Skip to main content
Log in

Advances in CNS Imaging Agents: Focus on PET and SPECT Tracers in Experimental and Clinical Use

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The physiological functioning of the brain is not well-known in current day medicine and the pathologies of many neuropsychiatric disorders are still not yet fully understood. With our aging population and better life expectancies, it has become imperative to find better biomarkers for disease progression as well as receptor target engagements. In the last decade, these major advances in the field of molecular CNS imaging have been made available with tools such as functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), and neuroreceptor-targeted positron emission tomography (PET). These tools have given researchers, pharmaceutical companies, and clinical physicians a better method of understanding CNS dysfunctions, and the ability to employ improved therapeutic agents. This review is intended to provide an update on brain imaging agents that are currently used in clinical and translational research toward treatment of CNS disorders. The review begins with amyloid and tau imaging, the former of which has at least three [18F] agents that have been recently approved and will soon be available for clinical use for specific indications in the USA and elsewhere. Other prevalent PET and SPECT neurotransmitter system agents, including those newly US FDA-approved imaging agents related to the dopaminergic system, are included. A review of both mature and potentially growing PET imaging agents, including those targeting serotonin and opiate receptor systems, is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rowe CC, Villemagne VL. Amyloid imaging with PET in early Alzheimer disease diagnosis. Med Clin N Am. 2013;97:377–98.

    PubMed  Google Scholar 

  2. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;131:1630–45.

    PubMed Central  PubMed  Google Scholar 

  3. Zhang S, Han D, Tan X, Feng J, Guo Y, Ding Y. Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract. 2012;66:185–98.

    CAS  PubMed  Google Scholar 

  4. Resnick SM, Sojkova J. Amyloid imaging and memory change for prediction of cognitive impairment. Alzheimers Res Ther. 2011;3:3.

    PubMed Central  PubMed  Google Scholar 

  5. Lowe VJ, Kemp BJ, Jack CR Jr, Senjem M, Weigand S, Shiung M, et al. Comparison of 18F-FDG and PiB PET in cognitive impairment. J Nucl Med. 2009;50:878–86.

    PubMed Central  PubMed  Google Scholar 

  6. Cedazo-Minguez A, Winblad B. Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol. 2013;45:5–14.

    Google Scholar 

  7. Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, et al. Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7:129–35.

    CAS  PubMed  Google Scholar 

  8. Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with [18]F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7.

    PubMed  Google Scholar 

  9. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging beta-amyloid burden in aging and dementia. Neurology. 2007;68:1718–25.

    CAS  PubMed  Google Scholar 

  10. Tolboom N, van der Flier WM, Yaqub M, Koene T, Boellaard R, Windhorst AD, et al. Differential association of [11C]PIB and [18F]FDDNP binding with cognitive impairment. Neurology. 2009;73:2079–85.

    CAS  PubMed  Google Scholar 

  11. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir F 18). J Nucl Med. 2010;51:913–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Hsiao IT, Huang CC, Hsieh CJ, Hsu WC, Wey SP, Yen TC, et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging. 2012;39:613–20.

    CAS  PubMed  Google Scholar 

  13. Wolk DA, Grachev ID, Buckley C, Kazi H, Grady MS, Trajanowski JQ, et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol. 2011;68:1398–403.

    PubMed  Google Scholar 

  14. Wong DF, Moghekar AR, Brašić JR. An in vivo evaluation of cerebral cortical amyloid with [18F]flutemetamol using positron emission tomography compared with parietal biopsy samples in living normal pressure hydrocephalus patients. Mol Imaging Biol. 2013;15:230–7.

    PubMed Central  PubMed  Google Scholar 

  15. Rinne JO, Wong DF, Wolk DA, Leinonen V, Arnold SE, Buckley C, et al. [(18)F] Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid β detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies. Acta Neuropathol. 2012;124:833–45.

    CAS  PubMed  Google Scholar 

  16. Vandenberghe R, van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.

    PubMed  Google Scholar 

  17. Cselényi Z, Jonhagen ME, Forsberg A, Halldin C, Julin P, Schou M, et al. Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. J Nucl Med. 2012;53:415–24.

    PubMed  Google Scholar 

  18. Rowe CC, Pejoska S, Mulligan RS, Jones G, Chan JG, Svensson S, et al. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for β-amyloid imaging in aging and dementia. J Nucl Med. 2013;54:880–6.

