D, Portella MJ, et al. Preclinical and clinical characterization of the selective 5-HT(1A) receptor antagonist DU-125530 for antidepressant treatment. Br J Pharmacol. 2012;167(5):1021–34. https://doi.org/10.1111/j.1476-5381.2011.01770.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov. 2018;17(4):243–60. https://doi.org/10.1038/nrd.2017.229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sniecikowska J, Newman-Tancredi A, Kolaczkowski M. From receptor selectivity to functional selectivity: the rise of biased agonism in 5-HT1A receptor drug discovery. Curr Top Med Chem. 2019;19(26):2393–420. https://doi.org/10.2174/1568026619666190911122040.

    Article  CAS  PubMed  Google Scholar 

  95. Llado-Pelfort L, Assie MB, Newman-Tancredi A, Artigas F, Celada P. Preferential in vivo action of F15599, a novel 5-HT(1A) receptor agonist, at postsynaptic 5-HT(1A) receptors. Br J Pharmacol. 2010;160(8):1929–40. https://doi.org/10.1111/j.1476-5381.2010.00738.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Llado-Pelfort L, Assie MB, Newman-Tancredi A, Artigas F, Celada P. In vivo electrophysiological and neurochemical effects of the selective 5-HT1A receptor agonist, F13640, at pre- and postsynaptic 5-HT1A receptors in the rat. Psychopharmacology. 2012;221(2):261–72. https://doi.org/10.1007/s00213-011-2569-9.

    Article  CAS  PubMed  Google Scholar 

  97. Assie MB, Bardin L, Auclair AL, Carilla-Durand E, Depoortere R, Koek W, et al. F15599, a highly selective post-synaptic 5-HT(1A) receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity. Int J Neuropsychopharmacol. 2010;13(10):1285–98. https://doi.org/10.1017/S1461145709991222.

    Article  CAS  PubMed  Google Scholar 

  98. Iderberg H, McCreary AC, Varney MA, Kleven MS, Koek W, Bardin L, et al. NLX-112, a novel 5-HT1A receptor agonist for the treatment of L-DOPA-induced dyskinesia: Behavioral and neurochemical profile in rat. Exp Neurol. 2015;271:335–50. https://doi.org/10.1016/j.expneurol.2015.05.021.

    Article  CAS  PubMed  Google Scholar 

  99. Depoortere R, Papp M, Gruca P, Lason-Tyburkiewicz M, Niemczyk M, Varney MA, et al. Cortical 5-hydroxytryptamine 1A receptor biased agonist, NLX-101, displays rapid-acting antidepressant-like properties in the rat chronic mild stress model. J Psychopharmacol. 2019;33(11):1456–66. https://doi.org/10.1177/0269881119860666.

    Article  CAS  PubMed  Google Scholar 

  100. Depoortere R, Bardin L, Auclair AL, Bruins Slot LA, Newman-Tancredi A. Marble burying in NMRI male mice is preferentially sensitive to pre- versus postsynaptic 5-HT1A receptor biased agonists. Pharmacology. 2021;106(1–2):114–8. https://doi.org/10.1159/000509729.

    Article  CAS  PubMed  Google Scholar 

  101. Powell WH, Annett LE, Depoortere R, Newman-Tancredi A, Iravani MM. The selective 5-HT(1A) receptor agonist NLX-112 displays anxiolytic-like activity in mice. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(2):149–57. https://doi.org/10.1007/s00210-021-02183-2.

    Article  CAS  PubMed  Google Scholar 

  102. Jastrzebska-Wiesek M, Partyka A, Rychtyk J, Sniecikowska J, Kolaczkowski M, Wesolowska A, et al. Activity of serotonin 5-HT(1A) receptor biased agonists in rat: anxiolytic and antidepressant-like properties. ACS Chem Neurosci. 2018;9(5):1040–50. https://doi.org/10.1021/acschemneuro.7b00443.

    Article  CAS  PubMed  Google Scholar 

  103. Ali M, Fahmy M, Haggag W, El-Tantawy A, Hassan H. Evaluation of cognitive impairment in patients with major depressive disorder in remission. Middle East Current Psychiatry-Mecpsych. 2021;28(1):71. https://doi.org/10.1186/s43045-021-00149-x.

    Article  Google Scholar 

  104. Douglas KM, Porter RJ. Longitudinal assessment of neuropsychological function in major depression. Aust NZ J Psychiatry. 2009;43(12):1105–17. https://doi.org/10.3109/00048670903279887.

