Skip to main content
Log in

Targeting Opioid-Induced Hyperalgesia in Clinical Treatment: Neurobiological Considerations

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Opioid analgesics have become a cornerstone in the treatment of moderate to severe pain, resulting in a steady rise of opioid prescriptions. Subsequently, there has been a striking increase in the number of opioid-dependent individuals, opioid-related overdoses, and fatalities. Clinical use of opioids is further complicated by an increasingly deleterious profile of side effects beyond addiction, including tolerance and opioid-induced hyperalgesia (OIH), where OIH is defined as an increased sensitivity to already painful stimuli. This paradoxical state of increased nociception results from acute and long-term exposure to opioids, and appears to develop in a substantial subset of patients using opioids. Recently, there has been considerable interest in developing an efficacious treatment regimen for acute and chronic pain. However, there are currently no well-established treatments for OIH. Several substrates have emerged as potential modulators of OIH, including the N-methyl-D-aspartate and γ-aminobutyric acid receptors, and most notably, the innate neuroimmune system. This review summarizes the neurobiology of OIH in the context of clinical treatment; specifically, we review evidence for several pathways that show promise for the treatment of pain going forward, as prospective adjuvants to opioid analgesics. Overall, we suggest that this paradoxical state be considered an additional target of clinical treatment for chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Albutt C. On the abuse of hypodermic injections of morphia. Practitioner. 1870;3:327–30.

    Google Scholar 

  2. Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain. 2012;13(8):715–24.

    PubMed  Google Scholar 

  3. Reuben DB, Alvanzo AAH, Ashikaga T, Bogat GA, Callahan CM, Ruffing V, et al. National Institutes of Health Pathways to Prevention Workshop: the role of opioids in the treatment of chronic pain. Ann Intern Med. 2015;162(4):295–300.

    PubMed  Google Scholar 

  4. Dureja GP, Jain PN, Shetty N, Mandal SP, Prabhoo R, Joshi M, et al. Prevalence of chronic pain, impact on daily life, and treatment practices in India. Pain Pract. 2014;14(2):E51–62.

    PubMed  Google Scholar 

  5. Ekholm O, Kurita GP, Højsted J, Juel K, Sjøgren P. Chronic pain, opioid prescriptions, and mortality in Denmark: a population-based cohort study. PAIN®. 2014;155(12):2486–90.

  6. Henderson JV, Harrison CM, Britt HC, Bayram CF, Miller GC. Prevalence, causes, severity, impact, and management of chronic pain in Australian general practice patients. Pain Med. 2013;14(9):1346–61.

    PubMed  Google Scholar 

  7. Schopflocher D, Taenzer P, Jovey R. The prevalence of chronic pain in Canada. Pain Res Manag. 2011;16(6):445.

    PubMed Central  PubMed  Google Scholar 

  8. Mehendale AW, Goldman MP, Mehendale RP. Opioid overuse pain syndrome (OOPS): the story of opioids, prometheus unbound. J Opioid Manag. 2013;9(6):421–38.

  9. Paulozzi LJ, Mack KA, Hockenberry JM. Vital signs: variation among states in prescribing of opioid pain relievers and benzodiazepines—United States, 2012. Morb Mortal Wkly Rep. 2014;26:563–8.

    Google Scholar 

  10. Paulozzi LJ. Prescription drug overdoses: a review. J Saf Res. 2012;43(4):283–9.

    Google Scholar 

  11. Manchikanti L, Abdi S, Atluri S, Balog CC, Benyamin RM, Boswell MV, et al. American Society of Interventional Pain Physicians (ASIPP) guidelines for responsible opioid prescribing in chronic non-cancer pain: part I—evidence assessment. Pain Phys. 2012;15(3 Suppl):S1–65.

    Google Scholar 

  12. Sullivan MD, Howe CQ. Opioid therapy for chronic pain in the United States: promises and perils. PAIN®. 2013;154(Supplement 1):S94–S100.

  13. Manchikanti L, Damron K, McManus C, Barnhill R. Patterns of illicit drug use and opioid abuse in patients with chronic pain at initial evaluation: a prospective, observational study. Pain Physician. 2004;7(4):431–7.

    PubMed  Google Scholar 

  14. Edlund MJ. The role of opioid prescription in incident opioid abuse and dependence among individuals with chronic noncancer pain: the role of opioid prescription. Clin J Pain. 2014;30(7):557–64.

  15. Abuse NIoD. Prescription drug abuse: chronic pain treatment and addiction. 2014. Available from: http://www.drugabuse.gov/publications/research-reports/prescription-drugs/chronic-pain-treatment-addiction. Accessed 18 Dec 2014.

  16. Fraud CAI. Prescription for peril: how insurance fraud finances theft and abuse of addictive prescription drugs. Washington, DC: Coalition Against Insurance Fraud; 2007.

    Google Scholar 

  17. White AG, Birnbaum HG, Mareva MN, Daher M, Vallow S, Schein J, et al. Direct costs of opioid abuse in an insured population in the United States. J Manag Care Pharm. 2005;11(6):469.

    PubMed  Google Scholar 

  18. Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N, et al. Opioid complications and side effects. Pain Physician. 2008;11(2 Suppl):S105–20.

    PubMed  Google Scholar 

  19. Ossipov MH, Lai J, Vanderah TW, Porreca F. Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life sci. 2003;73(6):783–800.

    CAS  PubMed  Google Scholar 

  20. Tompkins DA, Campbell CM. Opioid-induced hyperalgesia: clinically relevant or extraneous research phenomenon? Curr Pain Headache Rep. 2011;15(2):129–36.

    PubMed Central  PubMed  Google Scholar 

  21. Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L. A comprehensive review of opioid-induced hyperalgesia. Pain Physician. 2011;14(2):145–61.

  22. Chu LF, Angst MS, Clark D. Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin J Pain. 2008;24(6):479–96.

    PubMed  Google Scholar 

  23. Compton P, Kehoe P, Sinha K, Torrington MA, Ling W. Gabapentin improves cold-pressor pain responses in methadone-maintained patients. Drug Alcohol Depend. 2010;109(1):213–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lee JS, Kim SG, Jeong HJ, Kim JH, Yang YH, Jung WY. Difference of the naltrexone’s effects in social drinkers by spicy food preference. J Korean Med Sci. 2014;29(5):714–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Eisenberg E, Suzan E, Pud D. Opioid-induced hyperalgesia (OIH): a real clinical problem or just an experimental phenomenon? J Pain Symptom Manag. 2014;49(3):632–6.

    Google Scholar 

  26. Raffa RB, Pergolizzi Jr JV. Opioid-induced hyperalgesia: is it clinically relevant for the treatment of pain patients? Pain Manag Nurs. 2013;14(3):e67–e83.

  27. Heger S, Maier C, Otter K, Helwig U, Suttorp M, Berger A. Morphine induced allodynia in a child with brain tumour. BMJ. 1999;319(7210):627–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Low Y, Clarke CF, Huh BK. Opioid-induced hyperalgesia: a review of epidemiology, mechanisms and management. Singapore Med J. 2012;53(5):357–60.

    PubMed  Google Scholar 

  29. Holtman JR Jr, Jellish WS. Opioid-induced hyperalgesia and burn pain. J Burn Care Res. 2012;33(6):692–701.

    PubMed  Google Scholar 

  30. Chen L, Sein M, Vo T, Amhmed S, Zhang Y, Hilaire KS, et al. Clinical interpretation of opioid tolerance versus opioid-induced hyperalgesia. J Opioid Manag. 2014;10(6):383–93.

  31. Mao J, Sung B, Ji R-R, Lim G. Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J Neurosci. 2002;22(18):8312–23.

    CAS  PubMed  Google Scholar 

  32. Vanderah TW, Ossipov MH, Lai J, Malan TP Jr, Porreca F. Mechanisms of opioid-induced pain and antinociceptive tolerance: descending facilitation and spinal dynorphin. Pain. 2001;92(1–2):5–9.