    CAS  PubMed  Google Scholar 

  19. Harrison ST, Mulhearn J, Wolkenberg SE, Miller PJ, O'Malley SS, Zeng Z, et al. Synthesis and evaluation of 5-fluoro-2-aryloxazolo[5,4-b] pyridines as β-amyloid PET ligands and identification of MK-3328. ACS Med Chem Lett. 2011;2:498–502.

    Google Scholar 

  20. Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, Teipel SJ, et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain. 2006;129:3035–41.

    PubMed  Google Scholar 

  21. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol. 2009;65:403–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001;24:1121–59.

    CAS  PubMed  Google Scholar 

  23. Fodero-Tavoletti MT, Okamura N, Furumoto S, Mulligan RS, Connor AR, McLean CA, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain. 2011;134:1089–100.

    PubMed  Google Scholar 

  24. Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68.

    CAS  PubMed  Google Scholar 

  25. Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286:2120–7.

    CAS  PubMed  Google Scholar 

  26. Kumar A, Chugani HT. Imaging approaches to seizure analysis: PET analysis. In: Schwartzkroin PA, editor. Encyclopedia of basic epilepsy research. New York: Academic Press; 2009. p. 1531–43.

    Google Scholar 

  27. Bénard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med. 2003;33:148–62.

    PubMed  Google Scholar 

  28. Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3:771–84.

    PubMed  Google Scholar 

  29. Iversen L. Cannabis and the brain. Brain. 2003;126:1252–70.

    PubMed  Google Scholar 

  30. Mattes RD, Engelman K, Shaw LM, Elsohly MA. Cannabinoids and appetite stimulation. Pharmacol Biochem Behav. 1994;49:187–95.

    CAS  PubMed  Google Scholar 

  31. Kirkham TC, Williams CM, Fezza F, Di Marzo V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002;136:550–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science. 2002;296:678–82.

    CAS  PubMed  Google Scholar 

  33. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302:84–8.

    CAS  PubMed  Google Scholar 

  34. Marx J. Drug development: drugs inspired by a drug. Science. 2006;311:322–5.

    CAS  PubMed  Google Scholar 

  35. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA. 2006;295:761–75.

    CAS  PubMed  Google Scholar 

  36. Van Laere K. In vivo imaging of the endocannabinoid system: a novel window to a central modulatory mechanism in humans. Eur J Nucl Med Mol Imaging. 2007;34:1719–26.

    PubMed  Google Scholar 

  37. Berding G, Muller-Vahl K, Schneider U, Gielow P, Fitschen J, Stuhrmann M, et al. [123I]AM281 single-photon emission computed tomography imaging of central cannabinoid CB(1) receptors before and after delta(9)-tetrahydrocannabinol therapy and whole-body scanning for assessment of radiation dose in Tourette patients. Biol Psychiatry. 2004;55:904–15.

    CAS  PubMed  Google Scholar 

  38. Gifford AN, Makriyannis A, Volkow ND, Gatley SJ. In vivo imaging of the brain cannabinoid receptor. Chem Phys Lipids. 2002;121:65–72.

    CAS  PubMed  Google Scholar 

  39. Van Laere K, Koole M, Sanabria Bohorquez SM, Goffin K, Guenther I, Belanger MJ, et al. Whole-body biodistribution and radiation dosimetry of the human cannabinoid type-1 receptor ligand 18F-MK-9470 in healthy subjects. J Nucl Med. 2008;49:439–45.

    PubMed  Google Scholar 

  40. Gérard N, Pieters G, Goffin K, Bormans G, Van Laere K. Brain type 1 cannabinoid receptor availability in patients with anorexia and bulimia nervosa. Biol Psychiatry. 2011;70:777–84.

    PubMed  Google Scholar 

  41. Vandeputte C, Casteels C, Struys T, Koole M, van Veghel D, Evens N, et al. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model. Eur J Nucl Med Mol Imaging. 2012;39:1796–806.

    CAS  PubMed  Google Scholar 

  42. Van der Schueren BJ, Van Laere K, Gérard N, Bormans G, De Hoon JN. Interictal type 1 cannabinoid receptor binding is increased in female migraine patients. Headache. 2012;52:433–40.

    PubMed  Google Scholar 

  43. Van Laere K, Casteels C, Lunskens S, Goffin K, Grachev ID, Bormans G, et al. Regional changes in type 1 cannabinoid receptor availability in Parkinson’s disease in vivo. Neurobiol Aging. 2012;33:620.