    Article  Google Scholar 

  105. Warburton EC, Harrison AA, Robbins TW, Everitt BJ. Contrasting effects of systemic and intracerebral infusions of the 5-HT1A receptor agonist 8-OH-DPAT on spatial short-term working memory in rats. Behav Brain Res. 1997;84(1–2):247–58. https://doi.org/10.1016/s0166-4328(96)00154-4.

    Article  CAS  PubMed  Google Scholar 

  106. Madjid N, Tottie EE, Luttgen M, Meister B, Sandin J, Kuzmin A, et al. 5-Hydroxytryptamine 1A receptor blockade facilitates aversive learning in mice: interactions with cholinergic and glutamatergic mechanisms. J Pharmacol Exp Ther. 2006;316(2):581–91. https://doi.org/10.1124/jpet.105.092262.

    Article  CAS  PubMed  Google Scholar 

  107. Luttgen M, Elvander E, Madjid N, Ogren SO. Analysis of the role of 5-HT1A receptors in spatial and aversive learning in the rat. Neuropharmacology. 2005;48(6):830–52. https://doi.org/10.1016/j.neuropharm.2005.01.007.

    Article  CAS  PubMed  Google Scholar 

  108. Chamberlain SR, Muller U, Deakin JB, Corlett PR, Dowson J, Cardinal RN, et al. Lack of deleterious effects of buspirone on cognition in healthy male volunteers. J Psychopharmacol. 2007;21(2):210–5. https://doi.org/10.1177/0269881107068066.

    Article  CAS  PubMed  Google Scholar 

  109. Takahashi M, Iwamoto K, Kawamura Y, Nakamura Y, Ishihara R, Uchiyama Y, et al. The effects of acute treatment with tandospirone, diazepam, and placebo on driving performance and cognitive function in healthy volunteers. Hum Psychopharmacol. 2010;25(3):260–7. https://doi.org/10.1002/hup.1105.

    Article  CAS  PubMed  Google Scholar 

  110. Depoortere R, Auclair AL, Bardin L, Colpaert FC, Vacher B, Newman-Tancredi A. F15599, a preferential post-synaptic 5-HT1A receptor agonist: activity in models of cognition in comparison with reference 5-HT1A receptor agonists. Eur Neuropsychopharmacol. 2010;20(9):641–54. https://doi.org/10.1016/j.euroneuro.2010.04.005.

    Article  CAS  PubMed  Google Scholar 

  111. Depoortere RY, Auclair AL, Newman-Tancredi A. NLX-101, a cortical 5-HT(1A) receptor biased agonist, reverses scopolamine-induced deficit in the delayed non-matching to position model of cognition. Brain Res. 2021;1765:147493. https://doi.org/10.1016/j.brainres.2021.147493.

    Article  CAS  PubMed  Google Scholar 

  112. Paul J. Experimental medicine approaches in CNS drug development. In: Nomikos GG, Feltner DE, editors. Translational medicine in CNS drug development. Elsevier; 2019. p. 63–80.

    Chapter  Google Scholar 

  113. McAllister-Williams RH, Massey AE. EEG effects of buspirone and pindolol: a method of examining 5-HT1A receptor function in humans. Psychopharmacology. 2003;166(3):284–93. https://doi.org/10.1007/s00213-002-1339-0.

    Article  CAS  PubMed  Google Scholar 

  114. Cowen PJ, Power AC, Ware CJ, Anderson IM. 5-HT1A receptor sensitivity in major depression. A neuroendocrine study with buspirone. Br J Psychiatry. 1994;164(3):372–9. https://doi.org/10.1192/bjp.164.3.372.

    Article  CAS  PubMed  Google Scholar 

  115. Disner SG, Beevers CG, Haigh EA, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011;12(8):467–77. https://doi.org/10.1038/nrn3027.

    Article  CAS  PubMed  Google Scholar 

  116. Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry. 2004;161(7):1256–63. https://doi.org/10.1176/appi.ajp.161.7.1256.

    Article  PubMed  Google Scholar 

  117. Harmer CJ, Duman RS, Cowen PJ. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry. 2017;4(5):409–18. https://doi.org/10.1016/S2215-0366(17)30015-9.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Harmer CJ, de Bodinat C, Dawson GR, Dourish CT, Waldenmaier L, Adams S, et al. Agomelatine facilitates positive versus negative affective processing in healthy volunteer models. J Psychopharmacol. 2011;25(9):1159–67. https://doi.org/10.1177/0269881110376689.