    CAS  PubMed  Google Scholar 

  33. Vanderah TW, Suenaga NM, Ossipov MH, Malan TP Jr, Lai J, Porreca F. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci. 2001;21(1):279–86.

    CAS  PubMed  Google Scholar 

  34. Simonnet G, Rivat C. Opioid-induced hyperalgesia: abnormal or normal pain? Neuroreport. 2003;14(1):1–7.

    PubMed  Google Scholar 

  35. Ossipov MH, Lai J, King T, Vanderah TW, Malan TP, Hruby VJ, et al. Antinociceptive and nociceptive actions of opioids. J Neurobiol. 2004;61(1):126–48.

    CAS  PubMed  Google Scholar 

  36. Li Q. Antagonists of toll like receptor 4 maybe a new strategy to counteract opioid-induced hyperalgesia and opioid tolerance. Med Hypotheses. 2012;79(6):754–6.

    CAS  PubMed  Google Scholar 

  37. Watkins LR, Wiertelak EP, Goehler LE, Mooney-Heiberger K, Martinez J, Furness L, et al. Neurocircuitry of illness-induced hyperalgesia. Brain Res. 1994;639(2):283–99.

    CAS  PubMed  Google Scholar 

  38. Watkins LR, Hutchinson MR, Rice KC, Maier SF. The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci. 2009;30(11):581–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Mercadante S, Ferrera P, Arcuri E, Casuccio A. Opioid-induced hyperalgesia after rapid titration with intravenous morphine: switching and re-titration to intravenous methadone. Ann Palliat Med. 2012;1(1):10–3.

    PubMed  Google Scholar 

  40. Ackerman WE 3rd. Paroxysmal opioid-induced pain and hyperalgesia. J Ky Med Assoc. 2006;104(9):419–23.

    PubMed  Google Scholar 

  41. Chu LF, Clark DJ, Angst MS. Opioid tolerance and hyperalgesia in chronic pain patients after one month of oral morphine therapy: a preliminary prospective study. The Journal of Pain. 2006;7(1):43–8.

    CAS  PubMed  Google Scholar 

  42. Juni A, Klein G, Kest B. Morphine hyperalgesia in mice is unrelated to opioid activity, analgesia, or tolerance: evidence for multiple diverse hyperalgesic systems. Brain Res. 2006;1070(1):35–44.

    CAS  PubMed  Google Scholar 

  43. Compton P, Canamar CP, Hillhouse M, Ling W. Hyperalgesia in heroin dependent patients and the effects of opioid substitution therapy. J Pain. 2012;13(4):401–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Waxman AR, Arout C, Caldwell M, Dahan A, Kest B. Acute and chronic fentanyl administration causes hyperalgesia independently of opioid receptor activity in mice. Neurosci Lett. 2009;462(1):68–72.

    CAS  PubMed  Google Scholar 

  45. Arout CA, Caldwell M, McCloskey DP, Kest B. C-Fos activation in the periaqueductal gray following acute morphine-3beta-d-glucuronide or morphine administration. Physiol Behav. 2014;10(130):28–33.

    Google Scholar 

  46. Joly V, Richebe P, Guignard B, Fletcher D, Maurette P, Sessler DI, et al. Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. Anesthesiology. 2005;103(1):147–55.

    CAS  PubMed  Google Scholar 

  47. Chu LF, Cun T, Ngai LK, Kim JE, Zamora AK, Young CA, et al. Modulation of remifentanil-induced postinfusion hyperalgesia by the β-blocker propranolol in humans. Pain. 2012;153(5):974–81.

    CAS  PubMed  Google Scholar 

  48. Lenz H, Raeder J, Draegni T, Heyerdahl F, Schmelz M, Stubhaug A. Effects of COX inhibition on experimental pain and hyperalgesia during and after remifentanil infusion in humans. Pain. 2011;152(6):1289–97.

    CAS  PubMed  Google Scholar 

  49. Martinez V, Cymerman A, Ben Ammar S, Fiaud J, Rapon C, Poindessous F, et al. The analgesic efficiency of combined pregabalin and ketamine for total hip arthroplasty: a randomised, double-blind, controlled study. Anaesthesia. 2014;69(1):46–52.

    CAS  PubMed  Google Scholar 

  50. Sjøgren P, Jensen N-H, Jensen TS. Disappearance of morphine-induced hyperalgesia after discontinuing or substituting morphine with other opioid agonists. Pain. 1994;59(2):313–6.

    PubMed  Google Scholar 

  51. Cooper D, Lindsay S, Ryall D, Kokri M, Eldabe S, Lear G. Does intrathecal fentanyl produce acute cross-tolerance to iv morphine? Br J Anaesth. 1997;78(3):311–3.

    CAS  PubMed  Google Scholar 

  52. Chia Y-Y, Liu K, Wang J-J, Kuo M-C, Ho S-T. Intraoperative high dose fentanyl induces postoperative fentanyl tolerance. Can J Anesth. 1999;46(9):872–7.

    CAS  PubMed  Google Scholar 

  53. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P, et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology. 2000;93(2):409–17.

    CAS  PubMed  Google Scholar 

  54. Yalcin N, Uzun ST, Reisli R, Borazan H, Otelcioglu S. A comparison of ketamine and paracetamol for preventing remifentanil induced hyperalgesia in patients undergoing total abdominal hysterectomy. Int J Med Sci. 2012;9(5):327.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Lee C, Lee H-W, Kim J-N. Effect of oral pregabalin on opioid-induced hyperalgesia in patients undergoing laparo-endoscopic single-site urologic surgery. Korean J Anesthesiol. 2013;64(1):19–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Koppert W, Schmelz M. The impact of opioid-induced hyperalgesia for postoperative pain. Best Pract Res Clin Anaesthesiol. 2007;21(1):65–83.

    CAS  PubMed  Google Scholar 

  57. Compton P, Charuvastra V, Ling W. Pain intolerance in opioid-maintained former opiate addicts: effect of long-acting maintenance agent. Drug Alcohol Depend. 2001;63(2):139–46.

    CAS  PubMed  Google Scholar 

  58. Doverty M, White JM, Somogyi AA, Bochner F, Ali R, Ling W. Hyperalgesic responses in methadone maintenance patients. Pain. 2001;90(1):91–6.

    CAS  PubMed  Google Scholar 

  59. Doverty M, Somogyi AA, White JM, Bochner F, Beare CH, Menelaou A, et al. Methadone maintenance patients are cross-tolerant to the antinociceptive effects of morphine. Pain. 2001;93(2):155–63.

    CAS  PubMed  Google Scholar 

  60. Pud D, Cohen D, Lawental E, Eisenberg E. Opioids and abnormal pain perception: New evidence from a study of chronic opioid addicts and healthy subjects. Drug Alcohol Depend. 2006;82(3):218–23.

    CAS  PubMed  Google Scholar 

  61. Fallon M, Colvin L. Opioid-induced hyperalgesia: fact or fiction? Palliat Med. 2008;22(1):5–6.

    PubMed  Google Scholar 

  62. Luginbühl M, Gerber A, Schnider TW, Petersen-Felix S, Arendt-Nielsen L, Curatolo M. Modulation of remifentanil-induced analgesia, hyperalgesia, and tolerance by small-dose ketamine in humans. Anesth Analg. 2003;96(3):726–32.

    PubMed  Google Scholar 

  63. Holtman J, Johnson J, Kelly T, Wala E. (663): Opioid-induced abnormal pain sensitivity. The Journal of Pain. 2007;8(4):S16.