    PubMed  Google Scholar 

  44. Goffin K, Van Paesschen W, Van Laere K. In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain. 2011;134:1033–40.

    PubMed  Google Scholar 

  45. Horti AG, Fan H, Kuwabara H, Hilton J, Ravert HT, Alexander M, et al. 11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors. J Nucl Med. 2006;47:1689–96.

    CAS  PubMed  Google Scholar 

  46. Wong DF, Kuwabara H, Horti AG, Raymont V, Brasic J, Guevara M, et al. Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. Neuroimage. 2010;52:1505–13.

    CAS  PubMed  Google Scholar 

  47. Wong DF, Kuwabara H, Horti AG, Brasic JR, Raymont V, Nandi A, Rahmim A, Gean E, Dannals RF, Cascella N. Cannabinoid receptor subtype 1 (CB1) distribution correlates with neuropsychiatric ratings. Presented at SOBP, Philadelphia, PA, May 2012.

  48. Cropley VL, Fujita M, Innis RB, Nathan PJ. Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry. 2006;59:898–907.

    CAS  PubMed  Google Scholar 

  49. Stahl SM. Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr. 2007;12:265–8.

    PubMed  Google Scholar 

  50. Kaasinen V, Rinne JO. Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci Biobehav Rev. 2002;26:785–93.

    CAS  PubMed  Google Scholar 

  51. Sánchez-Pernaute R, Brownell A-L, Isacson O. Functional imaging of the dopamine system: in vivo evaluation of dopamine depletion and restoration. Neurotoxicology. 2002;23:469–78.

    PubMed  Google Scholar 

  52. Ito H, Takahashi H, Arakawa R, Takano H, Suhara T. Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography Neuro Image. 2008;39:555–65.

    Google Scholar 

  53. Chen MK, Kuwabara H, Zhou Y, Adama RJ, Brasic JR, McGlothan JL, et al. VMAT2 and dopamine neuron loss in a primate model of Parkinson’s disease. J Neurochem. 2008;105:78–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Bairactaris C, Demakopoulos N, Tripsianis G, Sioka C, Farmakiotis D, Vadikolias K, et al. Impact of dopamine transporter single photon emission computed tomography imaging using I-123 ioflupane on diagnoses of patients with parkinsonian syndromes. J Clin Neurosci. 2009;16:246–52.

    CAS  PubMed  Google Scholar 

  55. Cummings JL, Henchcliffe C, Schaier S, Simuni T, Waxman A, Kemp P. The role of dopaminergic imaging in patients with symptoms of dopaminergic system neurodegeneration. Brain. 2011;134:3146–66.

    PubMed  Google Scholar 

  56. Healy DG, Abou-Sleiman PM, Wood NW. PINK, PANK, or PARK? A clinicians’ guide to familial parkinsonism. Lancet Neurol. 2004;11:652–62.

    Google Scholar 

  57. Hauser RA, Grosset DG. [(123)]FP-CIT (DaTscan) SPECT brain imaging in patients with suspected Parkinsonian syndromes. J Neuroimaging. 2012;22:225–30.

    PubMed  Google Scholar 

  58. Yin F, Tian ZM, Liu S, Zhao QJ, Wang RM, Shen L, et al. Transplantation of human retinal pigment epithelium cells in the treatment for Parkinson disease. CNS Neurosci Ther. 2012;18:1012–20.

    CAS  PubMed  Google Scholar 

  59. FDA prescribing information: DaTscan Website. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022454sOrig1s000Lbl.pdf. Accessed 2 Feb 2011.

  60. Weng YH, Yen TC, Chen MC, Kao PF, Tzen KY, Chen RS, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45:393–401.

    CAS  PubMed  Google Scholar 

  61. Grosset D, Grachev I, O’Brien J, McKeith I, Zuzana W, Tatsch K, et al. Integrated analysis of [123I]FP-CIT (DaTscan; Ioflupane I123 injection) SPECT brain imaging—diagnostic effectiveness in patients with movement disorders and/or dementia [abstract no. S8.004]. American Academy of Neurology Annual Meeting; 26 Apr–3 May 2014; Philadelphia.

  62. Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, et al. In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with (18)F-AV-133. J Nucl Med. 2010;51:223–8.

    PubMed  Google Scholar 

  63. Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev. 2011;33:54–111.

    PubMed Central  PubMed  Google Scholar 

  64. Yatham LN, Liddle PF, Lam RW, Zis AP, Stoessl AJ, Sossi V, et al. Effect of electroconvulsive therapy on brain 5-HT(2) receptors in major depression. Br J Psychiatry. 2010;196:474–9.