    Article  CAS  PubMed  Google Scholar 

  119. Harmer CJ, Cowen PJ, Goodwin GM. Efficacy markers in depression. J Psychopharmacol. 2011;25(9):1148–58. https://doi.org/10.1177/0269881110367722.

    Article  CAS  PubMed  Google Scholar 

  120. Norbury R, Taylor MJ, Selvaraj S, Murphy SE, Harmer CJ, Cowen PJ. Short-term antidepressant treatment modulates amygdala response to happy faces. Psychopharmacology. 2009;206(2):197–204. https://doi.org/10.1007/s00213-009-1597-1.

    Article  CAS  PubMed  Google Scholar 

  121. Bernasconi F, Kometer M, Pokorny T, Seifritz E, Vollenweider FX. The electrophysiological effects of the serotonin 1A receptor agonist buspirone in emotional face processing. Eur Neuropsychopharmacol. 2015;25(4):474–82. https://doi.org/10.1016/j.euroneuro.2015.01.009.

    Article  CAS  PubMed  Google Scholar 

  122. Fisher PM, Meltzer CC, Ziolko SK, Price JC, Moses-Kolko EL, Berga SL, et al. Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity. Nat Neurosci. 2006;9(11):1362–3. https://doi.org/10.1038/nn1780.

    Article  CAS  PubMed  Google Scholar 

  123. Selvaraj S, Mouchlianitis E, Faulkner P, Turkheimer F, Cowen PJ, Roiser JP, et al. Presynaptic serotoninergic regulation of emotional processing: a multimodal brain imaging study. Biol Psychiatry. 2015;78(8):563–71. https://doi.org/10.1016/j.biopsych.2014.04.011.

    Article  CAS  PubMed  Google Scholar 

  124. Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron. 2010;65(1):40–52. https://doi.org/10.1016/j.neuron.2009.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pizzagalli DA. Toward a better understanding of the mechanisms and pathophysiology of anhedonia: are we ready for translation? Am J Psychiatry. 2022;179(7):458–69. https://doi.org/10.1176/appi.ajp.20220423.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Coyle CM, Laws KR. The use of ketamine as an antidepressant: a systematic review and meta-analysis. Hum Psychopharmacol Clin Exp. 2015;30(3):152–63. https://doi.org/10.1002/hup.2475.

    Article  CAS  Google Scholar 

  127. Lally N, Nugent AC, Luckenbaugh DA, Niciu MJ, Roiser JP, Zarate CA Jr. Neural correlates of change in major depressive disorder anhedonia following open-label ketamine. J Psychopharmacol. 2015;29(5):596–607. https://doi.org/10.1177/0269881114568041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McCabe C, Mishor Z, Cowen PJ, Harmer CJ. Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biol Psychiatry. 2010;67(5):439–45. https://doi.org/10.1016/j.biopsych.2009.11.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Walsh AEL, Huneke NTM, Brown R, Browning M, Cowen P, Harmer CJ. A dissociation of the acute effects of bupropion on positive emotional processing and reward processing in healthy volunteers. Front Psychiatry. 2018;9:482. https://doi.org/10.3389/fpsyt.2018.00482.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Admon R, Pizzagalli DA. Dysfunctional reward processing in depression. Curr Opin Psychol. 2015;4:114–8. https://doi.org/10.1016/j.copsyc.2014.12.011.

    Article  PubMed  Google Scholar 

  131. Langley C, Armand S, Luo Q, Savulich G, Segerberg T, Sondergaard A, et al. Chronic escitalopram in healthy volunteers has specific effects on reinforcement sensitivity: a double-blind, placebo-controlled semi-randomised study. Neuropsychopharmacology. 2023;48(4):664–70. https://doi.org/10.1038/s41386-022-01523-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nutt D, Demyttenaere K, Janka Z, Aarre T, Bourin M, Canonico PL, et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol. 2007;21(5):461–71. https://doi.org/10.1177/0269881106069938.

    Article  CAS  PubMed  Google Scholar 

  133. Price J, Cole V, Goodwin GM. Emotional side-effects of selective serotonin reuptake inhibitors: qualitative study. Br J Psychiatry. 2009;195(3):211–7. https://doi.org/10.1192/bjp.bp.108.051110.

    Article  PubMed  Google Scholar 

  134. Assié M, Ravailhe V, Benas C, Newman-Tancredi A. Differential effects of 5-HT1A receptor agonists on extracellular levels of 5-HT in hippocampus and of dopamine in frontal cortex of freely moving rats. In: British Association for Psychopharmacology Summer Meeting. Harrogate, Poster ID. 2008.