    Google Scholar 

  64. Koppert W, Sittl R, Scheuber K, Alsheimer M, Schmelz M, Schüttler J. Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans. Anesthesiology. 2003;99(1):152–9.

    CAS  PubMed  Google Scholar 

  65. Compton P, Athanasos P, Elashoff D. Withdrawal hyperalgesia after acute opioid physical dependence in nonaddicted humans: a preliminary study. J Pain. 2003;4(9):511–9.

    PubMed  Google Scholar 

  66. Lee SH, Cho SY, Lee HG, Choi JI, Yoon MH, Kim WM. Tramadol induced paradoxical hyperalgesia. Pain Physician. 2013;16(1):41–4.

    CAS  PubMed  Google Scholar 

  67. Hina N, Fletcher D, Poindessous-Jazat F, Martinez V. Hyperalgesia induced by low-dose opioid treatment before orthopaedic surgery: An observational case-control study. Eur J Anaesthesiol. 2015;32(4):255–61.

    CAS  PubMed  Google Scholar 

  68. Suzan E, Eisenberg E, Treister R, Haddad M, Pud D. A negative correlation between hyperalgesia and analgesia in patients with chronic radicular pain: is hydromorphone therapy a double-edged sword? Pain Physician. 2013;16(1):65–76.

    PubMed  Google Scholar 

  69. Hooten WM, Lamer TJ, Twyner C. Opioid-induced hyperalgesia in community-dwelling adults with chronic pain. Pain. 2015;156(6):1145–52.

    PubMed  Google Scholar 

  70. Pivec R, Issa K, Naziri Q, Kapadia BH, Bonutti PM, Mont MA. Opioid use prior to total hip arthroplasty leads to worse clinical outcomes. Int Orthop. 2014;38(6):1159–65.

    PubMed Central  PubMed  Google Scholar 

  71. Axelrod DJ, Reville B. Using methadone to treat opioid-induced hyperalgesia and refractory pain. J Opioid Manag. 2007;3(2):113–4.

  72. Monterubbianesi MC, Capuccini J, Ferioli I, Tassinari D, Sarti D, Raffaeli W. High opioid dosage rapid detoxification of cancer patient in palliative care with the Raffaeli model. J Opioid Manag. 2012;8(5):292–8.

  73. Pirbudak L, Sevinc A, Maralcan G, Kilic E. Pain management with intrathecal clonidine in a colon cancer patient with opioid hyperalgesia: case presentation. Agri : Agri (Algoloji) Dernegi’nin Yayin organidir = J Turk Soc Algol. 2014;26(2):93–6.

  74. Kaye AD, Alian AA, Vadivelu N, Chung KS. Perioperative dilemma: challenges of the management of a patient on mega doses of morphine and methadone. J Opioid Manag. 2014;10(1):69–72.

  75. Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. The AAPS J. 2008;10(4):537–51.

    CAS  PubMed  Google Scholar 

  76. Yoburn BC, Cohen AH, Inturrisi CE. Pharmacokinetics and pharmacodynamics of subcutaneous naltrexone pellets in the rat. J Pharmacol Exp Ther. 1986;237(1):126–30.

    CAS  PubMed  Google Scholar 

  77. Juni A, Klein G, Pintar J, Kest B. Nociception increases during opioid infusion in opioid receptor triple knock-out mice. Neuroscience. 2007;147(2):439–44.

    CAS  PubMed  Google Scholar 

  78. Ferrini F, Trang T, Mattioli T-AM, Laffray S, Del’Guidice T, Lorenzo L-E, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl- homeostasis. Nat Neurosci. 2013;16(2):183–92.

  79. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Washington, DC: American Psychiatric Association; 2000.

  80. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington, VA: American Psychiatric Association; 2013.

  81. Abuse NIoD. The neurobiology of drug addiction. 2007. Available from: http://www.drugabuse.gov/publications/teaching-packets/neurobiology-drug-addiction/section-iii-action-heroin-morphine. Accessed 13 Nov 2014.

  82. National Council on Alcoholism and Drug Dependence I. Signs and symptoms. 2014. Available from: https://ncadd.org/learn-about-drugs/signs-and-symptoms. Accessed 22 Dec 2014.

  83. Harris AC, Hanes SL, Gewirtz JC. Potentiated startle and hyperalgesia during withdrawal from acute morphine: effects of multiple opiate exposures. Psychopharmacology. 2004;176(3–4):266–73.

    CAS  PubMed  Google Scholar 

  84. Dunbar SA, Karamian I, Yeatman A, Zhang J. Effects of recurrent withdrawal on spinal GABA release during chronic morphine infusion in the rat. Eur J Pharmacol. 2006;535(1):152–6.

    CAS  PubMed  Google Scholar 

  85. Dunbar SA, Karamian I, Zhang J. Ketorolac prevents recurrent withdrawal induced hyperalgesia but does not inhibit tolerance to spinal morphine in the rat. Eur J Pain. 2007;11(1):1–6.

  86. Manchikanti L. Opioid-induced hyperalgesia method is a clinically relevant issue. Ann Palliat Med. 2012;1(1):2–3.

    PubMed  Google Scholar 

  87. Gutstein HB. The effects of pain on opioid tolerance: how do we resolve the controversy? Pharmacol Rev. 1996;48(3):403–7.

    CAS  PubMed  Google Scholar 

  88. Angst MS, Koppert W, Pahl I, Clark DJ, Schmelz M. Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain. 2003;106(1–2):49–57.

    CAS  PubMed  Google Scholar 

  89. Li X, Clark JD. Hyperalgesia during opioid abstinence: mediation by glutamate and substance p. Anesth Analg. 2002;95(4):979–84.

    CAS  PubMed  Google Scholar 

  90. Sjøgren P, Thunedborg L, Christrup L, Hansen S, Franks J. Is development of hyperalgesia, allodynia and myoclonus related to morphine metabolism during long-term administration?: Six case histories. Acta Anaesthesiol Scand. 1998;42(9):1070–5.

    PubMed  Google Scholar 

  91. Compton MA. Cold-pressor pain tolerance in opiate and cocaine abusers: correlates of drug type and use status. J Pain Symptom Manag. 1994;9(7):462–73.

    CAS  Google Scholar 

  92. Weissman DE, Haddox JD. Opioid pseudoaddiction—an iatrogenic syndrome. Pain. 1989;36(3):363–6.

  93. Swartjes M, Mooren R, Waxman AR, Arout C, van de Wetering K, den Hartigh J, et al. Morphine-induced hyperalgesia develops without involvement of morphine-3-glucuronide and is prevented by selective and non-selective N-methyl-d-aspartate antagonists. Mol Med. 2012;18(1):1320–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Woolf CJ. Intrathecal high dose morphine produces hyperalgesia in the rat. Brain Res. 1981;209(2):491–5.

    CAS  PubMed  Google Scholar 

  95. Yaksh T, Harty G, Onofrio B. High dose of spinal morphine produce a nonopiate receptor-mediated hyperesthesia: clinical and theoretic implications. Anesthesiology. 1986;64(5):590–7.

    CAS  PubMed  Google Scholar 

  96. Sakurada T, Watanabe C, Okuda K, Sugiyama A, Moriyama T, Sakurada C, et al. Intrathecal high-dose morphine induces spinally-mediated behavioral responses through NMDA receptors. Mol Brain Res. 2002;98(1):111–8.

    CAS  PubMed  Google Scholar 

  97. Ji R-R, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26(12):696–705.

    CAS  PubMed  Google Scholar 

  98. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.