    PubMed  Google Scholar 

  65. Yatham LN, Liddle PF, Erez J, Kauer-Sant’Anna M, Lam RW, Imperial M, et al. Brain serotonin-2 receptors in acute mania. Br J Psychiatry. 2010;196:47–51.

    PubMed  Google Scholar 

  66. Meyer JH, Wilson AA, Rusjan P, Clark M, Houle S, Woodside S, et al. Serotonin 2A receptor binding potential in people with aggressive and violent behavior. J Psychiatry Neurosci. 2008;33:499–508.

    PubMed Central  PubMed  Google Scholar 

  67. Sadzot B, Lemaire C, Maquet P, Salmon E, Plenevaux A, Degueldre C, et al. Serotonin 5HT2 receptor imaging in the human brain using positron emission tomography and a new radioligand, [18F]altanserin: results in young normal controls. J Cereb Blood Flow Metab. 1995;15:787–97.

    CAS  PubMed  Google Scholar 

  68. Biver F, Goldman S, Luxen A, Monclus M, Forestini M, Mendlewicz J, et al. Multicompartmental study of fluorine-18 altanserin binding to brain 5HT2 receptors in humans using positron emission tomography. Eur J Nucl Med. 1994;21:937–46.

    CAS  PubMed  Google Scholar 

  69. Adams KH, Hansen ES, Pinborg LH, Hasselbalch SG, Svarer C, Holm S, et al. Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding in the caudate nuclei. Int J Neuropsychopharmacol. 2005;8:391–401.

    CAS  PubMed  Google Scholar 

  70. Haugbol S, Pinborg LH, Regeur L, Hansen ES, Bolwig TG, Nielsen FA, et al. Cerebral 5-HT2A receptor binding is increased in patients with Tourette’s syndrome. Int J Neuropsychopharmacol. 2007;10:245–52.

    CAS  PubMed  Google Scholar 

  71. Erritzoe D, Rasmussen H, Kristiansen KT, Frokjaer VG, Haugbol S, Pinborg L, et al. Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naïve first-episode schizophrenic patients. Neuropsychopharmacology. 2008;33:2435–41.

    CAS  PubMed  Google Scholar 

  72. Santhosh L, Estok KM, Vogel RS, Tamagnan GD, Baldwin RM, Mitsis EM, et al. Regional distribution and behavioral correlates of 5-HT(2A) receptors in Alzheimer’s disease with [(18)F]deuteroaltanserin and PET. Psychiatry Res. 2009;173:212–7.

    CAS  PubMed  Google Scholar 

  73. Rabiner EA, Beaver J, Makwana A, Searle G, Long C, Nathan PJ, et al. Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans. Mol Psychiatry. 2011;16:826–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004;73:953–90.

    CAS  PubMed  Google Scholar 

  75. Gjermund H, Willoch F. Imaging of opioid receptors in the central nervous system. Brain. 2008;131:1171–96.

    Google Scholar 

  76. Madar I, Lever JR, Kinter CM, Scheffel U, Ravert HT, Musachio JL, et al. Imaging of delta opioid receptors in human brain by N1’-([11C]methyl)naltrindole and PET. Synapse. 1996;24:19–28.

    CAS  PubMed  Google Scholar 

  77. Hostetler ED, Sanabria-Bohórquez S, Eng W, Joshi AD, Patel S, Gibson RE, et al. Evaluation of [18F]MK-0911, a positron emission tomography (PET) tracer for opioid receptor-like 1 (ORL1), in rhesus monkey and human. Neuroimage. 2013;68:1–10.

    CAS  PubMed  Google Scholar 

  78. Stankoff B, Freeman L, Aigrot MS, Chardain A, Dolle F, Williams A, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann Neurol. 2011;69:673–80.

    CAS  PubMed  Google Scholar 

  79. Oh U, Fujita M, Ikonomidou VN, Evangelou IE, Matsuura E, Harberts E, et al. Translocator protein PET imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol. 2011;6:354–61.

    PubMed Central  PubMed  Google Scholar 

  80. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain. 2000;123:2321–37.

    PubMed  Google Scholar 

  81. Cagnin A, Myers R, Gunn RN, Lawrence AD, Stevens T, Kreutzberg GW, et al. In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain. 2001;124:2014–27.