  135. Llado-Pelfort L, Santana N, Ghisi V, Artigas F, Celada P. 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. Cereb Cortex. 2012;22(7):1487–97. https://doi.org/10.1093/cercor/bhr220.

    Article  PubMed  Google Scholar 

  136. Cabanu S, Pilar-Cuellar F, Zubakina P, Florensa-Zanuy E, Senserrich J, Newman-Tancredi A, et al. Molecular signaling mechanisms for the antidepressant effects of NLX-101, a selective cortical 5-HT1A receptor biased agonist. Pharmaceuticals. 2022;15(3):337. https://doi.org/10.3390/ph15030337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Colwell MJ, Tagomori H, Chapman S, Gillespie AL, Cowen PJ, Harmer CJ, Murphy SE. Pharmacological targeting of cognitive impairment in depression: recent developments and challenges in human clinical research. Transl Psychiatry. 2022;12(1):484. https://doi.org/10.1038/s41398-022-02249-6.

  138. Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2014;44(10):2029–40. https://doi.org/10.1017/S0033291713002535.

    Article  CAS  PubMed  Google Scholar 

  139. CANTAB CC. CANTAB® [Cognitive assessment software]. 2019. https://cambridgecognition.com/. Accessed 8 June 2023.

  140. Yasuno F, Suhara T, Nakayama T, Ichimiya T, Okubo Y, Takano A, et al. Inhibitory effect of hippocampal 5-HT1A receptors on human explicit memory. Am J Psychiatry. 2003;160(2):334–40. https://doi.org/10.1176/appi.ajp.160.2.334.

    Article  PubMed  Google Scholar 

  141. Mahableshwarkar AR, Zajecka J, Jacobson W, Chen Y, Keefe RS. A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology. 2015;40(8):2025–37. https://doi.org/10.1038/npp.2015.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. D’Agostino A, English CD, Rey JA. Vortioxetine (brintellix): a new serotonergic antidepressant. P T. 2015;40(1):36–40.

    PubMed  PubMed Central  Google Scholar 

  143. Smith J, Browning M, Conen S, Smallman R, Buchbjerg J, Larsen KG, et al. Vortioxetine reduces BOLD signal during performance of the N-back working memory task: a randomised neuroimaging trial in remitted depressed patients and healthy controls. Mol Psychiatry. 2018;23(5):1127–33. https://doi.org/10.1038/mp.2017.104.

    Article  CAS  PubMed  Google Scholar 

  144. Henssler J, Alexander D, Schwarzer G, Bschor T, Baethge C. Combining antidepressants vs antidepressant monotherapy for treatment of patients with acute depression: a systematic review and meta-analysis. JAMA Psychiat. 2022;79(4):300–12. https://doi.org/10.1001/jamapsychiatry.2021.4313.

    Article  Google Scholar 

  145. Cole JC, Rodgers RJ. Ethological evaluation of the effects of acute and chronic buspirone treatment in the murine elevated plus-maze test: comparison with haloperidol. Psychopharmacology. 1994;114(2):288–96. https://doi.org/10.1007/BF02244851.

    Article  CAS  PubMed  Google Scholar 

  146. Koek W, Patoiseau J-F, Assié M-B, Cosi C, Kleven MS, Dupont-Passelaigue E, et al. F 11440, a potent, selective, high efficacy 5-HT1A receptor agonist with marked anxiolytic and antidepressant potential. J Pharmacol Exp Ther. 1998;287(1):266–83.

    CAS  PubMed  Google Scholar 

  147. Koek W, Vacher B, Cosi C, Assie MB, Patoiseau JF, Pauwels PJ, et al. 5-HT1A receptor activation and antidepressant-like effects: F 13714 has high efficacy and marked antidepressant potential. Eur J Pharmacol. 2001;420(2–3):103–12. https://doi.org/10.1016/s0014-2999(01)01011-1.

    Article  CAS  PubMed  Google Scholar 

  148. Wieland S, Lucki I. Antidepressant-like activity of 5-HT1A agonists measured with the forced swim test. Psychopharmacology. 1990;101(4):497–504. https://doi.org/10.1007/BF02244228.

    Article  CAS  PubMed  Google Scholar 

  149. Chojnacka-Wojcik E, Tatarczynska E, Golembiowska K, Przegalinski E. Involvement of 5-HT1A receptors in the antidepressant-like activity of gepirone in the forced swimming test in rats. Neuropharmacology. 1991;30(7):711–7. https://doi.org/10.1016/0028-3908(91)90178-e.