    PubMed Central  PubMed  Google Scholar 

  99. Mao J. Opioid-induced abnormal pain sensitivity: implications in clinical opioid therapy. Pain. 2002;100(3):213–7.

    CAS  PubMed  Google Scholar 

  100. King T, Gardell LR, Wang R, Vardanyan A, Ossipov MH. Role of NK-1 neurotransmission in opioid-induced hyperalgesia. Pain. 2005;116(3):276–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Nichols ML, Allen BJ, Rogers SD, Ghilardi JR, Honore P, Luger NM, et al. Transmission of chronic nociception by spinal neurons expressing the substance P receptor. Science. 1999;286(5444):1558–61.

    CAS  PubMed  Google Scholar 

  102. McCarthy PW, Lawson SN. Cell type and conduction velocity of rat primary sensory neurons with substance P-like immunoreactivity. Neuroscience. 1989;28(3):745–53.

    CAS  PubMed  Google Scholar 

  103. Duggan AW, Morton CR, Zhao ZQ, Hendry IA. Noxious heating of the skin releases immunoreactive substance P in the substantia gelatinosa of the cat: a study with antibody microprobes. Brain Res. 1987;403(2):345–9.

    CAS  PubMed  Google Scholar 

  104. Takeda Y, Chou KB, Takeda J, Sachais BS, Krause JE. Molecular cloning, structural characterization and functional expression of the human substance P receptor. Biochem Biophys Res Commun. 1991;179(3):1232–40.

    CAS  PubMed  Google Scholar 

  105. Gardell LR, Wang R, Burgess SE, Ossipov MH, Vanderah TW, Malan TP Jr, et al. Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci. 2002;22(15):6747–55.

    CAS  PubMed  Google Scholar 

  106. Wang Z, Gardell LR, Ossipov MH, Vanderah TW, Brennan MB, Hochgeschwender U, et al. Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J Neurosci. 2001;21(5):1779–86.

    CAS  PubMed  Google Scholar 

  107. Laughlin TM, Vanderah TW, Lashbrook J, Nichols ML, Ossipov M, Porreca F, et al. Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA but not opioid receptors. Pain. 1997;72(1–2):253–60.

    CAS  PubMed  Google Scholar 

  108. Laughlin TM, Bethea JR, Yezierski RP, Wilcox GL. Cytokine involvement in dynorphin-induced allodynia. Pain. 2000;84(2):159–67.

    CAS  PubMed  Google Scholar 

  109. Lai J, Ossipov MH, Vanderah TW, Malan TP Jr, Porreca F. Neuropathic pain: the paradox of dynorphin. Mol Interv. 2001;1(3):160–7.

    CAS  PubMed  Google Scholar 

  110. Vanderah TW, Gardell LR, Burgess SE, Ibrahim M, Dogrul A, Zhong CM, et al. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci. 2000;20(18):7074–9.

    CAS  PubMed  Google Scholar 

  111. Vanderah TW, Laughlin T, Lashbrook JM, Nichols ML, Wilcox GL, Ossipov MH, et al. Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain. 1996;68(2–3):275–81.

    CAS  PubMed  Google Scholar 

  112. Deleo JA, Tanga FY, Tawfik VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist. 2004;10(1):40–52.

    CAS  PubMed  Google Scholar 

  113. Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther. 2012;134(2):219–45.

    CAS  PubMed  Google Scholar 

  114. Hutchinson MR, Bland ST, Johnson KW, Rice KC, Maier SF, Watkins LR. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. Scientific World J. 2007;7:98–111.

    Google Scholar 

  115. Hutchinson MR, Coats BD, Lewis SS, Zhang Y, Sprunger DB, Rezvani N, et al. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun. 2008;22(8):1178–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Hutchinson MR, Lewis SS, Coats BD, Rezvani N, Zhang Y, Wieseler JL, et al. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience. 2010;167(3):880–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Eidson LN, Murphy AZ. Blockade of toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J Neurosci. 2013;33(40):15952–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Jacobsen J, Watkins LR, Hutchinson MR. Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction. Int Rev Neurobiol. 2013;118:129–63.

    Google Scholar 

  119. Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun. 2010;24(1):83–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Lewis SS, Hutchinson MR, Rezvani N, Loram LC, Zhang Y, Maier SF, et al. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1β. Neuroscience. 2010;165(2):569–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain. 1995;63(3):289–302.

    CAS  PubMed  Google Scholar 

  122. Hutchinson MR, Zhang Y, Brown K, Coats BD, Shridhar M, Sholar PW, et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci. 2008;28(1):20–9.

    PubMed Central  PubMed  Google Scholar 

  123. Narita M, Miyatake M, Narita M, Shibasaki M, Shindo K, Nakamura A, et al. Direct evidence of astrocytic modulation in the development of rewarding effects induced by drugs of abuse. Neuropsychopharmacology. 2006;31(11):2476–88.

    CAS  PubMed  Google Scholar 

  124. Horvath RJ, DeLeo JA. Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci. 2009;29(4):998–1005.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Takayama N, Ueda H. Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J Neurosci. 2005;25(2):430–5.

    CAS  PubMed  Google Scholar 

  126. Hutchinson MR, Northcutt A, Hiranita T, Wang X, Lewis S, Thomas J, et al. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci. 2012;32(33):11187–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Hameed H, Hameed M, Christo PJ. The effect of morphine on glial cells as a potential therapeutic target for pharmacological development of analgesic drugs. Curr Pain Headache Rep. 2010;14(2):96–104.

    PubMed  Google Scholar 

  128. Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci USA. 2012;109(16):6325–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Antonilli L, Petecchia E, Caprioli D, Badiani A, Nencini P. Effect of repeated administrations of heroin, naltrexone, methadone, and alcohol on morphine glucuronidation in the rat. Psychopharmacology. 2005;182(1):58–64.

    CAS  PubMed  Google Scholar 

  130. Stevens C, Aravind S, Das S, Davis R. Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br J Pharmacol. 2013;168(6):1421–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science. 1991;251(4989):85–7.

    CAS  PubMed  Google Scholar 

  132. Trujillo KA. Effects of noncompetitive N-methyl-d-aspartate receptor antagonists on opiate tolerance and physical dependence. Neuropsychopharmacology. 1995;13(4):301–7.

    CAS  PubMed  Google Scholar 

  133. Mao J, Price DD, Mayer DJ. Mechanisms of hyperalgesian and morphine tolerance: a current view of their possible interactions. Pain. 1995;62(3):259–74.

    CAS  PubMed  Google Scholar 

  134. De Kock M, Lavand’homme P, Waterloos H. ‘Balanced analgesia’in the perioperative period: is there a place for ketamine? Pain. 2001;92(3):373–80.

    PubMed  Google Scholar 

  135. Du J, Zhou S, Coggeshall R, Carlton S. N-methyl-d-aspartate-induced excitation and sensitization of normal and inflamed nociceptors. Neuroscience. 2003;118(2):547–62.

    CAS  PubMed  Google Scholar 

  136. Sluka K, Audette K. Activation of protein kinase C in the spinal cord produces mechanical hyperalgesia by activating glutamate receptors, but does not mediate chronic muscle-induced hyperalgesia. Mol Pain. 2006;2(13):1–9.

    Google Scholar 

  137. Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci. 2011;48(4):308–20.

    CAS  PubMed  Google Scholar 

  138. Guignard B, Coste C, Costes H, Sessler DI, Lebrault C, Morris W, et al. Supplementing desflurane-remifentanil anesthesia with small-dose ketamine reduces perioperative opioid analgesic requirements. Anesth Analg. 2002;95(1):103–8.

    CAS  PubMed  Google Scholar 

  139. Zhao Y-L, Chen S-R, Chen H, Pan H-L. Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-d-aspartic acid receptor activity in spinal cords implications for opioid hyperalgesia and tolerance. J Biol Chem. 2012;287(30):25073–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Kalyuzhny AE, Wessendorf MW. Relationship of μ-and δ-opioid receptors to GABAergic neurons in the central nervous system, including antinociceptive brainstem circuits. J Comp Neurol. 1998;392(4):528–47.