    CAS  PubMed  Google Scholar 

  82. Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32:412–9.

    CAS  PubMed  Google Scholar 

  83. Price CJ, Wang D, Menon DK, Guadagno JV, Fryer T, Aigbirhio F, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke. 2006;37:1749–53.

    PubMed  Google Scholar 

  84. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–7.

    CAS  PubMed  Google Scholar 

  85. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Imaizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Musachio JL, et al. Kinetic evaluation in nonhuman primates of two new PET ligands for peripheral benzodiazepine receptors in brain. Synapse. 2007;61:595–605.

    CAS  PubMed  Google Scholar 

  87. Buck JR, McKinley ET, Hight MR, Fu A, Tang D, Smith RA, et al. Quantitative, preclinical PET of translocator protein expression in glioma using 18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline. J Nucl Med. 2011;52:107–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Gulyas B, Toth M, Schaine M, Airaksinen A, Vas A, Kostulas K, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [((11))C]vinpocetine. J Neurol Sci. 2012;15:320.

    Google Scholar 

  89. Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology. 2012;79:523–30.

    PubMed Central  PubMed  Google Scholar 

  90. Vasquez BP, Buck BH, Black SE, Leibovitch FS, Lobaugh NJ, Caldwell CB, et al. Visual attention deficits in Alzheimer’s disease: relationship to HMPAO SPECT cortical hypoperfusion. Neuropsychologia. 2011;49:1741–50.

    PubMed  Google Scholar 

  91. Brockmann H, Zobel A, Joe A, Biermann K, Scheef L, Schuhmacher A, et al. The value of HMPAO SPECT in predicting treatment response to citalopram in patients with major depression. Psychiatry Res. 2009;173:107–12.

    CAS  PubMed  Google Scholar 

  92. Véra P, Rohrlich P, Stiévenart JL, Elmaleh M, Duval M, Bonnin F, et al. Contribution of single-photon emission computed tomography in the diagnosis and follow-up of CNS toxicity of a cytarabine-containing regimen in pediatric leukemia. J Clin Oncol. 1999;17:2804–10.

    PubMed  Google Scholar 

  93. Reilly TJ, Staff RT, Ahearn TS, Bentham P, Wischik CM, Murray AD. Regional cerebral blood flow and aberrant motor behavior in Alzheimer’s disease. Behav Brain Res. 2011;222:375–9.

    PubMed  Google Scholar 

  94. Devanand DP, Van Heertum RL, Kegeles LS, Liu X, Jin ZH, Pradhaban G, et al. (99 m)Tc hexamethyl-propylene-aminoxime single-photon emission computed tomography prediction of conversion from mild cognitive impairment to Alzheimer disease. Am J Geriatr Psychiatry. 2010;18:959–72.

    PubMed Central  PubMed  Google Scholar 

  95. Vardi N, Freedman N, Lester H, Gomori JM, Chisin R, Lerer B, et al. Hyperintensities on T2-weighted images in the basal ganglia of patients with major depression: cerebral perfusion and clinical implications. Psychiatry Res. 2011;192:125–30.

    PubMed  Google Scholar 

  96. Gardner A, Salmaso D, Varrone A, Sanchez-Crespo A, Bejerot S, Jacobsson H, et al. Differences at brain SPECT between depressed females with and without adult ADHD and healthy controls: etiological considerations. Behav Brain Funct. 2009;5:37.

    PubMed Central  PubMed  Google Scholar 

  97. Brockmann H, Zobel A, Schuhmacher A, Daamen M, Joe A, Biermann K, et al. Influence of 5-HTTLPR polymorphism on resting state perfusion in patients with major depression. J Psychiatr Res. 2011;45:442–51.

    PubMed  Google Scholar 

  98. Nardo D, Högberg G, Flumeri F, Jacobsson H, Larsson SA, Hallstrom T, et al. Self-rating scales assessing subjective well-being and distress correlate with rCBF in PTSD-sensitive regions. Psychol Med. 2011;15:1–13.

    Google Scholar 

  99. Wong CH, Mohamed A, Larcos G, McCredie R, Somerville E, Bleasel A. Brain activation patterns of versive, hypermotor, and bilateral asymmetric tonic seizures. Epilepsia. 2010;51:2131–9.

    PubMed  Google Scholar 

  100. Nyakale NE, Clauss RP, Nel W, Sathekge M. Clinical and brain SPECT scan response to zolpidem in patients after brain damage. Arzneimittelforschung. 2010;60:177–81.