    Article  CAS  PubMed  Google Scholar 

  150. Silva RC, Brandao ML. Acute and chronic effects of gepirone and fluoxetine in rats tested in the elevated plus-maze: an ethological analysis. Pharmacol Biochem Behav. 2000;65(2):209–16. https://doi.org/10.1016/s0091-3057(99)00193-8.

    Article  CAS  PubMed  Google Scholar 

  151. Brown PC. Application number: 022567, NDA: 22-567, in tertiary pharmacology/toxicology review (PHARMACOLOGY REVIEW). 2010. CENTER FOR DRUG EVALUATION AND RESEARCH.

  152. Griebel G, Rodgers RJ, Perrault G, Sanger DJ. Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav. 1997;57(4):817–27. https://doi.org/10.1016/s0091-3057(96)00402-9.

    Article  CAS  PubMed  Google Scholar 

  153. Kasahara K, Hashimoto S, Hattori T, Kawasaki K, Tsujita R, Nakazono O, et al. The effects of AP521, a novel anxiolytic drug, in three anxiety models and on serotonergic neural transmission in rats. J Pharmacol Sci. 2015;127(1):109–16. https://doi.org/10.1016/j.jphs.2014.11.008.

    Article  CAS  PubMed  Google Scholar 

  154. Guilloux JP, Mendez-David I, Pehrson A, Guiard BP, Reperant C, Orvoen S, et al. Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioural and neurogenesis outcomes in mice. Neuropharmacology. 2013;73:147–59. https://doi.org/10.1016/j.neuropharm.2013.05.014.

    Article  CAS  PubMed  Google Scholar 

  155. Sanchez C, Westrich L, Zhong H, Nielsen S, Boyle N, Hentzer M, et al. P. 2. B. 008 In vitro effects of the multimodal antidepressant Lu AA21004 at human and rat 5-HT1A, 5-HT1B, 5-HT3 and 5-HT7 receptors, and 5-HT transporters. Eur Neuropsychopharmacol. 2012;22:S245–6.

    Article  Google Scholar 

  156. Bang-Andersen B, Ruhland T, Jorgensen M, Smith G, Frederiksen K, Jensen KG, et al. Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem. 2011;54(9):3206–21. https://doi.org/10.1021/jm101459g.

    Article  CAS  PubMed  Google Scholar 

  157. Cao BJ, Rodgers RJ. Influence of 5-HT1A receptor antagonism on plus-maze behaviour in mice. I. Pindolol enantiomers and pindobind 5-HT1A. Pharmacol Biochem Behav. 1997;58(2):583–91. https://doi.org/10.1016/s0091-3057(97)00280-3.

    Article  CAS  PubMed  Google Scholar 

  158. Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, et al. Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol. 2009;156(2):338–53. https://doi.org/10.1111/j.1476-5381.2008.00001.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cao BJ, Rodgers RJ. Influence of 5-HT1A receptor antagonism on plus-maze behaviour in mice. II. WAY 100635, SDZ 216–525 and NAN-190. Pharmacol Biochem Behav. 1997;58(2):593–603. https://doi.org/10.1016/s0091-3057(97)00279-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susannah E. Murphy.

Ethics declarations

Funding

AS is funded by a Wellcome Trust Clinical Doctoral Fellowship, grant reference 102176/B/13/Z. This research was supported the NIHR Oxford Health Biomedical Research Centre and an Oxford University John Fell Fund grant. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. 

Conflicts of Interest

CJH has received consultancy fees from P1vital Ltd., Janssen Pharmaceuticals, Sage Therapeutics, Pfizer, Zogenix, Compass Pathways and Lundbeck. SEM has received consultancy fees from Zogenix, Sumitomo Dainippon Pharma, P1vital Ltd. and Janssen Pharmaceuticals. CJH and SEM hold grant income from Zogenix, UCB Pharma, Syndesi and Janssen Pharmaceuticals. CJH and PJC hold grant income from a collaborative research project with Pfizer and the MRC. The authors are currently conducting an experimental medicine study using NLX-101, which has been gifted by Neurolixis.

Availability of Data

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Author Contributions

ALWS, CJH, PJC and SEM were all involved in drafting and revising the manuscript. All authors have read and approved the final article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A.L.W., Harmer, C.J., Cowen, P.J. et al. The Serotonin 1A (5-HT1A) Receptor as a Pharmacological Target in Depression. CNS Drugs 37, 571–585 (2023). https://doi.org/10.1007/s40263-023-01014-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-023-01014-7

Navigation