    CAS  PubMed  Google Scholar 

  141. Kalyuzhny AE, Dooyema J, Wessendorf MW. Opioid-and GABAA-receptors are co-expressed by neurons in rat brain. Neuroreport. 2000;11(12):2625–8.

    CAS  PubMed  Google Scholar 

  142. Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF. Norman cousins lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun. 2007;21(2):131–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Cohen GA, Doze VA, Madison DV. Opioid inhibition of GABA release from presynaptic terminals of rat hippocampal interneurons. Neuron. 1992;9(2):325–35.

    CAS  PubMed  Google Scholar 

  144. Vaughan CW, Ingram SL, Connor MA, Christie MJ. How opioids inhibit GABA-mediated neurotransmission. Nature. 1997;390(6660):611–4.

    CAS  PubMed  Google Scholar 

  145. Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG. Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol. 2014;113:70–8.

    CAS  PubMed  Google Scholar 

  146. Schumacher M, Mattern C, Ghoumari A, Oudinet J, Liere P, Labombarda F, et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol. 2014;113:6–39.

    CAS  PubMed  Google Scholar 

  147. Melcangi RC, Panzica GC. Allopregnanolone: state of the art. Prog Neurobiol. 2014;113:1–5.

    CAS  PubMed  Google Scholar 

  148. Zelcer N, van de Wetering K, Hillebrand M, Sarton E, Kuil A, Wielinga PR, et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci USA. 2005;102(20):7274–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. van Dorp EL, Kest B, Kowalczyk WJ, Morariu AM, Waxman AR, Arout CA, et al. Morphine-6beta-glucuronide rapidly increases pain sensitivity independently of opioid receptor activity in mice and humans. Anesthesiology. 2009;110(6):1356–63.

    PubMed  Google Scholar 

  150. Hammoud HA, Aymard G, Lechat P, Boccheciampe N, Riou B, Aubrun F. Relationships between plasma concentrations of morphine, morphine-3-glucuronide, morphine-6-glucuronide, and intravenous morphine titration outcomes in the postoperative period. Fundam Clin Pharmacol. 2011;25(4):518–27.

    CAS  PubMed  Google Scholar 

  151. Samuelsson H, Hedner T, Venn R, Michalkiewicz A. CSF and plasma concentrations of morphine and morphine glucuronides in cancer patients receiving epidural morphine. Pain. 1993;52(2):179–85.

  152. De Gregori S, Minella CE, De Gregori M, Tinelli C, Ranzani GN, Govoni S, et al. Clinical pharmacokinetics of morphine and its metabolites during morphine dose titration for chronic cancer pain. Ther Drug Monit. 2014;36(3):335–44.

    PubMed  Google Scholar 

  153. Li X, Angst MS, Clark JD. A murine model of opioid-induced hyperalgesia. Mol Brain Res. 2001;86(1):56–62.

    CAS  PubMed  Google Scholar 

  154. Fine PG, Portenoy RK. Establishing “Best Practices” for opioid rotation: conclusions of an expert panel. J Pain Symptom Manag. 2009;38(3):418–25.

  155. Juba KM, Wahler RG, Daron SM. Morphine and hydromorphone-induced hyperalgesia in a hospice patient. J Palliat Med. 2013;16(7):809–12.

    PubMed  Google Scholar 

  156. Vorobeychik Y, Chen L, Bush MC, Mao J. Improved opioid analgesic effect following opioid dose reduction. Pain Med (Malden, Mass). 2008;9(6):724–7.

  157. Wilson GR, Reisfield GM. Morphine hyperalgesia: a case report. Am J Hosp Palliat Care. 2003;20(6):459–61.

  158. de Conno F, Caraceni A, Martini C, Spoldi E, Salvetti M, Ventafridda V. Hyperalgesia and myoclonus with intrathecal infusion of high-dose morphine. Pain. 1991;47(3):337–9.

    PubMed  Google Scholar 

  159. Vorobeychik Y, Chen L, Bush MC, Mao J. Improved opioid analgesic effect following opioid dose reduction. Pain Med. 2008;9(6):724–7.

    PubMed  Google Scholar 

  160. Juni A, Cai M, Stankova M, Waxman AR, Arout C, Klein G, et al. Sex-specific mediation of opioid-induced hyperalgesia by the melanocortin-1 receptor. Anesthesiology. 2010;112(1):181–8.

    CAS  PubMed  Google Scholar 

  161. Juni A, Klein G, Kowalczyk B, Ragnauth A, Kest B. Sex differences in hyperalgesia during morphine infusion: effect of gonadectomy and estrogen treatment. Neuropharmacology. 2008;54(8):1264–70.

    CAS  PubMed  Google Scholar 

  162. Waxman AR, Juni A, Kowalczyk W, Arout C, Sternberg WF, Kest B. Progesterone rapidly recruits female-typical opioid-induced hyperalgesic mechanisms. Physiol Behav. 2010;101(5):759–63.

    CAS  PubMed  Google Scholar 

  163. Laulin JP, Celerier E, Larcher A, Le Moal M, Simonnet G. Opiate tolerance to daily heroin administration: an apparent phenomenon associated with enhanced pain sensitivity. Neuroscience. 1999;89(3):631–6.

    CAS  PubMed  Google Scholar 

  164. Laulin JP, Larcher A, Celerier E, Le Moal M, Simonnet G. Long-lasting increased pain sensitivity in rat following exposure to heroin for the first time. Eur J Neurosci. 1998;10(2):782–5.

    CAS  PubMed  Google Scholar 

  165. Laulin JP, Larcher A, Célèrier E, Moal ML, Simonnet G. Long-lasting increased pain sensitivity in rat following exposure to heroin for the first time. Eur J Neurosci. 1998;10(2):782–5.

    CAS  PubMed  Google Scholar 

  166. Hang L-H, Shao D-H, Gu Y-P. The ED50 and ED95 of ketamine for prevention of postoperative hyperalgesia after remifentanil-based anaesthesia in patients undergoing laparoscopic cholecystectomy. Swiss Med Wkly. 2011;141:w13195.

    PubMed  Google Scholar 

  167. Tröster A, Sittl R, Singler B, Schmelz M, Schuttler J, Koppert W. Modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by parecoxib in humans. Anesthesiology. 2006;105(5):1016–23.

    PubMed  Google Scholar 

  168. Smith DJ, Pekoe GM, Martin LL, Coalgate B. The interaction of ketamine with the opiate receptor. Life Sci. 1980;26(10):789–95.

    CAS  PubMed  Google Scholar 

  169. Persson J. Ketamine in pain management. CNS Neurosci Ther. 2013;19(6):396–402.

    CAS  PubMed  Google Scholar 

  170. Max MB, Byas-Smith MG, Gracely RH, Bennett GJ. Intravenous infusion of the NMDA antagonist, ketamine, in chronic posttraumatic pain with allodynia: a double-blind comparison to alfentanil and placebo. Clin Neuropharmacol. 1995;18(4):360–8.

    CAS  PubMed  Google Scholar 

  171. Laulin J-P, Maurette P, Corcuff J-B, Rivat C, Chauvin M, Simonnet G. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance. Anesth Analg. 2002;94(5):1263–9.

    CAS  PubMed  Google Scholar 

  172. Swartjes M, Morariu A, Niesters M, Aarts L, Dahan A. Nonselective and NR2B-selective N-methyl-D-aspartic acid receptor antagonists produce antinociception and long-term relief of allodynia in acute and neuropathic pain. Anesthesiology. 2011;115(1):165–74.

    CAS  PubMed  Google Scholar 

  173. Tverskoy M, Oz Y, Isakson A, Finger J, Bradley EL Jr, Kissin I. Preemptive effect of fentanyl and ketamine on postoperative pain and wound hyperalgesia. Anesth Analg. 1994;78(2):205–9.