    CAS  PubMed  Google Scholar 

  101. Iida G, Oqawa K, Ishiuchi S, Chiba I, Watanabe T, Katsuyama N, et al. Clinical significance of thallium-201 SPECT after postoperative radiotherapy in patients with glioblastoma multiforme. J Neurooncol. 2011;103:297–305.

    CAS  PubMed  Google Scholar 

  102. Asano K, Takeda T, Nakano T, Ohkuma H. Correlation of MIB-1 staining index and (201)Tl-SPECT retention index in preoperative evaluation of malignancy of brain tumors. Brain Tumor Pathol. 2010;27:1–6.

    CAS  PubMed  Google Scholar 

  103. Matsunaga S, Shuto T, Takase H, Ohtake M, Tomura N, Tanaka T, et al. Semiquantitative analysis using thallium-201 SPECT for differential diagnosis between tumor recurrence and radiation necrosis after gamma knife surgery for malignant brain tumors. Int J Radiat Oncol Biol Phys. 2013;85:47–52.

    PubMed  Google Scholar 

  104. Usui C, Hatta K, Doi N, Kubo S, Kamigaichi R, Nakanishi A, et al. Improvements in both psychosis and motor signs in Parkinson’s disease, and changes in regional cerebral blood flow after electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1704–8.

    PubMed  Google Scholar 

  105. Nicita F, Papetti L, Spalice A, Ursitti F, Massa R, Properzi E, et al. Epileptic nystagmus: description of a pediatric case with EEG correlation and SPECT findings. J Neurol Sci. 2010;298:127–31.

    CAS  PubMed  Google Scholar 

  106. Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, et al. Combined 99 mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging. 2006;27:24–31.

    CAS  PubMed  Google Scholar 

  107. Wijdicks EF, Varelas PN, Gronseth GS, Greer DM. Evidence-based guideline update: determining brain death in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2010;74:1911–8.

    PubMed  Google Scholar 

  108. Spieth ME, Ansari AN, Kawada TK, Kimura RL, Siegel ME. Direct comparison of Tc-99m DTPA and Tc-99m HMPAO for evaluating brain death. Clin Nucl Med. 1994;19:867–72.

    CAS  PubMed  Google Scholar 

  109. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25:719–38.

    PubMed Central  PubMed  Google Scholar 

  110. Diringer MN, Videen TO, Yundt K, Zazulia AR, Aiyagari V, Dacey RG, et al. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg. 2002;96:103–8.

    PubMed  Google Scholar 

  111. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care. 2002;8:101–5.

    PubMed  Google Scholar 

  112. Langfitt TW, Obrist WD, Alavi A, Graossman RI, Zimmerman R, Jaggi J, et al. Computerized tomography, magnetic resonance imaging, and positron emission tomography in the study of brain trauma: preliminary observations. J Neurosurg. 1986;64:760–7.

    CAS  PubMed  Google Scholar 

  113. Abdel-Dayem HM, Abu-Judeh H, Kumar M, Atay S, Naddaf S, El-Zeftawy H, et al. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clin Nucl Med. 1998;23:309–17.

    CAS  PubMed  Google Scholar 

  114. Peskind ER, Petrie EC, Cross DJ, Pagulayan K, McCraw K, Hoff D, et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war veterans with persistent post-concussive symptoms. Neuroimage. 2011;54:S76–82.

    PubMed Central  PubMed  Google Scholar 

  115. Provenzano FA, Jordan B, Tikofsky RS, Saxena C, Van Heertum RL, Ichise M. F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nucl Med Commun. 2010;31:952–7.

    PubMed  Google Scholar 

  116. Hong TY, Veenith T, Dewar D, Outtrim JG, Mani V, Williams C, et al. Amyloid imaging with carbon 11–labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol. 2014;71:23–31.

    PubMed Central  PubMed  Google Scholar 

  117. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen M, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann Neurol. 70(3):374–83.

Download references

Acknowledgments

Funded in part by US NIH grant MH 078175 (DFW). Drs George, Gean, Nandi, Frolov, Zaidi, Lee, Brašić, and Wong have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean F. Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, N., Gean, E.G., Nandi, A. et al. Advances in CNS Imaging Agents: Focus on PET and SPECT Tracers in Experimental and Clinical Use. CNS Drugs 29, 313–330 (2015). https://doi.org/10.1007/s40263-015-0237-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-015-0237-z

Keywords

Navigation