    CAS  PubMed  Google Scholar 

  174. Lavand’homme P, De Kock M, Waterloos H. Intraoperative epidural analgesia combined with ketamine provides effective preventive analgesia in patients undergoing major digestive surgery. Anesthesiology. 2005;103(4):813–20.

  175. Roytblat L, Korotkoruchko A, Katz J, Glazer M, Greemberg L, Fisher A. Postoperative pain: the effect of low-dose ketamine in addition to general anesthesia. Anesth Analg. 1993;77(6):1161–5.

    CAS  PubMed  Google Scholar 

  176. Wong C-S, Liaw W-J, Tung C-S, Su Y-F, Ho S-T. Ketamine potentiates analgesic effect of morphine in postoperative epidural pain control. Reg Anesth Pain Med. 1996;21(6):534–41.

    CAS  Google Scholar 

  177. Fu ES, Miguel R, Scharf JE. Preemptive ketamine decreases postoperative narcotic requirements in patients undergoing abdominal surgery. Anesth Analg. 1997;84(5):1086–90.

    CAS  PubMed  Google Scholar 

  178. Menigaux C, Fletcher D, Dupont X, Guignard B, Guirimand F, Chauvin M. The benefits of intraoperative small-dose ketamine on postoperative pain after anterior cruciate ligament repair. Anesth Analg. 2000;90(1):129.

    CAS  PubMed  Google Scholar 

  179. Menigaux C, Guignard B, Fletcher D, Sessler DI, Dupont X, Chauvin M. Intraoperative small-dose ketamine enhances analgesia after outpatient knee arthroscopy. Anesth Analg. 2001;93(3):606–12.

    CAS  PubMed  Google Scholar 

  180. Zakine J, Samarcq D, Lorne E, Moubarak M, Montravers P, Beloucif S, et al. Postoperative ketamine administration decreases morphine consumption in major abdominal surgery: a prospective, randomized, double-blind, controlled study. Anesth Analg. 2008;106(6):1856–61.

    CAS  PubMed  Google Scholar 

  181. White PF, Way WL, Trevor AJ. Ketamine-its pharmacology and therapeutic uses. Anesthesiology. 1982;56:119–36.

    CAS  PubMed  Google Scholar 

  182. Holtman JR Jr, Crooks PA, Johnson-Hardy JK, Hojomat M, Kleven M, Wala EP. Effects of norketamine enantiomers in rodent models of persistent pain. Pharmacol Biochem Behav. 2008;90(4):676–85.

    CAS  PubMed  Google Scholar 

  183. Fanta S, Kinnunen M, Backman JT, Kalso E. Population pharmacokinetics of S-ketamine and norketamine in healthy volunteers after intravenous and oral dosing. Eur J Clin Pharmacol. 2015;71(4):441–7.

    CAS  PubMed  Google Scholar 

  184. Bredlau AL, Thakur R, Korones DN, Dworkin RH. Ketamine for pain in adults and children with cancer: a systematic review and synthesis of the literature. Pain Med. 2013;14(10):1505–17.

    PubMed  Google Scholar 

  185. Way WL. Ketamine-its pharmacology and therapeutic uses. Anesthesiology. 1982;56(2):119–36.

    PubMed  Google Scholar 

  186. Weinbroum AA, Rudick V, Paret G, Ben-Abraham R. The role of dextromethorphan in pain control. Can J Anesth. 2000;47(6):585–96.

    CAS  PubMed  Google Scholar 

  187. Ramasubbu C, Gupta A. Pharmacological treatment of opioid-induced hyperalgesia: a review of the evidence. J Pain Palliat Care Pharmacother. 2011;25(3):219–30.

    PubMed  Google Scholar 

  188. Elliott K, Kest B, Man A, Kao B, Inturrisi CE. N-methyl-d-aspartate (NMDA) receptors, mu and kappa opioid tolerance, and perspectives on new analgesic drug development. Neuropsychopharmacology. 1995;13(4):347–56.

    CAS  PubMed  Google Scholar 

  189. Popik P, Kozela E, Danysz W. Clinically available NMDA receptor antagonists memantine and dextromethorphan reverse existing tolerance to the antinociceptive effects of morphine in mice. Naunyn-Schmiedeberg’s Arch Pharmacol. 2000;361(4):425–32.

    CAS  Google Scholar 

  190. Salehi M, Zargar A, Ramezani MA. Effects of dextromethorphan on reducing methadone dosage in opium addicts undergoing methadone maintenance therapy: A double blind randomized clinical trial. J Res Med Sci. 2011;16(10):1354.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Chen S-L, Lee S-Y, Tao P-L, Chang Y-H, Chen S-H, Chu C-H, et al. Dextromethorphan attenuated inflammation and Combined Opioid Use in Humans Undergoing Methadone Maintenance Treatment. J Neuroimmune Pharmacol. 2012;7(4):1025–33.

    PubMed  Google Scholar 

  192. Koyuncuoğlu H, Saydam B. The treatment of heroin addicts with dextromethorphan: a double-blind comparison of dextromethorphan with chlorpromazine. Int J Clin Pharmacol Ther Toxicol. 1990;28(4):147–52.

    PubMed  Google Scholar 

  193. Rosen MI, McMahon TJ, Woods SW, Pearsall HR, Kosten TR. A pilot study of dextromethorphan in naloxone-precipitated opiate withdrawal. Eur J Pharmacol. 1996;307(3):251–7.

    CAS  PubMed  Google Scholar 

  194. Bisaga A, Gianelli P, Popik P. Opiate withdrawal with dextromethorphan. Am J Psychiatry. 1997;154(4):584.

    CAS  PubMed  Google Scholar 

  195. Akerele E, Bisaga A, Sullivan MA, Garawi F, Comer SD, Thomas AA, et al. Dextromethorphan and quinidine combination for heroin detoxification. Am J Addict. 2008;17(3):176–80.

  196. Malek A, Amiri S, Habibi Asl B. The therapeutic effect of adding dextromethorphan to clonidine for reducing symptoms of opioid withdrawal: a randomized clinical trial. Int Sch Res Not. 2013;2013:1–5.

    Google Scholar 

  197. Lin SK, Pan CH, Chen CH. A double-blind, placebo-controlled trial of dextromethorphan combined with clonidine in the treatment of heroin withdrawal. J Clin Psychopharmacol. 2014;34(4):508–12.

    CAS  PubMed  Google Scholar 

  198. Grace RF, Power I, Umedaly H, Zammit A, Mersiades M, Cousins MJ, et al. Preoperative dextromethorphan reduces intraoperative but not postoperative morphine requirements after laparotomy. Anesth Analg. 1998;87(5):1135–8.

    CAS  PubMed  Google Scholar 

  199. Weinbroum A, Lalayev G, Yashar T, Ben-Abraham R, Niv D, Flaishon R. Combined pre-incisional oral dextromethorphan and epidural lidocaine for postoperative pain reduction and morphine sparing: a randomised double-blind study on day-surgery patients. Anaesthesia. 2001;56(7):616–22.

    CAS  PubMed  Google Scholar 

  200. Weinbroum AA, Gorodetzky A, Nirkin A, Kollender Y, Bickels J, Marouani N, et al. Dextromethorphan for the reduction of immediate and late postoperative pain and morphine consumption in orthopedic oncology patients. Cancer. 2002;95(5):1164–70.

    CAS  PubMed  Google Scholar 

  201. McConaghy P, McSorley P, McCaughey W, Campbell W. Dextromethorphan and pain after total abdominal hysterectomy. Br J Anaesth. 1998;81(5):731–6.

    CAS  PubMed  Google Scholar 

  202. Rose JB, Cuy R, Cohen DE, Schreiner MS. Preoperative oral dextromethorphan does not reduce pain or analgesic consumption in children after adenotonsillectomy. Anesth Analg. 1999;88(4):749–53.

    CAS  PubMed  Google Scholar 

  203. Compton PA, Ling W, Torrington MA. CLINICAL STUDY: Lack of effect of chronic dextromethorphan on experimental pain tolerance in methadone-maintained patients. Addict Biol. 2008;13(3–4):393–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Taniguchi K, Shinjo K, Mizutani M, Shimada K, Ishikawa T, Menniti FS, et al. Antinociceptive activity of CP-101,606, an NMDA receptor NR2B subunit antagonist. Br J Pharmacol. 1997;122(5):809–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Nishimura W, Muratani T, Tatsumi S, Sakimura K, Mishina M, Minami T, et al. Characterization of N-methyl-d-aspartate receptor subunits responsible for postoperative pain. Eur J Pharmacol. 2004;503(1–3):71–5.

    CAS  PubMed  Google Scholar 

  206. Boyce S, Wyatt A, Webb J, O’donnell R, Mason G, Rigby M, et al. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology. 1999;38(5):611–23.

    CAS  PubMed  Google Scholar 

  207. Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res. 2007;73(2):137–50.

    CAS  PubMed  Google Scholar 

  208. Tassone DM, Boyce E, Guyer J, Nuzum D. Pregabalin: a novel gamma-aminobutyric acid analogue in the treatment of neuropathic pain, partial-onset seizures, and anxiety disorders. Clin Ther. 2007;29(1):26–48.

    CAS  PubMed  Google Scholar 

  209. Rose M, Kam P. Gabapentin: pharmacology and its use in pain management. Anaesthesia. 2002;57(5):451–62.

    CAS  PubMed  Google Scholar 

  210. Liang D-Y, Shi X, Li X, Li J, Clark JD. The β2 adrenergic receptor regulates morphine tolerance and physical dependence. Behav Brain Res. 2007;181(1):118–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Ricciotti E, FitzGerald GA. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Hathway GJ, Vega-Avelaira D, Moss A, Ingram R, Fitzgerald M. Brief, low frequency stimulation of rat peripheral C-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain. 2009;144(1–2):110–8.

    PubMed Central  PubMed  Google Scholar 

  213. Hutchinson MR, Northcutt AL, Chao LW, Kearney JJ, Zhang Y, Berkelhammer DL, et al. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav Immun. 2008;22(8):1248–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun. 2009;23(2):240–50.

  215. Hama AT, Broadhead A, Lorrain DS, Sagen J. The antinociceptive effect of the asthma drug ibudilast in rat models of peripheral and central neuropathic pain. J Neurotrauma. 2012;29(3):600–10.

    PubMed  Google Scholar 

  216. Ellis A, Wieseler J, Favret J, Johnson KW, Rice KC, Maier SF, et al. Systemic administration of propentofylline, ibudilast, and (+)-naltrexone each reverses mechanical allodynia in a novel rat model of central neuropathic pain. J Pain. 2014;15(4):407–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Rolan P, Hutchinson M, Johnson K. Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin Pharmacother. 2009;10(17):2897–904.

    CAS  PubMed  Google Scholar 

  218. Rolan P, Gibbons JA, He L, Chang E, Jones D, Gross MI, et al. Ibudilast in healthy volunteers: safety, tolerability and pharmacokinetics with single and multiple doses. Br J Clin Pharmacol. 2008;66(6):792–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Kim H-S, Suh Y-H. Minocycline and neurodegenerative diseases. Behav Brain Res. 2009;196(2):168–79.

    CAS  PubMed  Google Scholar 

  220. Sumracki NM, Hutchinson MR, Gentgall M, Briggs N, Williams DB, Rolan P. The effects of pregabalin and the glial attenuator minocycline on the response to intradermal capsaicin in patients with unilateral sciatica. PloS One. 2012;7(6):e38525.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Popiolek-Barczyk K, Rojewska E, Jurga AM, Makuch W, Zador F, Borsodi A, et al. Minocycline enhances the effectiveness of nociceptin/orphanin FQ during neuropathic pain. BioMed Res Int. 2014;2014:762930.

    PubMed Central  PubMed  Google Scholar 

  222. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005;115(1):71–83.

    CAS  PubMed  Google Scholar 

  223. Li W-W, Setzu A, Zhao C, Franklin RJ. Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol. 2005;158(1):58–66.

    CAS  PubMed  Google Scholar 

  224. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346(6284):561–4.

    CAS  PubMed  Google Scholar 

  225. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.

    CAS  PubMed  Google Scholar 

  226. Attal N, Brasseur L, Guirimand D, Clermond-Gnamien S, Atlami S, Bouhassira D. Are oral cannabinoids safe and effective in refractory neuropathic pain? Eur J Pain (Lond, Engl). 2004;8(2):173–7.

  227. Wallace M, Schulteis G, Atkinson JH, Wolfson T, Lazzaretto D, Bentley H, et al. Dose-dependent effects of smoked cannabis on capsaicin-induced pain and hyperalgesia in healthy volunteers. Anesthesiology. 2007;107(5):785–96.

    PubMed  Google Scholar 

  228. Buggy DJ, Toogood L, Maric S, Sharpe P, Lambert DG, Rowbotham DJ. Lack of analgesic efficacy of oral Δ-9-tetrahydrocannabinol in postoperative pain. Pain. 2003;106(1):169–72.

    CAS  PubMed  Google Scholar 

  229. Beaulieu P. Effects of nabilone, a synthetic cannabinoid, on postoperative pain. Canadian journal of anaesthesia =. Journal canadien d’anesthesie. 2006;53(8):769–75.

    PubMed  Google Scholar 

  230. Kraft B, Frickey NA, Kaufmann RM, Reif M, Frey R, Gustorff B, et al. Lack of analgesia by oral standardized cannabis extract on acute inflammatory pain and hyperalgesia in volunteers. Anesthesiology. 2008;109(1):101–10.

    PubMed  Google Scholar 

  231. Redmond WJ, Goffaux P, Potvin S, Marchand S. Analgesic and antihyperalgesic effects of nabilone on experimental heat pain. Curr Med Res Opinion. 2008;24(4):1017–24.

    CAS  Google Scholar 

  232. Blake D, Robson P, Ho M, Jubb R, McCabe C. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology. 2006;45(1):50–2.

    CAS  PubMed  Google Scholar 

  233. Narang S, Gibson D, Wasan AD, Ross EL, Michna E, Nedeljkovic SS, et al. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain. 2008;9(3):254–64.

    CAS  PubMed  Google Scholar 

  234. Notcutt W, Price M, Miller R, Newport S, Phillips C, Simmons S, et al. Initial experiences with medicinal extracts of cannabis for chronic pain: results from 34 ‘N of 1’studies. Anaesthesia. 2004;59(5):440–52.

    PubMed  Google Scholar 

  235. Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ. 2004;329(7460):253.

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil. 2003;17(1):21–9.

    PubMed  Google Scholar 

  237. Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, et al. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology. 2007;68(7):515–21.

    CAS  PubMed  Google Scholar 

  238. Karst M, Salim K, Burstein S, Conrad I, Hoy L, Schneider U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA. 2003;290(13):1757–62.

    CAS  PubMed  Google Scholar 

  239. Holdcroft A, Maze M, Dore C, Tebbs S, Thompson S. A multicenter dose-escalation study of the analgesic and adverse effects of an oral cannabis extract (Cannador) for postoperative pain management. Anesthesiology. 2006;104(5):1040–6.

    CAS  PubMed  Google Scholar 

  240. Skrabek RQ, Galimova L, Ethans K, Perry D. Nabilone for the treatment of pain in fibromyalgia. J Pain. 2008;9(2):164–73.

    CAS  PubMed  Google Scholar 

  241. Ellis RJ, Toperoff W, Vaida F, Van Den Brande G, Gonzales J, Gouaux B, et al. Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology. 2008;34(3):672–80.

    PubMed Central  PubMed  Google Scholar 

  242. Berman JS, Symonds C, Birch R. Efficacy of two cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: results of a randomised controlled trial. Pain. 2004;112(3):299–306.

    PubMed  Google Scholar 

  243. Eisenberg E, Ogintz M, Almog S. The Pharmacokinetics, efficacy, safety, and ease of use of a novel portable metered-dose cannabis inhaler in patients with chronic neuropathic pain: a phase 1a study. J Pain Palliat Care Pharmacother. 2014;28(3):216–25.

    PubMed  Google Scholar 

  244. de Vries M, van Rijckevorsel DC, Wilder-Smith OH, van Goor H. Dronabinol and chronic pain: importance of mechanistic considerations. Expert Opin Pharmacother. 2014;15(11):1–10.

    Google Scholar 

  245. Martin WJ, Patrick SL, Coffin PO, Tsou K, Walker JM. An examination of the central sites of action of cannabinoid-induced antinociception in the rat. Life Sci. 1995;56(23):2103–9.

    CAS  PubMed  Google Scholar 

  246. Naef M, Curatolo M, Petersen-Felix S, Arendt-Nielsen L, Zbinden A, Brenneisen R. The analgesic effect of oral delta-9-tetrahydrocannabinol (THC), morphine, and a THC-morphine combination in healthy subjects under experimental pain conditions. Pain. 2003;105(1–2):79–88.

    CAS  PubMed  Google Scholar 

  247. Seeling W, Kneer L, Büchele B, Gschwend J, Maier L, Nett C, et al. Delta (9)-tetrahydrocannabinol and the opioid receptor agonist piritramide do not act synergistically in postoperative pain. Der Anaesthesist. 2006;55(4):391–400.

    CAS  PubMed  Google Scholar 

  248. Majewska MD. Neurosteroids: endogenous bimodal modulators of the GABAA receptor mechanism of action and physiological significance. Prog Neurobiol. 1992;38(4):379–94.

    CAS  PubMed  Google Scholar 

  249. Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci. 2005;6(7):565–75.

    CAS  PubMed  Google Scholar 

  250. Mitchell EA, Gentet LJ, Dempster J, Belelli D. GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J Physiol. 2007;583(3):1021–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Poisbeau P, Keller AF, Aouad M, Kamoun N, Groyer G, Schumacher M. Analgesic strategies aimed at stimulating the endogenous production of allopregnanolone. Front Cell Neurosci. 2014;8:174.

    PubMed Central  PubMed  Google Scholar 

  252. Cashin MF, Moravek V. The physiological action of cholesterol. Am J Physiol Leg Content. 1927;82(2):294–8.

    CAS  Google Scholar 

  253. Selye H. Anesthetic effect of steroid hormones. Exp Biol Med. 1941;46(1):116–21.

    CAS  Google Scholar 

  254. Selye H, Masson G. Additional steroids with luteoid activity. Science. 1942;358(96):2494.

    Google Scholar 

  255. Pathirathna S, Brimelow BC, Jagodic MM, Krishnan K, Jiang X, Zorumski CF, et al. New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5alpha-reduced neuroactive steroids. Pain. 2005;114(3):429–43.

    CAS  PubMed  Google Scholar 

  256. Kavaliers M, Wiebe JP. Analgesic effects of the progesterone metabolite, 3α-hydroxy-5α-pregnan-20-one, and possible modes of action in mice. Brain Res. 1987;415(2):393–8.

    CAS  PubMed  Google Scholar 

  257. Frye CA, Duncan JE. Progesterone metabolites, effective at the GABAA receptor complex, attenuate pain sensitivity in rats. Brain Res. 1994;643(1):194–203.

    CAS  PubMed  Google Scholar 

  258. Frye CA, Rhodes ME, Walf A, Harney JP. Testosterone enhances aggression of wild-type mice but not those deficient in type I 5α-reductase. Brain Res. 2002;948(1):165–70.

    CAS  PubMed  Google Scholar 

  259. Frye CA, Walf AA, Rhodes ME, Harney JP. Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5α-reductase. Brain Res. 2004;1004(1):116–24.

    CAS  PubMed  Google Scholar 

  260. Pednekar JR, Mulgaonker VK. Role of testosterone on pain threshold in rats. Indian J Physiol Pharmacol. 1995;39(4):423–4.

    CAS  PubMed  Google Scholar 

  261. Erden V, Yangn Z, Erkalp K, Delatioglu H, Bahçeci F, Seyhan A. Increased progesterone production during the luteal phase of menstruation may decrease anesthetic requirement. Anesth Analg. 2005;101(4):1007–11.

    CAS  PubMed  Google Scholar 

  262. Lee J, Lee J, Ko S. The relationship between serum progesterone concentration and anesthetic and analgesic requirements: a prospective observational study of parturients undergoing cesarean delivery. Anesth Analg. 2014;119(4):901–5.

    CAS  PubMed  Google Scholar 

  263. Gudin JA, Mogali S, Jones JD, Comer SD. Risks, management, and monitoring of combination opioid, benzodiazepines, and/or alcohol use. Postgrad Med. 2013;125(4):115–30.

    PubMed Central  PubMed  Google Scholar 

  264. Krishnan S, Salter A, Sullivan T, Gentgall M, White J, Rolan P. Comparison of pain models to detect opioid-induced hyperalgesia. J Pain Res. 2012;5:99.

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Mogil JS, Wilson SG, Bon K, Eun Lee S, Chung K, Raber P, et al. Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain. 1999;80(1):67–82.

    CAS  PubMed  Google Scholar 

  266. Mogil JS, Wilson SG, Bon K, Eun Lee S, Chung K, Raber P, et al. Heritability of nociception II.Types’ of nociception revealed by genetic correlation analysis. Pain. 1999;80(1):83–93.

    CAS  PubMed  Google Scholar 

  267. Liang DY, Liao G, Lighthall GK, Peltz G, Clark DJ. Genetic variants of the P-glycoprotein gene Abcb1b modulate opioid-induced hyperalgesia, tolerance and dependence. Pharmacogenet Genomics. 2006;16(11):825–35.

    CAS  PubMed  Google Scholar 

  268. Liang DY, Liao G, Wang J, Usuka J, Guo Y, Peltz G, et al. A genetic analysis of opioid-induced hyperalgesia in mice. Anesthesiology. 2006;104(5):1054–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Liang DY, Li X, Clark JD. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J Pain. 2013;14(1):36–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  270. Doehring A, Oertel BG, Sittl R, Lötsch J. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. PAIN®. 2013;154(1):15–23.

Download references

Author contributions

C.A. Arout, E. Edens, I. Petrakis, and M. Sofuoglu have each significantly contributed to the concept, formulation, writing, and revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline A. Arout.

Ethics declarations

Conflict of interest

I. L. Petrakis reports a conflict of interest due to her role as a consultant for Alkermes. C. A. Arout, E. Edens, and M. Sofuoglu declare no conflicts of interest.

Funding

This manuscript was prepared for publication during C. A. Arout’s postdoctoral fellowship (Grant # NIDA T32 DA007238; Principal Investigator: I. L. Petrakis), and is supported by Mental Illness Research, Education and Clinical Centers (MIRECC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arout, C.A., Edens, E., Petrakis, I.L. et al. Targeting Opioid-Induced Hyperalgesia in Clinical Treatment: Neurobiological Considerations. CNS Drugs 29, 465–486 (2015). https://doi.org/10.1007/s40263-015-0255-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-015-0255-x

Keywords

Navigation